Cochran-Hansen Prize

The prize established in 1999, is given for the best paper on survey research methods submitted by a young statistician for a developing country or transition country.

Cochran-Hansen Prize 2019

In celebration of its 25th anniversary in 1999, the International Association of Survey Statisticians (IASS) established the Cochran-Hansen Prize, which is awarded every two years for the best paper on survey research methods submitted by a young statistician from a developing or transition country. The Cochran-Hansen Prize consists of books and journal subscriptions in the value of € 500.

Participation in competition for the prize is restricted to young statisticians from developing and transition countries that are living in such countries and were born in 1984 or later.

A paper submitted for the competition must consist of original work which is either unpublished or has been published after February 15th 2017. A paper may be based on a university thesis and should be written in English. The deadline for submission of papers for the 2019 prize is 15 February 2019. All papers must be sent to the chair of the IASS 2019 Cochran-Hansen Prize Committee, Dr Anders Holmberg, email address; anders (dot) holmberg (at) ssb (dot) no.

Each submission must be accompanied by a cover letter, stating the author’s year of birth, nationality and country of residence. The cover letter should also indicate if the paper submitted is based on a PhD thesis and, in the case of a joint paper, the contribution to the paper made by the prize competitor. The papers submitted will be reviewed by members of the Cochran-Hansen Prize Committee appointed by the IASS. The decision of the Committee will be final.

The prize winner will be invited to present his or her paper at the World Statistics Congress of the International Statistical Institute (ISI) to be held in Kuala Lumpur, Malaysia, 18-23 Aug 2019; http://www.isi2019.org/. The IASS will provide the winner round trip economy class airfare and per diem for living expenses for the days that they participate in the 2019 WSC meetings in Kuala Lumpur.

For further information, please contact
Dr Anders Holmberg
Head, Division of Methods, Statistics Norway.
Email: anders (dot) holmberg (at) ssb (dot) no

Open announcement in PDF

Cochran-Hansen Prize Laureates 1999-2017

  • 2017: Girish Chandra (India)
  • 2015: Santanu Pramanik (India) and Kevin Carl Santos (Philippines)
  • 2013: Emilio Lopez Escobar, Mexico”
  • 2011: Solange Correa, Brazil
  • 2009: Hukum Chandra, India
  • 2007: Marcel de Toledo Vieira, Brazil
  • 2005: Maiki Ilves, Estonia
  • 2003: Krishna Mohan Palipudi, India
  • 2001: Kristiina Rajaleid, Estonia
  • 1999: Noor Muhammad Farid, Indonesia and Enal Pungas, Estonia

Cochran-Hansen Prize 2017

The winner of the 2017 Cochran-Hansen Prize was Girish Chandra (India). The title of his paper was:

Ranked set sampling approach for estimating response of developmental programs with linear impacts under successive phases

Girish Chandra presented his paper at the 61st World Statistics Congress in Marrakech 16-21 July, 2017

Report on the Cochran-Hansen Prize 2015

The Cochran-Hansen Prize of the IASS is awarded every two years for the best paper on survey research methods submitted by a young statistician from a developing or transition country. Participation in competition for the 2015 prize was restricted to young statisticians from developing and transition countries who were living in such countries and were born in 1980 or after. The definition of the target countries was based on the list of countries adhered by the International Statistical Institute. The Cochran-Hansen Prize consists of books and journal subscriptions in the value of EUR 500.

A total of 16 papers were submitted for the 2015 competition. Eight papers from seven different countries (Cameroon, India, Iran, Nigeria, Philippines, Turkey and South Africa) were accepted for review by the members of the Cochran-Hansen Prize Committee appointed by the IASS. The committee members were Risto Lehtonen, Jean Opsomer and Marcel de Toledo Vieira.

The reviewed papers were interesting, timely and covered widely the area of survey research methods. Two papers were ranked highest in the independent review by the jury members. The jury decided to award these two best papers. The winners are Santanu Pramanik (Research Scientist, Public Health Foundation of India) and Kevin Carl P. Santos (Assistant Professor, University of the Philippines-Diliman School of Statistics).

The paper entitled “Selection of Prior for the Variance Component and Approximations for Posterior Moments in the Fay-Herriot Model” by Santanu Pramanik is based on his PhD thesis in statistics completed at University of Maryland. The abstract of the paper summarizes the method as follows.

“In the Fay-Herriot model, a prior distribution for the variance component allows posterior moments to be approximated with the Laplace method, avoiding computer intensive Monte Carlo Markov chains. The extremely skewed posterior distribution of the variance component results from the asymmetry of the parameter space with variance parameters constrained to be positive. The prior avoids the extreme skewness of the posterior in contrast to the commonly used uniform prior. With this prior, the mean squared error and coverage in the approximate hierarchical Bayes method are satisfactory when used to estimate small area means. Computation time is shorter than with Monte Carlo Markov chains. The approximations give easy interpretations of Bayesian methods and highlight frequentist properties of the parameters”

The paper entitled “Improving Predictive Accuracy of Logistic Regression Model Using Ranked Set Samples” by Kevin Carl P. Santos is based on his M.S thesis in statistics completed at the School of Statistics of the University of Philippines-Diliman, School of Statistics. As summarized in the abstract of the paper:

“Logistic regression is often confronted with separation of likelihood problem and rare events. We propose to address this issue by drawing sample using ranked set sampling (RSS). Simulation studies illustrated the advantage in terms of predictive ability of logistic regression with RSS in small populations regardless of the distribution of the binary responses. As the sample and population sizes increase, the predictive ability of model from RSS also improves but it becomes comparable to fitted models using simple random samples (SRS). Furthermore, RSS mitigates the problem of separation of likelihood especially when the population size is relatively large. Lastly, even in the presence of ranking errors, RSS still yielded higher predictive power than its SRS counterpart.”

The prize winners were invited to present their papers at the 2015 World Statistics Congress of the ISI. The IASS congratulates the winners. The IASS wants to thank all authors who submitted a paper to the competition.