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Letters and reports

Letter from the Editors

Dear colleagues and readers,
We wish you a happy new year!

In this issue of The Survey Statistician (TSS), we bring you the latest news from the International
Association of Survey Statisticians (IASS). This includes updates from the newly elected president,
Partha Lahiri, and the appointed scientific secretary, Jenny Thompson. We also reveal the winner of
the 2026 Waksberg Award.

TSS is privileged to publish papers by accomplished researchers and practitioners from around the
world, as well as by young researchers. We are launching a new section called ‘Debate’. In it,
Changbao Wu and Li-Chun Zhang answer “yes' and "no', respectively, to the question, “Are non-
probability samples the future of surveys?'. In the "Ask the Experts' section, Anne-Sophie Charest
and Jorg Drechsler review differential privacy and its application to survey data. In the "New and
Emerging Methods' section, Sergio D. Martinez, Brady T. West and Rebecca R. Andridge discuss
measures of non-ignorable selection bias for non-probability samples. Section "Early Career Survey
Statistician' features two articles: "Modeling complex survey data: a case study of international health
surveillance surveys' by Timothy Raxworthy, Yajuan Si and Grace Chung, and *Variance component
estimation under a general area-level model' by Yuting Chen and Hanging Li.Sylvia Harmening
reviews the book 'Robust Small Area Estimation: Methods, Theory, Applications, and Open
Problems' by J. Jiang and J. S. Rao. The "Software Review' section is dedicated to an R package
for optimal allocation and sample selection; the authors of this paper are Giulio Barcaroli, llaria
Bombelli, Andrea Fasulo, Alessio Guandalini and Marco D. Terribili.

Country reports, a list of upcoming conferences and workshops, a list of articles published in other
journals and other news about the IASS are also presented.

This issue of TSS marks a change in the editorial board, and we would like to thank the outgoing
editors: Danuté Krapavickaité, Annamaria Bianchi and Veronica Ballerini. We would particularly like
to thank Danuté Krapavickaité for her invaluable work as Editor-in-Chief of TSS in recent years. We
would also like to welcome the new editors and express our gratitude to the current TSS editors for
their rigour and dedication: Gaia Bertarelli, Mehdi Dagdoug, Francesco Pantalone, Jenny
Thompson, Ton de Waal and Peter Wright. Finally, we would like to thank all the authors and
contributors to this issue.

To help keeping TSS interesting, please share your knowledge and experience by presenting
interesting topics and providing overviews of different areas of survey statistics and new ideas.

We hope you enjoy reading the January 2026 issue!

Alina Matei and Andrea Diniz da Silva
TSS Editors
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Letters and reports

Letter from the President

Dear Members,

Following a productive and inspiring 65th World Statistics Congress in The Hague, | am deeply
honored to begin my term as President of the International Association of Survey Statisticians (IASS)
for 2025-2027.

Stepping into this role, | am reminded of the immense dedication required to keep our global
community vibrant. | want to personally thank our outgoing President, Natalie Shlomo. Her
leadership and mentorship have been invaluable to me as President-Elect (2023-2025), and she
leaves the Association with a clear and ambitious path forward. My thanks also go to our departing
Vice-presidents Eric Rancourt, Jiraphan Suntornchost, Andres Gutierrez, and Annamaria Bianchi,
as well as the ISI Executive Council and Permanent Office. Their tireless work behind the scenes is
the reason our initiatives continue to thrive. Please refer to the Scientific Secretary’s report for a list
of our predecessors’ recent accomplishments.

| am delighted to work alongside our newly approved Executive Committee: Ralf Minnich (President-
Elect), and our Vice Presidents Gaia Bertarelli (Italy), Robert Clark (Australia), Haoyi Chen (China),
and Katherine Jenny Thompson (USA). Together, we represent a diverse range of perspectives that
will guide our strategy through 2027.

We are at a crossroads where traditional survey methods are meeting new data frontiers, and the
IASS must be the home for that transition. To that end, we will continue to champion excellence
through our flagship awards: the Hukum Chandra Prize (2026) and the Cochran-Hansen Prize
(2027). These awards are more than just accolades; they are our way of ensuring that the next
generation of survey statisticians, particularly from developing regions, has a seat at the global table.

Our Monthly Webinar Series will remain a cornerstone of our value to you. We are designing these
sessions to be more than just lectures. We want them to be a space for:

e Discovery: Exploring frontier research in survey design and data integration.

e Problem Solving: Discussing the "'messy’ real-world challenges faced by National Statistical
Offices.

e Practice: Providing hands-on training for the tools and software used daily.

Maintaining our financial health is a priority, and because membership fees currently do not support
financial conference sponsorships, we are exploring a new seed partnership model. By funding
specific deliverables, like short courses, in exchange for a share of the proceeds, we can continue
to support 2026 conferences in a way that is sustainable for the Association. We also remain
committed to providing no-cost co-sponsorships for mission-aligned events worldwide.

Please feel free to reach out to me directly at plahiri@umd.edu. | look forward to working with all of
you to make the next two years a period of growth and innovation for the IASS.

With best wishes,
Partha Lahiri

IASS President 2025-2027
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Letters and reports

Report from the Scientific Secretary

Happy new year!

As the new scientific secretary of the IASS, I'll begin by thanking my predecessor Annamaria Bianchi
(Italy) for her excellent work. This report primarily lists the efforts and achievements of the previous
Executive Committee (EC), along with a few updates from the new EC, which has been meeting
monthly since October 2025.

The new EC’s first order of business was to discuss our communication. While we appreciate the
timeliness of a monthly newsletter, it can be time-consuming to prepare and risks redundancy with
the Scientific Secretary report in the January and July The Survey Statistician (TSS). Henceforth,
these two reports serve as quarterly newsletters, with separate newsletters issued in April and in
October. For timely updates and information, visit us at LinkedIn, Facebook, and Twitter (@iass_isi).
To advertise events, seminars, or job opportunities through IASS social media, email
gaia.bertarelli@unive.it with "IASS Social Media Post’ in the subject line.

The IASS made several contributions to the 65" World Statistics Congress (WSC), held at The
Hague from 5-9 October 2025. For details — and pictures — see the IASS October 2025 newsletter.
Besides contributing to the WSC, the IASS provided financial support for three workshops: the
workshop in honour of Professor Yves Tillé on the occasion of his retirement, Neuchatel, Switzerland
from 25-26 June 2025, the Baltic-Nordic-Ukrainian Network (BNU) Workshop in Vilnius, Lithuania
from 25-29 August 2025 and the European Network for Better Establishment Statistics, 9th, biennial
European Establishment Statistics Workshop (EESW25) in Rome, Italy from 5-7 November 2025.
The IASS sponsored four invited talks the Fourth Workshop on Methodologies for Official Statistics
in Rome, Italy from 1-2 December: "On adversarial risk analysis in official statistics’ by F. Ruggeri
(Italy), the keynote address; "Statistical Inference for a finite population mean with machine learning-
based imputation for missing survey data’ by D. Haziza (Canada) and M. Dagdoug (Canada); "A
contamination model for multivariate zero-inflated data’ by D. Di Cecco (ltaly), D. Filipponi (ltaly) and
I. Guarnera (Italy); and "Small area estimation via spatio-temporal M-quantile modeling’ by N. Salvati
(Italy), F. Schirripa Spagnolo (Italy), M. Bugallo (Spain) and D. Morales (Spain).

As said in the President’s report, the IASS is unable to offer financial funding for workshops or
conferences in 2026 but continues to offer no-cost co-sponsorships to conferences of interest to
IASS members. These conferences include the Survey Cost Conference to be held in Washington,
D.C., on February 9-10, 2026, the 5" ISI Regional Statistics Conference (RSC) in Valletta, Malta,
from 3-5 June 2026, and the Small Area Estimation Conference 2026 (SAE 2026) will be held in
Bucharest, Romania, from 15-19 June 2026.

We have conducted five successful webinars since July 2025: ‘Debiased calibration estimation
using generalized entropy under selection bias’ by Jae Kwang Kim (U.S.A.), "Targeted designs to
address survey nonresponse’ by Peter Lynn (U.K.), "Sampling for business surveys at Statistics
Canada’ (2025 Waksberg Award Lecture) by M. A. Hidiroglou (Canada), "R-indicators for assessing
representativeness for survey and non-survey data’ by Natalie Shlomo (U.K.), and "Some history of
the use of models in survey sampling’ by Richard Valliant (U.S.A.). See our events page for updates
in 2026. Expect to see a variety of topics ranging from theoretical to operational and presenters from
developed and from emerging nations.

There are three open calls that should be of interest to the IASS membership:

1. Guest editors Maria Rosaria Ferrante and Natalie Shlomo seek contributions to a Special Issue
of Survey Methodology on the theme “Shaping the future of survey statistics in the data-driven
era. The deadline for submission is 31 January 2026. Submit manuscripts through
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Letters and reports

https://mc04.manuscriptcentral.com/surveymeth and indicate in the cover letter that the
submission is for the special issue.

2. Nominations are open for the 2027 Waksberg Award. This annual invited paper series honors
the late Joseph Waksberg with a paper that reviews the development and current state of an
important topic in the field of survey statistics and methodology. The recipient receives an
honorarium and gives the 2027 Waksberg Invited Address. The paper will be published in an
upcoming issue of Survey Methodology targeted for December 2027. Send nominations of
individual candidates by 15 February 2026 to Paul Smith (P.A.Smith@soton.ac.uk).
Nominations should include a CV and a letter of nomination and will remain active for 5 years.

3. Applications are open for the Hukum Chandra Memorial Prize. This prize is awarded by the IASS
to a mid-career researcher. The recipient will receive an honorarium of 500 Euros and will be
invited to present a special webinar with discussion in the IASS Webinar Series in October 2026.
Nominations should include an extended abstract (maximum five pages) on the proposed
webinar content, comprising original published or unpublished work. Each submission must also
be accompanied by a short CV (max two pages). Send applications to Robert Clark
(robert.clark@anu.edu.au) by 23:59 GMT on 22 May 2026.

Lastly, | am grateful for the opportunity to serve the IASS in this formal capacity. Please feel free to
contact me with suggestions for monographs (preferably open access), special issues or edited
books on topics of interest to IASS membership.

Jenny Thompson
IASS Scientific Secretary 2025-2027

Jennythompson731967@gmail.com
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News and announcements

2026 Waksberg Award

We are pleased to announce that Dr. Frauke Kreuter is the 2026 recipient of
the Waksberg Award.

About the Waksberg Award

REaEE The journal Survey Methodology established an annual invited paper series in
2001 in honor of Joseph Waksberg to recognize his contributions to survey statistics and
methodology. Each year, a prominent survey statistician is chosen to write a paper that reviews the
development and current state of an important topic in survey statistics and methodology, reflecting
the mixture of theory and practice that characterized Joseph Waksberg’s work.

Joseph Waksberg was a giant in survey sampling for nearly seven decades, beginning at the U.S.
Census Bureau in 1940 and moving to Westat in 1973, where he served as Chairman of the Board
from 1990 until his death in 2006. The award includes an honorarium made possible by a grant from
Westat.

About Dr. Frauke Kreuter

For the past two decades, Dr. Kreuter has spearheaded novel research in survey methodology,
especially at the interface with big data and large-scale computing. Her work on survey paradata
served as foundation for the emerging field of adaptive and responsive survey designs, more recently
she shaped the discipline’s thinking about the connection between surveys and Al.

Through her service on NASEM committees, Dr. Kreuter contributed to establishing principles of
privacy protection in federal statistical data products based on combined data sources. She has also
directed and built training programs, producing a new generation of data-science-savvy survey
researchers.

Dr. Kreuter will give the Waksberg Invited Address at the Statistics Canada Symposium in 2026
and will write a paper planned for publication in the December 2026 issue of Survey Methodology.

Selection Committee

The recipient of the 2026 Waksberg paper was selected by a four-person committee appointed by
Survey Methodology and the American Statistical Association: Jae-Kwang Kim (chair), Kristen
Olson, Paul Smith, and Alina Matei.

For more information on the Waksberg Award, please visit:

https://www150.statcan.gc.ca/n1/pub/12-001-x/award-prix-eng.htm

Jae-Kwang Kim
Chair of the 2026 Waksberg Award Committee
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News and announcements

Other news

— The call for nominations for the 2027 Waksberg Award is open until February 15, 2026. Paul
A. Smith, chair of the 2027 Committee, can be contacted at P.A.Smith@soton.ac.uk for
further details. For more information on the Waksberg Award, please visit
https://www150.statcan.gc.ca/n1/pub/12-001-x/award-prix-eng.htm

— The journal Statistics in Transition New Series (https://sit.stat.gov.pl/) has been selected for
inclusion in Web of Science, which represents one of the most trusted, publisher-independent
global citation databases.
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Debate

Are Non-probability Samples the Future of Surveys?

YES
Changbao Wu

Department of Statistics and Actuarial Science
University of Waterloo, Canada, cbwu@uwaterloo.ca

Non-probability samples are an indispensable
part of the future of surveys. It is not because
non-probability samples are a preferred source
of higher-quality data; rather, it is part of the
evolving landscape in the field of survey sam-
pling and official statistics. The ups and downs
in the development of probability sampling meth-
ods over the past 80 years, the emergence of
data from non-traditional sources, and recent
methodological advances in dealing with non-
probability survey samples have offered a glimpse
into the future of the field.

There is no denying that the widespread pursuit
of probability samples and the development of
probability sampling theory have been part of
the feel-good stories of the statistical sciences.
Probability sampling and probability samples,
however, are a fairy tale of a magic world that is
often fractured in reality. There are more philo-
sophical and practical issues with probability sam-
ples than steep declines in response rates, sky-
rocketing costs, and the inability to meet timely
demands. To quote Meng (2022),

“By the time the data arrive at our desk or disk,
even the most carefully designed probability sam-
pling scheme would be compromised by the im-
perfections in execution, from (uncontrollable)
defects in sampling frames to non-responses
at various stages and to measurement errors in
the responses. In this sense, the notion of prob-
ability sample is always a theoretical one, much
like efficient market theory in economics, which
offers a mathematically elegant framework for
idealization and for approximations, but should
never be taken literally.”

It is important to distinguish between a
non-probability sample and an arbitrary dataset.

NO

Li-Chun Zhang
University of Southampton, UK & Statistisk sentral-
byra, Norway, L.Zhang@soton.ac.uk

Let me start by removing two potential confu-
sions in order to discuss the “future of surveys”.
First, non-probability samples are nof new. In
fact, they are ancient — e.g. any population
census yields none other than a non-probability
sample due to the unknown over-/under-counting
errors, and probability sampling (Neyman, 1934)
was historically the fruit of scientific evolution
from purposively selected non-probability sam-
ples (e.g. Kieer, 1896). Second, although “sur-
vey” may refer broadly to any purposeful ex-
amination of someone or something, for sur-
vey statisticians the term is restricted to an ob-
servation process that is based on a designed
questionnaire (or instrument) which requires in-
formed consent and participation of the data sub-
jects. This may be contrasted to “non-survey”
observational big data (Zhang and Haraldsen,
2022), such as administrative registers, trans-
action records, remote sensing signals, internet
webpages (of products, businesses). Despite
the lack of a probability design, statistical use
of such non-survey big data is both a neces-
sity and an opportunity to be embraced, e.g. in
order to address the “official statistics Olympic
challenge” (Holt, 2007). The key is integration
of relevant sources (Zhang, 2012), such as frames
of population units, non-survey datasets with com-
plementary or overlapping information, and not
least probability sample surveys.

So what | contest here is the value of survey
data obtained from non-probability samples, typ-
ically web panels, contrary to survey data from
probability samples.

Much can be said about the different quality di-
mensions related to non-probability surveys; but
limited space demands focus. From a scien-

The Survey Statistician
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Debate

Non-probability samples refer to datasets with
unknown inclusion mechanisms and/or an un-
known sampled population but contain measure-
ments on variables of interest. There needs
to be a “design feature” for any non-probability
sample to ensure that key study variables and
auxiliary variables are included and that an ap-
propriate population is defined. Probability sam-
ples with severe nonresponse and/or imperfect
sampling frames, samples collected through com-
mercial online or phone panels or through com-
binations of convenient tools, and incomplete
administrative records with relevant information
on file are all examples of non-probability sam-
ples.

Like it or not, non-probability samples are on the
rise and will be a major part of the field’s future.
However, recent methodological advances un-
equivocally show that reliable auxiliary informa-
tion from the target population is the most cru-
cial ingredient of any defensible statistical anal-
ysis of non-probability samples. This is where
probability samples or census data can fill the
gap, and “a few high-quality national probabil-
ity surveys with carefully designed survey vari-
ables can play a pivotal role in the analysis of
non-probability survey samples” (Wu, 2022).

New data sources will continue to emerge, and
the future of surveys will be a blended universe
of probability and non-probability samples, with
probability sampling theory remaining one of the
pillars of statistical frameworks.

References

Meng, X.L. (2022). Comments on

“Statistical Inference with Non-Probability Sur-
vey Samples” — Miniaturizing Data Defect Cor-
relation: A Versatile Strategy for Handling Non-
Probability Samples. Survey Methodology, 48,
339-360.

Wu, C. (2022). Statistical Inference with
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sion). Survey Methodology, 48, 283—-311.

tific point of view, the core issue is the initial se-
lection problem of non-probability samples, now
that survey nonresponse and measurement er-
ror are present in probability and non-probability
samples alike.

Now, there have been recently a flourish of tech-
niques proposed for the so-called two-sample
setting, where the target variable exists in a non-
probability sample and some common covari-
ates exist in a separate probability sample ad-
ditionally. While it is necessary (and potentially
helpful) to devise remedies given incomplete aux-
iliary information as such, one must not lose
sight of the core selection problem. In fact, in
many register-rich countries, it would be easy
to replace the additional probability sample en-
tirely by a population frame containing the same
covariates. Stripping away the distraction caused
by the incompleteness of auxiliary information,
one would still be left to confront the initial non-
probability selection problem.

In theory, as we know from the history of statis-
tics, there are no guaranteed cures of the selec-
tion problem, such as in the context of treatment-
control analyses or observational studies. The
task-specific judgment required for useful gen-
eralisations from any particular sample to the
population, if taken for granted unwittingly, is
detrimental compared to the trust one can rightly
place in transparent, target-agnostic inference
from probability sampling. It serves well to re-
mind us on this point that Neyman (1934) called
“the method of sampling representative”, not that
any particular sample can ever be representa-
tive.

Moreover, practical speaking, any adjustment
technique of non-probability selection may as
well be considered for survey nonresponse in
probability samples, and empirical studies so
far have only evidenced increasing risks of bias
when comparing “well built” non-probability sam-
ples to “low response rate” probability samples
(Dutwin and Buskirk, 2017).

Of course, decreasing response rates in proba-
bility samples and increasing costs thereby are

The Survey Statistician
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serious challenges that need to be handled by
continuously improving the survey methodology.
Multisource statistics based on non-survey big
data have provided many alternatives in the past
and will become even more important in future.
But the transition has been and will be gradual,
especially in official statistics due to the high
quality requirements. Adopting design-based
audit sampling as a standard for validation and
quality assessment is attractive in this respect
due to its transparent probability-inference ba-
sis (Zhang, 2021, 2023).

In other words, sample survey will remain a valu-
able method of statistical investigation in future,
but only if it is based on probability sampling to
start with.
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Ask the Experts

Differential Privacy and its Application to Survey Data

Anne-Sophie Charest' and Jorg Drechsler®>**

! Université Laval, Canada, anne-sophie.charest@ulaval.ca
2 Institute for Employment Research, Germany, joerg.drechsler@iab.de
3 Ludwig-Maximilians-Universitat (LMU), Munich, Germany
4 University of Maryland, USA

Abstract

Differential privacy has emerged as a rigorous and broadly applicable framework for protecting
confidential data, offering guarantees that do not depend on unverifiable assumptions. In this paper,
we first present the definition of differential privacy and explain how it can be achieved in simple
settings using standard mechanisms. We then examine the application of differential privacy to
survey data and outline five key issues that complicate its use in this context.

Keywords: differential privacy, confidentiality, surveys, sampling, weighting, imputation.

1 Introduction

Confidentiality for survey and census data has long been a central concern. Confidentiality in this
context means protecting participants' identities and data by keeping it private and secure,
preventing unauthorized access, and only reporting results in aggregated forms to build trust and
encourage honest answers, especially for sensitive topics. These goals are often achieved through
a combination of techniques such as anonymization, encryption, strict access controls, and clear
communication of data usage. Focusing on anonymization, many techniques have been used to limit
the risk of disclosing private information: data suppression, swapping, data perturbation, and, more
recently, synthetic data (see for example Hundepool et al., 2012). These approaches aim to reduce
disclosure risks but applying them effectively requires deciding when the risk is acceptable. A
previous paper in this newsletter (Shlomo, 2022) reviewed traditional disclosure risks, namely
identity, attribute, and inferential disclosure, and described how statisticians have estimated these
risks over several decades. It also briefly introduced alternative privacy models proposed by
computer scientists, such as differential privacy (DP).

DP provides guarantees that differ fundamentally from assumption-based risk estimates. Indeed,
traditional disclosure risk metrics depend on unverifiable assumptions regarding the knowledge and
capabilities of ill-intended users of the data, henceforth called attackers, that try to learn sensitive
information about the units included in the data. Because of these assumptions traditional risk
metrics can fail when new external data becomes available, whereas DP offers provable protections
that do not rely on assumptions about the attacker’s knowledge. Although the idea originated in
computer science, an increasing number of statisticians are actively contributing to research in the
field, motivated in part by the Census Bureau’s adoption of DP to protect data from the 2020 U.S.
Census (Abowd, 2018) and by the appeal of its clean theoretical guarantees.

However, the use of DP in the context of surveys is not straightforward. In fact, we will discuss in
this paper five key issues that complicate this application. But, first, we present the DP framework in
detail and outline a few methods to achieve this guarantee.
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2 Differential Privacy

DP was first proposed by Dwork et al. (2006) and has been a very active research area since,
particularly in the last ten years or so. The term now encompasses a broad family of definitions, such
as (&,6)-DP, concentrated DP, and Rényi DP, each designed to address specific analytic or
operational needs. We present the original definition in detail and provide references to a few
important variants below. In the following section, we will explain how one can achieve DP, for
example with the addition of carefully selected noise to a statistic of interest.

2.1 Pure DP

This is the original definition, now referred to as pure DP. It is important to understand that DP is the
property of an algorithm, which takes as input a dataset to generate some output (for example, a
statistic, a parameter estimate or even a synthetic dataset) and not the property of a specific output.
This algorithm is usually called a randomized mechanism because satisfying the DP constraint
generally requires the addition of randomness. This randomness plays a crucial role: it ensures that
the mechanism’s outputs cannot depend too heavily on any single individual’s data. More
precisely, a randomized mechanism M with output space S satisfies e-differential privacy for a given
privacy parameter € > 0 if and only if for any two neighboring datasets D and D' and any A < S, we
have that P[M(D) € A] < e® P[M(D’) € A].

To illustrate, we can look at a class of algorithms that achieve DP by adding independent discrete
random noise to the statistic of interest, say the population total, i.e., instead of reporting the true
total the algorithm would return a noisy total where the noise is chosen in such a way that the
probability that the algorithm returns a specific value t € A if dataset D was used as the input is very
close to the probability of returning the same value if dataset D’ was used as the input. How close
these two probabilities need to be is governed by the parameter «.

Note that neighboring datasets can be defined in different ways, but the key idea is that they differ
in the data of a single individual. For a classic tabular dataset where rows represent observations
and columns represent variables, datasets D and D' are neighbors if they differ by exactly one row.
More precisely, we talk about unbounded DP if D’ is obtained by adding or removing one row from
D, and bounded DP if D and D' have the same number of rows but differ in the values of one
individual’s record. There are subtle but important differences between these two definitions; see for
example chapter 2 of Li et al. (2017). Other data structures require alternative notions of neighboring
datasets. For example, in network data, one may define neighbors by removing or adding a single
edge (Nissim et al., 2007) or a single node (Kasiviswanathan et al., 2013).

The guarantee offered by the pure DP definition can be interpreted in several ways. One is plausible
deniability: an individual can claim that their data has any value, and the output of a DP mechanism
cannot be used to refute that claim, even if an adversary holds as much information as the entire
dataset except for that individual. This is because adding any row to this known dataset creates a
neighboring dataset, and under DP the mechanism’s output must be almost as likely under each of
these possibilities. Consequently, no observer can reliably determine which specific values the
individual contributed.

Another interpretation, given in Wasserman and Zhou (2010), is in the form of a hypothesis test.
Pure DP implies a strict limit on how well any statistical test can distinguish whether the mechanism'’s
output came from D or from D’. Specifically, for any test of level a, the power of that test must be
smaller or equal to efa, so that the power of the test is very similar to its level. Thus, under &-
differential privacy with sufficiently small values of ¢, even the most powerful test cannot reliably
determine which of the two neighboring datasets produced the observed output, ensuring privacy for
that individual.
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Another important aspect of DP is the set of useful properties that follow directly from the definition.
First, DP is immune to post-processing, meaning that any computation applied to the output of a DP
mechanism will preserve the privacy guarantee. Second, DP composes in a straightforward way:
when several DP mechanisms are applied to the same dataset, their privacy losses accumulate in a
mathematically quantifiable manner, allowing to keep track of the privacy loss over multiple data
releases. For example, k mechanisms that each satisfy e-differential privacy jointly satisfy at most
ke-differential privacy. Because of this composition, the parameter ¢ is sometimes also referred to
as a privacy budget; it defines the total amount of privacy leakage that is still considered acceptable.
Based on the composition property one can then decide how this privacy budget should be spent
across several outputs from a single dataset. More details on these properties can be found in Dwork
and Roth (2014).

2.2 Approximate DP

Pure DP is a very strict guarantee, concerned with the worst-case scenario, because the inequality
P[M(D) € A] < e® P[M(D") € A] must hold for any possible D and D’, even very implausible ones.
A variant allows the guarantee not to hold when the probabilities of an output are small. More
precisely, a randomized mechanism M is said to satisfy (¢, §)-differential privacy with e > 0and § >
0 if for any two neighboring datasets D and D' and for any A € S we have that P[M(D) € A] <
e® P[M(D") € A] + §. This variant is more frequently used than pure DP, which is the special case
where § = 0, and often is referred to as simply DP.

2.3 Other variants

Many other variants of differential privacy have been proposed over the years. These alternatives
might modify the definition of neighbouring datasets or the way the privacy loss is measured.
Desfontaines and Pejo (2020) surveys hundreds of such definitions inspired by DP. A few variants
are worth mentioning: Rényi DP (Mironov, 2017), widely used in machine learning and in DP
stochastic gradient descent, zero-concentrated DP (Bun and Steinke, 2016), which offers tighter
composition bounds and Gaussian DP, which offers an analytically tractable, hypothesis-testing—
based framework with tight composition rules (Dong et al., 2022).

Another active line of work focuses on settings with no trusted curator, where privacy must be
guaranteed at the user level, that is before the data is stored in a central database (see for example.
Kasiviswanathan et al., 2011). This local differential privacy model is used in practice, for example,
in large-scale telemetry systems (Apple, 2017).

3 Achieving DP

DP is typically achieved through the addition of randomness. There are a few building block
mechanisms, which are often combined to obtain mechanisms for more complex tasks. These are
described in Dwork and Roth (2014) and summarized below.

3.1 Noise addition for numeric outputs

Noise addition is the basic building block of many differentially private algorithms. Under pure DP,
the standard approach is the Laplace mechanism. Suppose you want to release the output of some
function f applied to a dataset D, the Laplace mechanism will add Laplace noise to the value of
f (D). The variance of the added noise depends on the global sensitivity of the function, which is the
maximum possible change in the value of f when computed on any two neighboring datasets D and
D', that is, the largest difference |f(D) — f(D")| over all such pairs. More precisely, the Laplace
mechanism for a function f releases f(D) + X, where X is drawn from a Laplace distribution with
mean 0 and scale equal to the global sensitivity of f divided by €. The sensitivity must be computed
for each function f. For instance, the sensitivity of a counting query is 1, while the sensitivity of the
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mean depends on the range of the possible values for the individual values. For a dataset for which
the size n can be treated as public knowledge, each observation is in [a, b], then the range is R =
b — a and the sensitivity of the mean is R/n. Note that if we cannot provide bounds for the individual
values, then the sensitivity will be infinite, and thus it will not be possible to achieve DP. In practice,
one may estimate the range from the observed data, but this will require spending some of the
privacy budget.

For approximate DP, the standard mechanism is to add Gaussian noise, with variance determined
by the global sensitivity of the function and the privacy parameters € and §. Other variants include
adding geometric noise, or discrete or truncated noise distributions. Extensions also exist for
multidimensional outputs, with mechanisms designed to handle vector-valued or high-dimensional
functions.

3.2 Exponential mechanism for non-numeric outputs

Noise addition works well for numeric outputs, but many tasks require selecting from a set of
categorical or structured outcomes. The exponential mechanism is a second fundamental building
block that provides a general framework for releasing non-numeric outputs under differential privacy.
It selects an output r with probability proportional to exp(eu(D,r) / (24u)), where u(D,r) is a utility
score for reporting r on dataset D and Au is the sensitivity of this utility score. This mechanism is
especially useful when the goal is to select the “best” option according to a data-dependent criterion,
such as choosing a model or a quantile, while ensuring that the choice does not reveal too much
about the underlying data. For example, one may use the exponential mechanism to publish the
mode of a categorical variable by using the number of observations in dataset D with value equal to
r as utility function u(D, r). This utility function has sensitivity Au = 1.

3.3 More complicated mechanisms

Most DP mechanisms are constructed from these basic building blocks, together with the
composition and post-processing properties of DP. For tasks such as regression, for example, one
may add noise directly to the data, perturb the objective function, or add noise to the final output, or
even decide to use more robust statistics to reduce the amount of noise required (see for example
Alabi et al., 2022). The optimal strategy is problem-dependent, and in many settings remains an
active area of research.

In machine learning, using differentially private versions of stochastic gradient descent (DP-SGD)
has become the dominant approach for training models with differential privacy. The privacy
guarantees of these algorithms rely on privacy accounting. Simple composition is far too loose when
models are trained over tens of thousands of gradient steps. Privacy accounting methods provide
tight bounds by exploiting subsampling amplification (Balle et al., 2018) and advanced composition
frameworks such as Rényi DP (RDP), zero-concentrated DP (zCDP), and Gaussian DP (GDP).
Without such accounting techniques, training would appear to consume impractically large privacy
budgets, rendering DP-SGD useless in practice. Several accounting methods exist (Abadi et al.,
2016; Bun and Steinke, 2016; Mironov, 2017; Dong et al., 2022; Koskela et al., 2020), each trading
off accuracy, efficiency, and ease of implementation.

3.4 Practical challenges

Implementing DP in practice raises several important challenges. A first difficulty is choosing the
privacy parameter ¢. Although DP offers a formal privacy guarantee, it is really only meaningful if ¢ is
relatively small. There is little consensus on what values are acceptable in applied contexts, and
existing legal or regulatory frameworks such as the European Data Protection Regulation (GDPR),
(Regulation (EU) 2016/679) offer only high-level guidance (Lee and Clifton, 2011).
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A second challenge is that theoretical guarantees do not always translate cleanly to real-world
implementations. Floating-point arithmetic, numerical clipping, and implementation-level
randomness can all introduce deviations from the idealized model. Even subtle issues in
pseudorandom number generators can weaken privacy guarantees, as demonstrated in early
attacks on DP implementations (Mironov, 2012). Robust software engineering is therefore essential.
Although mature libraries such as Google’s Differential Privacy library (Google, 2019), OpenDP
(OpenDP Project, 2021), and IBM’s diffprivlib (Holohan et al., 2019) mitigate many of these risks,
ensuring trustworthy and reproducible implementations remains an active area of work.

Finally, dependence within the data and adaptivity in the analysis process introduce additional
complexities. Differential privacy is defined for datasets differing in one individual assuming
independence between the units, but real datasets may exhibit strong correlations, for instance,
between members of the same family, which can increase effective sensitivity and weaken protection
(Kifer and Machanavajjhala, 2011). Adaptive analyses, where later queries depend on earlier
outputs, also complicate privacy accounting. For example, model diagnostics such as residual
checks or comparisons of fit statistics should be handled carefully, and obtaining them under DP will
consume additional privacy budget (Dwork et al., 2015).

4 DP for surveys

The following discussions are excerpts from Drechsler and Bailie (2024) and we refer interested
readers to this text for a more detailed discussion of DP in the survey context. When working with
survey data, there are additional complexities which typically do not arise in other settings. Moreover,
the implications of using DP in the context of surveys have received little attention in the DP literature
until recently. Overall, there are (at least) five aspects that need to be considered when implementing
DP in this context: (i) the multiple stages of the survey pipeline, (ii) limited privacy gains from complex
sampling designs, (iii) challenges in computing the privacy guarantees of survey weighted estimates,
and consequences of (iv) weighting adjustments and (v) imputations for missing data. We will
discuss each of these aspects in the remainder of this section.

Register for The collected
sampling data

; Population \ F.mmc \ Sample Rcsi)umliug Processed Survey
P ) s 7 sample © 7 data ? 7 outputs ¢

After coding,
editing, imputation,
weighting, etc.

What we want Random set
to study of units

Figure 1: The main steps of the survey data pipeline

4.1 DP and the Survey Data Pipeline

As illustrated in Figure 1, the production of survey data is a complex multistage process. There are
two important considerations when integrating a DP mechanism into a data pipeline. Firstly, at what
point in the pipeline should the DP mechanism start? And secondly, which of the earlier stages of
the data pipeline should be considered invariant? In the DP literature, invariants generally refer to
aspects of the input data that remain fixed over neighboring dataset D and D’. For example, for the
Decennial Census 2020, the U.S. Census Bureau decided that several counts must be released
unaltered and thus treated them as invariant in their application of DP. With survey pipelines, there
are several possible options with respect to the starting point of the mechanism and the decision on
which of the earlier stages should be treated as invariant.
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In the option most seen in the DP literature, the data-release mechanism starts at the end of the
pipeline and performs just the last step — computing the survey outputs from the processed data —
and none of the previous steps are taken as invariant. However, a mechanism could conceivably
start at any point of the survey pipeline and incorporate all the steps that follow. Furthermore, any of
the steps before the mechanism starts could conceivably be taken as invariant. Overall, this leads
to up to 15 possible scenarios that need to be considered. Figure 2 highlights ten of these scenarios
for illustration (the remaining five options would all start at the responding sample level).
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Figure 2: Ten out of fifteen possible settings for a DP mechanism in the survey context (the remaining five settings would all start at the
level of the processed data). The red rectangles indicate the starting point of the mechanism.

A few general observations can be made regarding the advantages and disadvantages of the
different scenarios (see Drechsler and Baile (2024) for a more detailed discussion): From a privacy
perspective, it seems advantageous to start the DP mechanism as early as possible to benefit as
much as possible from privacy amplification through subsampling (Balle et al., 2018), further
discussed in Section 4.2 below. Note that the data production pipeline consists of three sampling
steps: beyond the classical sampling step, nonresponse can be treated as another subsampling step
and even the frame can be seen as a random sample from the target population, if we model the
probability of inclusion in the frame as a random variable. However, this privacy amplification can be
nullified if the attacker knows that the record they are attacking is in the sample, a scenario that
statistical agencies often need to consider in practice and the additional privacy amplifications are
either small or difficult to quantify (Bailie and Drechsler, 2024). On the other hand, any stage of the
survey pipeline that should be part of the DP mechanism must first be fully “algorithmized” (that is,
the process by which each of the stage's possible inputs is transformed into one of its outputs must
be completely and programmatically specified). A survey pipeline often includes a number of
complex, ill-defined and human-intensive tasks, such as building the frame, choosing a sampling
design, coding and editing. Because these tasks all usually require a degree of human judgment,
they would be difficult to algorithmize.

Another downside of starting the DP mechanism earlier is the fact that it can complicate the
computation of the cumulative privacy loss across multiple data-release mechanisms because DP's
composition theorems are not applicable when there is dependence between the mechanisms' noise
terms (which can happen, for example, when their sampling designs are dependent or when two
noisy statistics are computed from the same sample) (Bailie and Drechsler, 2024).

However, even if a data-release mechanism begins later in the survey pipeline so that some steps
of the pipeline do not have to be incorporated in the mechanism, implementing DP still requires
understanding those steps' effect on the mechanism's input data. For example, with hot deck
imputation an individual survey respondent can contribute to multiple records in the post-imputation
dataset. This complicates the appropriate definition of neighboring datasets: In the post-imputation
dataset, changing a single record does not correspond to changing the data of one entity. In general,
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the later the DP mechanism begins, the more difficult it is to determine an appropriate notion of
neighbors since steps earlier in the pipeline may introduce dependencies between dataset records.

These complexities demonstrate that there can be conflicting demands in deciding where a DP
mechanism should start within the survey pipeline. (See Drechsler and Bailie (2024) for further
aspects that need to be considered.) We now return to the question of which steps of the survey
pipeline should DP take as invariant. DP assesses the privacy of a data-release mechanism by
comparing the survey outputs' distribution under pairs of counterfactual input datasets. By taking
some of the steps of the survey pipeline as invariant, DP's counterfactual comparisons are reduced
to only those pairs of input datasets which share the same realization of the invariant steps. For
example, suppose the steps in the survey pipeline which generate the population and the frame are
taken as invariant and the data-release mechanism starts with the responding sample. Then DP only
compares those responding samples (i.e., those counterfactual input datasets) which could have
come from the same frame. Adding invariants will weaken the privacy guarantees provided by DP
(Kifer et al., 2022, Abowd et al., 2022). In general, the later the stage of the pipeline that is kept
invariant, the greater the reduction in privacy. However, invariants may be justifiable when the output
of the invariant steps can be considered public knowledge (such as if the frame was sourced
commercially rather than constructed from confidential information). Moreover, constraining some
steps to be invariant has the advantage of reducing the sensitivity of survey weighted estimators and
thereby decreasing the noise which must be added for privacy protection as discussed in Section
4.3.

4.2 DP with Complex Sampling Designs

Statistical agencies have been aware for decades that sampling can be a simple and effective
strategy to reduce disclosure risks simply because an attacker can no longer be sure whether a
specific target record is included in the sample or not. This is the main reason why most statistical
agencies only release samples from their censuses as public use micro datasets (they typically also
apply additional measures to further increase the level of protection). This idea has been formalized
in several papers in the context of DP (Kasiviswanathan et al., 2011, Wang et al., 2016, Bun et al.,
2015, Balle et al., 2018, Wang et al., 2019). The authors show that the level of privacy is amplified
through sampling, i.e., the actual privacy guarantees are higher than those implied by the chosen
privacy loss parameters when protecting the sample output. Specifically, for small sampling rates r
and small privacy loss parameters ¢, applying certain simple sampling designs (simple random
sampling with and without replacement, and Poisson sampling) before running an & -DP mechanism
reduces the privacy loss to approximately re. However, most surveys conducted by statistical
agencies use complex multistage sampling designs, potentially with different sampling strategies at
the different stages. Bun et al. (2022) study the amplification effects for complex designs and find
that amplification is small for most of the sampling designs used in practice. Their findings can be
summarized as follows:

e Cluster sampling using simple random sampling without replacement to draw the clusters
offers negligible amplification in practice except for small € and very small cluster sizes.

¢ With minor adjustments, stratified sampling using proportional allocation can provide privacy
amplification. For small ¢, the amplification is still linear in the sampling rate up to a constant
factor.
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e Data dependent allocation functions such as Neyman allocation for stratified sampling will
likely result in privacy degradation. (The effects will depend on the sensitivity of the allocation
function.)

e With PPS sampling at the individual level, the privacy amplification will linearly depend on
the maximum probability of inclusion (for small ¢).

e Systematic sampling will only offer amplification if the ordering of the population is truly
random. In all other cases, systematic sampling will suffer from the same effects as cluster
sampling, leading to no amplification (assuming the ordering is known to the attacker).

In practice this implies that for many multistage sampling designs, which typically start with (multiple
stages of) stratified cluster sampling, amplification effects can generally only be expected from those
stages at which individual units or households are selected (typically the last stage of selection).

4.3 DP for Weighted Estimates

As discussed in Section 3.1, the amount of noise that needs to be added to achieve a specific privacy
loss ¢ directly depends on the sensitivity of the statistic of interest. From a utility perspective, this
implies that more reliable (less noisy) DP outputs can be expected from statistics with low sensitivity.

When analyzing survey data, it is generally important to take the sampling design into account since
the probabilities of selection vary between the units included in the sample. To simplify this task for
data users, statistical agencies typically provide survey weights. In practice, these survey weights
will also account for nonresponse and other data deficiencies such as undercoverage. (We will
address this extra layer of complexity in the next section.)

Using survey weighted estimates raises the question: how (if at all) does the sensitivity of a statistic
change when the survey design is taken into account? To illustrate the possible impacts, let us
assume the analyst is interested in estimating the mean of some variable Y in the population using
the sampled values y;, i = 1, ..., n, where n denotes the sample size. If the probabilities of selection
were equal for all units, the sample mean would be an unbiased estimate for the population mean
and, as indicated in section 3.1, its sensitivity would be R/n, with R denoting the range of possible
values for y;.

When dealing with unequal probabilities of selection, a popular estimator for the population mean is
the Horvitz-Thompson estimator (Horvitz and Thompson, 1952): u/{f\T =Y w;y;/N where w; is the
weight of unit i, fori = 1, ..., nand N is the size of the population. Note that we assume for simplicity
that N is known and does not need to be protected and w; is the design weight, i.e., it only accounts
for the sampling design.

If we can treat the weights as fixed, the sensitivity of @’\T is max(w;) R/N. Whether the maximum is
over all units in the frame, over all units in the population, or over all possible counterfactual units,
depends on which stages of the survey pipeline are treated as invariant as discussed in Subsection
4.1. Note that for equal-probability designs all w; = N/n and thus the sensitivity of the Horvitz-
Thompson estimator is the same as for the unweighted estimator. If max(w;) > N/n, the Horvitz-
Thompson estimator will have larger sensitivity than the unweighted estimator.

However, these discussions assume that the weights can be treated as fixed, that is, they do not
change if a record changes in the database. For most sampling designs used in practice, such an
assumption is unrealistic. For example, with sampling proportional to size (PPS), the i-th record's
probability of inclusion is given by m; = (nx;)/(Nx), where x; is the value for unit i of the measure-
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of-size variable X that is used to improve the efficiency of the sampling design, andx = ¥, x; /N is
the population mean of X. Changing the value of X for a single record will change the probabilities
of inclusion and thus the survey weights for all other records in the sampling frame. Therefore, the
sensitivity will be larger compared to the setting with fixed weights as we no longer only need to
consider the maximum possible change in a single record's value for Y. We also need to consider
the impact of the weight change for all the other records even if their values for Y don't change.

A recently proposed strategy to mitigate this potentially substantial increase in sensitivity is to
regularize the weights, as explored by Seeman et al. (2024). (An extreme version of this strategy
would set all weights to be equal; this could be justifiable if the increase in the privacy noise due to
the weights dwarfs the bias introduced by ignoring the sampling design.) Another possible strategy
is to treat the frame or at least the design variables within the frame as invariant as discussed in
Figure 2. Frame invariance assumes any two neighboring datasets must always originate from the
same frame and so can only differ at the sample level (or later). However, treating the frame as
invariant has two additional implications that need to be considered. First, fixing the frame implies
that privacy amplification from sampling is no longer possible (we would need to have neighboring
datasets at the frame level in order to achieve amplification). However, given the results of Bun et
al. (2022), this amplification is likely small in practice and thus the positive effects of reducing the
sensitivity will tend to outweigh the negative effects of losing the amplification effect. On the other
hand, fixing the frame will restrict the possible counterfactual input datasets to those which are
consistent with the realized frame. Because this restriction will fix the survey weights, it might
introduce strong constraints on the possible neighboring datasets, depending on the sampling
design. As a consequence, the actual privacy guarantees for a frame invariant setting could be
significantly weaker than the guarantees under a non-frame-invariant setting even for the same
privacy loss parameter. How problematic this reduction in privacy is in real settings is currently an
open question for research.

In contrast, if only the design variables are treated as fixed, the data-release mechanism could still
start at the frame level, strengthening the privacy guarantees.

4.4 DP and Weighting Adjustments

In practice, two adjustment steps are commonly applied to the design weights to correct for unit
nonresponse and other data deficiencies such as over- or undercoverage in the sampling frame:
nonresponse adjustments and calibration. How these adjustment steps interfere with differential
privacy has not been studied so far. However, both steps are data dependent, that is, they use
information from the survey units for the adjustments. This implies that these steps cannot be ignored
from a privacy perspective as the adjusted weights leak some personal information. Looking at the
impacts on the sensitivity of the final statistic of interest (which uses the adjusted weights), similar
problems as those discussed in the previous section will arise: changing one record in the database
can potentially change the weight-adjustment factors for all other units in the survey. Thus, it seems
imperative to already account for these adjustment steps during data pre-processing. Better results
in terms of the privacy-accuracy trade-off might be achieved if the weight-adjustment steps were
carried out in a differentially private way. More research is needed to better understand this trade-
off. For example, it seems beneficial to identify robust adjustment strategies as less noise would be
required to satisfy DP for these strategies.

In the particular case of post-stratification (which is a simple type of calibration), one such robust
adjustment strategy has been proposed by Clifton et al. (2023). Another strategy would be to
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regularize the nonresponse and calibration weight adjustments. (This would be similar to the survey
weight regularization strategy of Seeman et al. (2024) discussed in the previous section.)

4.5 DP and Imputation

All survey data are plagued by item nonresponse as survey respondents are often unwilling or unable
to respond to all survey questions especially if they request sensitive information. A common strategy
to deal with this problem is to impute the missing values before analyzing the data to avoid biases
that might arise when simply discarding incomplete records before the analysis. However,
imputations are always data dependent as they typically build a model based on the observed data
and use this model to impute the missing values. As a consequence, the implications of imputation
on the DP guarantees need to be considered regardless of whether or not the imputation procedure
is included inside the data-release mechanism. Some preliminary results for this problem are
discussed in Das et al. (2022).

Similar to the problem of weighting adjustments, there are two possible strategies to account for
imputation under DP. The first strategy only considers the effects when analyzing the imputed data.
The second strategy modifies the imputation routines to ensure that the imputations already satisfy
DP. As Das et al. (2022) have shown, the first strategy implies that in the worst case the sensitivity
increases linearly with the number of imputed observations. This substantial increase of the
sensitivity arises because changing one record in the database can potentially impact all of the
imputed values. Whether the worst case applies depends on the analysis of interest and on the
selected imputation procedure. Still, for statistical agencies offering pre-imputed datasets for
accredited researchers, this strategy is not an option since they cannot anticipate which analyses
might be performed on the imputed data.

The second strategy can break the dependence on the number of imputed records at least for certain
imputation strategies. The key requirement for breaking the dependence is that the imputation model

m can be written as D&~ m(D(i) 9), where DY and DY contain the imputed and observed

imp obs’ imp obs
variables for record i and 8 denotes the model parameters estimated on the complete data. The
model implies that, given 8, the imputed values of record i only depend on the observed values of
that record and not on any other record. If these requirements are met and the parameters 6 of the
imputation model are estimated using any suitable differentially private mechanism with privacy loss
parameter ¢, then, given any ¢, differentially private mechanism used for analyzing the data, the
overall privacy loss is given by €, + &, by the composition property

We note that the conditional independence assumption of the imputation model holds for many
imputation methods, for example, parametric imputation models based on linear regression.
However, it does not hold for hot-deck imputation, an imputation method commonly applied at
statistical agencies.

5. Discussion

Differential privacy provides a formal, elegant framework with strong theoretical guarantees and
several appealing properties such as post-processing immunity, clean composition rules, and a clear
interpretation of privacy loss. In simple settings, these guarantees are straightforward to compute
and the required noise is easy to calibrate. However, real data-analysis workflows are rarely this tidy,
and its application to survey data highlights just how complex differential privacy can become in
practice. The presence of complex sampling designs, weighting adjustments, imputation steps, and
data-dependent decisions means that calibrating privacy loss is rarely straightforward. Each of these
operations can interact with DP in subtle ways, and determining how much noise is needed, or even
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what the appropriate sensitivity should be, poses challenges that haven’t been fully addressed in the
literature.
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Abstract

Non-probability samples are increasingly used in applied research, raising concerns about non-ignorable
selection bias in estimates based on these samples that traditional diagnostics cannot adequately as-
sess. Conventional diagnostics and inferential approaches for these samples offer limited insight
because they ignore the link between selection mechanisms and outcomes. This paper reviews
variable-dependent measures for non-ignorable selection bias based on the proxy pattern—mixture
model (PPMM), with emphasis on the Standardized Measure of Unadjusted Bias (SMUB) for means
and the Measure of Unadjusted Bias for Proportions (MUBP). Both indices are grounded in the PPMM
framework, which uses auxiliary variables with reliable population benchmarks to construct a single
proxy and summarize departures from ignorability through a single sensitivity parameter. Evidence
from simulation studies shows that the SMUB and MUBP can accurately capture the direction and
magnitude of bias when auxiliary variables are at least moderately predictive of outcomes, outper-
forming traditional diagnostics. Empirical applications in health surveys, political polling, pandemic
surveillance, and administrative data confirm their practical value while emphasizing the need for
strong, harmonized auxiliary covariates. We conclude with guidance on implementation and a brief
discussion of ongoing research. Our aim is to motivate broader adoption of these indices as prac-
tical and interpretable diagnostics for assessing selection bias in applied survey research, aided by
accessible R software that facilitates their implementation in practice.

Keywords: selection bias, non-probability samples, proxy pattern—mixture model, sensitivity analysis.

1 Introduction

The cornerstone of survey inference has long rested on a fundamental assumption: that the mech-
anism by which units are selected into a sample does not depend on the values of the variables
being measured. This assumption of ignorable selection, formalized by Rubin (1976), provides the
theoretical justification for design-based inference from probability samples. However, the contem-
porary landscape of survey research presents mounting challenges to this ideal. Declining response
rates across all survey modes (Brick and Williams, 2013; Williams and Brick, 2018; de Leeuw, Hox,
and Luiten, 2018; Luiten, Hox, and de Leeuw, 2020; Daikeler, BoSnjak, and Lozar Manfreda, 2020;
Lundmark and Backstrom, 2025), escalating costs of maintaining probability samples (Presser and
McCulloch, 2011), and the proliferation of readily available non-probability data sources (Baker et al.,
2013; Mercer et al., 2017; Cornesse et al., 2020) have created an environment where ignorability can
no longer be taken for granted.

Non-probability samples, which lack a formal randomization mechanism, present particular chal-
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lenges for inference. Unlike probability samples where design-based methods can in principle ac-
count for known selection probabilities, non-probability samples require model-based approaches.
Elliott and Valliant (2017) outlined two broad approaches for making inferences under this setting:
quasi-randomization and superpopulation modeling. Both approaches critically depend on the as-
sumption of ignorable selection, which in practice is unlikely to hold precisely, yet existing adjustment
methods provide little guidance on the magnitude of bias that may result from its violation. This gap
motivates the development of sensitivity analysis tools that explicitly parameterize departures from
ignorability and quantify their impact on estimates of interest.

The methodological response to this challenge has centered on developing model-based approaches
that explicitly parameterize departures from ignorability. A particularly influential framework emerged
from the work of Andridge and Little, 2011, who introduced the proxy pattern-mixture model (PPMM)
as a principled method for sensitivity analysis in the presence of non-ignorable survey non-response.
The PPMM compresses auxiliary information observed for both respondents and nonrespondents into
a single proxy variable that is predictive of the outcome of interest. By modeling the joint distribution
of the proxy and the outcome under different assumptions about the missing data mechanism, the
PPMM provides a structured sensitivity analysis for non-response bias.

Building on the PPMM framework, Little et al. (2020) introduced the Standardized Measure of Un-
adjusted Bias (SMUB), a family of interpretable indices that quantify the degree of departure from
ignorable selection in estimated means. Boonstra et al. (2021) later demonstrated that the SMUB
correlates more strongly with true bias than traditional diagnostics. Extending this framework to bi-
nary outcomes, Andridge et al. (2019) developed the Measure of Unadjusted Bias for Proportions
(MUBP), which reformulates the PPMM within a latent variable setting. More recently, West et al.
(2021) generalized this framework to regression coefficients in both linear and probit models.

To compute the SMUB and MUBP, three ingredients are required: (1) microdata from a non-probability
sample containing the outcome Y (continuous for SMUB or binary for MUBP) and a set of auxiliary
variables Z that are predictive of Y'; (2) reliable population-level summaries of Z, including means
and, when available, variances and covariances, obtained from high-quality data sources such as
administrative registers, large probability surveys, or other external benchmarks; and (3) an assumed
sensitivity parameter ¢ that governs the degree of non-ignorability. In general terms, the estimation
proceeds as follows. A proxy variable X is first constructed for the outcome Y by regressing Y on
the auxiliary variables Z using the non-probability sample data, with linear regression used for SMUB
and probit regression for MUBP. This proxy represents the best available predictor of the outcome
based on the observed covariates, reducing a multidimensional set of auxiliaries to a single composite
predictor. Population-level summaries of Z are then used to compute the corresponding population
mean and variance of the proxy X. Finally, SMUB(¢) or MUBP(¢) can be obtained either by fixing
specific values for ¢ (commonly 0, 0.5, and 1) or, under a Bayesian framework, by assigning ¢ a
noninformative prior distribution that reflects the absence of prior knowledge about the degree of
non-ignorability.

The predictive strength of the auxiliary variables plays a central role in this framework. Weakly predic-
tive Z variables may yield highly uncertain bias estimates, making it difficult to assess the direction or
magnitude of potential selection bias, reducing the diagnostic value of the indices. Correlations above
approximately 0.3-0.4 between the outcome and the proxy are desirable (Andridge et al., 2019; Little
et al., 2020). As discussed in Section 3, both simulations and empirical results reinforce the impor-
tance of having a strongly predictive set of covariates to ensure reliable inference.

Empirical studies have demonstrated the versatility of these indices across diverse survey domains.
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West and Andridge (2023) applied the MUBP to pre-election polling data, showing improved alignment
with certified election results; Andridge (2024) used the MUBP to assess bias in COVID-19 vaccine
uptake estimates, finding results consistent with non-ignorable selection; Hammon and Zinn (2024)
validated the MUBP using population data from the German General Social Survey; and Schroeder
and West (2025) applied the MUBP to evaluate potential selection bias in the 2019 Health Survey
Mailer (HSM), an off-wave supplement to the longitudinal Health and Retirement Study (HRS). Us-
ing harmonized demographic and health covariates shared across waves, they found that MUBP
adjustments were small, indicating largely ignorable selection but highlighting the method’s value for
diagnosing bias in longitudinal survey contexts. Most recently, Gomez-Echeverry et al. (2025) applied
the SMUB framework to short-term economic indicators, highlighting the benefits of incorporating his-
torical auxiliary data to improve adjustment accuracy.

This article provides an overview of the theoretical foundations, empirical performance, and practical
implementation of the SMUB and MUBP indices. We begin by outlining the PPMM framework that
underlies both measures. We then synthesize evidence from simulation studies that systematically
vary proxy strength, selection mechanisms, and outcome distributions, together with validation exer-
cises and empirical applications spanning public health surveillance, demographic surveys, political
polling, and administrative data used for economic indicators. Finally, we summarize practical guid-
ance on proxy construction and sensitivity analysis, and discuss methodological extensions already
available as well as ongoing research aimed at refining these indices and broadening their applica-
bility. The overarching goal is to show that the SMUB and MUBP constitute accessible, interpretable,
and empirically validated tools for diagnosing selection bias, and to motivate their broader adoption in
contemporary survey research, where evaluating data quality under potential non-ignorable selection
has become increasingly critical.

2 Measures of selection bias

This section summarizes the methodological framework and key formulations introduced by Little et al.
(2020) and Andridge et al. (2019). The following exposition outlines the main components, assump-
tions, and analytical expressions underlying these measures. Readers interested in full derivations
and implementation details are referred to the original papers for comprehensive discussions.

2.1 Indices of Non-lgnorable Selection Bias for Means

Little et al. (2020) developed an index-based sensitivity analysis framework that explicitly quantifies
potential selection bias under varying assumptions about the degree of non-ignorability. Their ap-
proach embeds the PPMM into a tractable parametric framework that enables researchers to bound
the range of plausible bias values and assess the robustness of substantive conclusions to departures
from ignorable selection.

Suppose the non-probability sample provides data D = {(y;,2;) : i = 1,...,n}, where y; denotes the
continuous survey outcome for unit; and z; is a p-dimensional vector of auxiliary variables predictive of
y; and for which summary statistics are available for the population. Let S; € {0, 1} indicate selection
into the non-probability sample, with S; = 1 for selected units and S; = 0 otherwise.

The first step constructs an auxiliary proxy for the unobserved outcome values among non-selected
units. Formally, we regress Y on Z using data from selected units (S = 1) to obtain the fitted linear
predictor X = ZTB where [3 denotes the least-squares coefficient vector. This proxy X represents
the best linear predictor of Y based on the available auxiliaries and serves as a surrogate for Y in the
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non-selected population. To facilitate model specification and interpretation, X is rescaled to match

M
the variance of Y within the non-probability sample X* = X, / S(ﬁf where sg/lg/ and sg?X denote sample
Sxx

variances among selected units. For notational convenience, we denote the rescaled proxy from now
on as X, with the rescaling implicit.

The PPMM assumes that the joint distribution of (Y, X') follows a bivariate normal distribution condi-
tional on selection status S:

FONRCIRC)
VX I§=j~Ne || ] 0o )] delo) (1)

X Oxy OxXx

Some parameters governing the distribution of (Y, X') among nonselected units (j = 0) are not iden-
tified from the observed data (u§9>, ag))y, a&%) Identification is achieved by assuming that the prob-
ability of selection depends on (X, Y") through a scalar index formed as a convex combination of the
two variables:

Pr(S=1|X,Y)=g((1 - ¢)X +¢Y),

where g : R — (0, 1) is an unspecified monotonic function and ¢ € [0, 1] is a scalar sensitivity param-
eter.

The parameter ¢ quantifies the degree of non-ignorability and admits an intuitive interpretation. When
¢ = 0, selection depends only on the observed proxy X, corresponding to selection at random (SAR)
conditional on Z, which represents ignorable selection. When ¢ = 1, selection depends entirely on the
outcome Y, representing fully non-ignorable selection where the auxiliary variables provide no direct
information about the selection mechanism. For intermediate values 0 < ¢ < 1, selection depends
on both X and Y, with larger values indicating stronger dependence on the unobserved outcome.

The maximum likelihood estimator for the population mean of Y as a function of ¢ is given by:

1
Zj(l) + gb + (1 - ¢)Pg(%/ Sg/g/ (—(1) o X)7

fy () =
600 + (1— )\ s\

where () and z(!) denote sample means among selected units, X is the known population mean of
X (computed from population-level summaries of Z and the estimated coefficients 3), and p(l) is the
sample Pearson correlation between Y and X among selected units.

The Measure of Unadjusted Bias (MUB) is defined as the difference between the naive sample mean
and this model-based adjustment:

MUB(¢) = gV — iy (¢)-

Because MUB depends on the measurement scale of Y, hindering comparisons across outcomes,
Little et al. (2020) recommend standardizing by the sample standard deviation of Y, obtaining the
Standardized Measure of Unadjusted Bias (SMUB):

MUB(¢) ¢+ (1-9)pl) 20— X
_ T .
\/ ngli/ ¢Pg(%/ +(1—-9) sg%)X

Critically, ¢ cannot be estimated from the observed data, as there is no information about the dis-
tribution of Y among non-selected units. The strategy adopted is therefore to conduct a sensitivity

SMUB(4) =
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analysis, computing bias estimates across a range of plausible ¢ values to assess the robustness of
conclusions to departures from ignorability. Three particular values of ¢ provide intuitive benchmarks:

S _ % A0 _ % L 0%
SMUB(0) = o ———,  SMUB(0.5) = SMUB(1) = ——*

1 1y 5(1) n
U Vil A
To reflect sensitivity to the choice of ¢, Little et al. (2020) recommend reporting the sensitivity interval
[SMUB(0), SMUB(1)] to bound the range of plausible bias values under the PPMM assumptions, with
SMUB(0.5) serving as a central point estimate when no prior information about ¢ is available. If

this interval excludes zero and is substantively meaningful in magnitude, it provides evidence that
selection bias may threaten the validity of conclusions drawn from the non-probability sample.

To isolate the component of bias attributable specifically to departures from ignorability (i.e., ¢ > 0),
Little et al. (2020) define the Standardized Measure of Adjusted Bias (SMAB) as:

M2y~
SMAB(¢) = SMUB(g) — SMUB(0) = ¢{(11) (Pxy)7} 20— X
Phxy + (1 —9) 1)

SxXx

While SMUB quantifies the total bias in the unadjusted sample mean 7(!), SMAB captures the portion
of the overall bias in an unadjusted estimate that exists after adjustment for the known auxiliary vari-
ables (given a choice of ¢), under an assumption that selection is only a function of X (or ignorable).

We note that SMUB(0), SMUB(0.5) and SMUB(1) can be computed without access to microdata for
population elements excluded from the non-probability sample. A key advantage of these indices is
that they require only the aggregate population mean of the proxy X, which in turn depends on the
population means of the auxiliary variables Z. However, these point estimates of bias do not account
for sampling variability in constructing the proxy X, that is, in estimating /3 from the regression of Y
on Z, and may therefore understate total uncertainty. To address this limitation, Little et al. (2020)
proposed a fully Bayesian approach that yields posterior draws of SMUB(¢), allowing uncertainty to
be fully propagated and producing point estimates and credible intervals that can assess whether the
estimated bias differs meaningfully from zero or exceeds a substantively important threshold.

Specifically, under a fully Bayesian approach, prior distributions are placed on the regression co-
efficients 5 defining the proxy X, the pattern-specific parameters in Equation (1), and the sensitivity
parameter ¢, which can either be fixed or assigned a prior distribution. A common default specification
assigns relatively noninformative priors to g and the pattern—mixture parameters and a Uniform(0, 1)
prior to ¢, reflecting complete ignorance about the degree of non-ignorability. Markov chain Monte
Carlo methods then yield posterior draws of SMUB(¢) that fully propagate uncertainty, producing
credible intervals that can be used to assess whether estimated bias is meaningfully different from
zero or exceeds a substantively important threshold. This approach requires the sample mean and
variance of X for the non-sampled population, which depend on the sample mean and covariance
matrix of Z among non-sampled units. When only the means of Z are available, as is often the case, it
can be assumed that the population covariance matrix of Z is the same for sampled and non-sampled
units, allowing it to be estimated from the sampled cases.

2.2 Indices of Non-lgnorable Selection Bias for Proportions

The SMUB framework presented in Section 2.1 assumes normally distributed outcomes, limiting its
direct applicability to binary variables. To address this limitation, Andridge et al. (2019) extended the
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proxy pattern—mixture model to binary outcomes by introducing a latent variable formulation, building
on earlier developments by Andridge and Little (2020). This extension preserves the intuitive interpre-
tation of the sensitivity parameter ¢ while accommodating the discrete nature of proportions, yielding
the Measure of Unadjusted Bias for Proportions (MUBP).

Let Y be a binary variable taking values 0 or 1, representing, for instance, the presence or absence
of a particular characteristic in the target population. Following standard probit model conventions, Y
is assumed to arise from an underlying continuous latent variable U via the threshold mechanism

1 ifU >0,
0 ifU <0.

The latent variable formulation facilitates the specification of a tractable joint model for Y and auxiliary
predictors, enabling the application of normal pattern-mixture modeling techniques analogous to those
used for continuous outcomes.

As in the continuous case, let S € {0,1} denote selection into the non-probability sample, with Y’
observed only when S = 1. The proxy X is constructed by regressing the binary outcome Y on
the auxiliaries Z using a probit model fitted to the non-probability sample. In this case, Z must be
available for all units in the non-probability sample, and either sufficient statistics (means, variances
and covariances) or microdata for Z must be available for the non-selected units. A probit regression
model is used for the binary indicator of interest because this model assumes that the observed
indicator arises from an underlying, unobserved latent variable that follows a normal distribution.

Following the same pattern-mixture framework used for continuous outcomes, the joint distribution of
the latent variable U and proxy X is assumed to follow a bivariate normal distribution conditional on
selection status:

(4) (9) (4) /) _(3)
(U,X ’ S — j) NNQ 'U’U Ouu Puz\/ Ouu Ozx . je {O, 1}
Hx pil\ oo o))

Here Mg) and Mg?) denote the means of the latent variable and proxy in selection pattern 7, 07&{2 and

ag} are their variances, and pq(jm) is their correlation. As in the continuous-outcome case, some param-
eters governing the distribution of (U, X) among non-selected units (; = 0) are not identified without
additional assumptions. To achieve identification, the same structural assumption is used in SMUB,
namely that selection depends on (U, X) through a scalarindex, Pr(S =1 | U, X) = g((1—¢) X*+¢U),

(1)
where X* = X ”’;{“), g(+) is an unspecified monotonic function and ¢ € [0, 1] is the sensitivity param-

eter.

We note that the effectiveness of the auxiliary proxy X in predicting the binary outcome Y is quantified
by the biserial correlation, which measures the association between a continuous variable (the proxy
X) and a binary variable (Y'). In the latent variable framework, this is equivalent to the Pearson
correlation between U and X among selected units, p&lx) = Corr(U, X | S = 1) = Biserial Corr(Y, X |
S=1).

As is customary with latent variables, af}u) = 1, since the mean and variance cannot be separately

estimated. Under this model specification, the marginal probability that Y = 1 in the target population
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can be expressed by:

)
py = Pr(Y = 1) = w@ () + (1 - m)2 (M&Eg) ’

where m = Pr(S = 1) is the proportion of selected cases in the population, ®(-) is the standard normal
cumulative distribution function, and (uﬁ)(@,aﬁ(@) are the mean and variance of U among non-
selected units, which depend on the assumed value of ¢. These unidentified parameters for a specific
choice of ¢ are given by:

O @, o+ (1-9)p p — )
1204 (qb) = Mg + 1) : 1) ) ( )
Gpuz + (1 — @) Ozx

o0)(¢) =1+

6+ (1—¢)pD]” o©_ s
ookl + (1 - 9) i

Oxx
The difference of the proportion for selected cases from the overall proportion is therefore

(0)
i — iy = ) — {ﬂfb(u&”) +(1—m)® ( “”(O)) } :
Ouu

For a given choice of ¢, a Measure of Unadjusted Bias for Proportions, MUBP(¢), is then defined
as the difference between the proportion observed in the non-probability sample and the estimated
population proportion:
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where jiy,’ = 7V is the sample proportion among selected units, and /iy (¢) is computed by replacing
the parameters by estimates into Equations (2) and (3). Estimation of MUBP(¢) requires computing
the sampling fraction 7, which may be close to 0 for larger populations, the biserial correlation p&lx)
between the latent variable U and the proxy X among selected units, and sufficient statistics for the
proxy variable X for both the selected and the non-selected portions of the target population. This
last requirement is stronger than that for the SMUB, which only requires the population mean of X,
not its variance. Maximum likelihood (ML) estimates of these sufficient statistics for the selected
cases can be computed using the observed data from the non-probability sample. Andridge et al.
(2019) estimate p&lﬁ using the two-step approach of (Olsson, Drasgow, and Dorans, 1982), while the
remaining parameters are obtained via ML. They refer to the resulting estimates as ‘modified’ ML
(MML). To prevent overfitting in the construction of the proxy X and in the estimation of p&lx) they
recommend multifold cross-validation.
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As with SMUB, extreme and intermediate values of ¢ provide interpretable benchmarks for sensitiv-
ity analysis. When ¢ = 0 (ignorable selection), selection depends only on the observed proxy X.
When ¢ = 1 (fully non-ignorable selection), selection depends entirely on the latent outcome U, and
MUBP(1) provides an upper bound on potential bias under the model assumptions. The midpoint
MUBP(0.5) represents a compromise assumption of equal dependence on the proxy and latent out-
come. Andridge et al. (2019) recommend reporting the sensitivity interval [MUBP(0), MUBP(1)] to
bound the plausible range of bias values.

Finally, as with the SMUB, the maximum likelihood estimation of the MUBP treats the coefficients in the
probit model and therefore the proxy X as fixed, potentially understating total uncertainty in the bias
estimates. To address this limitation, Andridge et al. (2019) proposed a fully Bayesian implementation
that propagates uncertainty through all levels of estimation. Under this approach, prior distributions
are placed on the regression coefficients defining X, on the parameters of the pattern—mixture model,
and on the sensitivity parameter ¢, which can either be fixed or assigned a prior distribution such as
Uniform(0, 1). The Gibbs sampler alternates between imputing the latent variable U from a truncated
normal distribution, updating the regression coefficients for the probit model, regenerating the proxy
X, and drawing the parameters of the pattern—mixture model. These steps yield posterior draws of
MUBP(¢) that fully incorporate parameter and model uncertainty.

3 Evidence from Simulations and Empirical Applications of SMUB and MUBP

The development of the SMUB and MUBP has been followed by a series of simulation studies and em-
pirical applications designed to evaluate how well these indices perform in realistic survey conditions.
These studies examined their ability to detect and quantify non-ignorable selection bias for continuous
and binary outcomes, proxy strengths, and selection mechanisms, providing a clear picture of their
practical strengths and limitations.

Andridge et al. (2019) conducted a simulation study comparing the MUB with the MUBP. The simula-
tion design generated a binary outcome from a latent variable framework, allowing direct comparison
of both approaches while varying the correlation between the proxy and the latent outcome and the
degree of non-ignorability. Results showed that the MUBP more accurately captured bias in propor-
tions, avoiding implausible estimates outside the [0,1] range that could arise under the linear-normal
MUB formulation. Its performance was strong when the proxy was at least moderately predictive,
producing well-calibrated sensitivity intervals. The ML-based intervals tend to be wider and to have
higher coverage for the normal model than the MML-based intervals for the probit model. Coverage
of the Bayesian intervals is higher than that of the MML-based intervals for both models.

The subsequent simulation work of Boonstra et al. (2021) offered a systematic evaluation of SMUB
and related diagnostics in settings with continuous outcomes. The authors simulated finite popula-
tions where the relationship between outcome, auxiliary variables, and selection could be controlled,
manipulating parameters such as the correlation between the outcome and its proxy, the overlap
between outcome and selection predictors, and the strength of non-ignorability. Across these condi-
tions, SMUB showed the strongest and most consistent correlation with the realized bias in estimated
means, outperforming traditional diagnostics. The SMAB index effectively captured the portion of
bias due to non-ignorability, remaining accurate when model assumptions were satisfied. However,
as noted by Boonstra et al. (2021), performance declined when the auxiliary variable was only weakly
correlated with the outcome, confirming that the usefulness of outcome-based diagnostics depends
critically on having a sufficiently informative proxy.
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Empirical applications further validated these insights. In the studies introducing these indices, Lit-
tle et al. (2020) and Andridge et al. (2019) applied them to data from the National Survey of Family
Growth (NSFG), treating smartphone owners as a non-probability sample. This design allowed for di-
rect comparison between sample-based estimates and population benchmarks. In Little et al. (2020),
the authors demonstrated that SMUB effectively identified survey variables most vulnerable to se-
lection bias, performing well when the proxy—outcome correlation exceeded roughly 0.4. When this
relationship was weak, they noted that any diagnostic based solely on auxiliary variables would likely
be uninformative. Building on this framework, Andridge et al. (2019) applied the MUBP, showing
that it produced narrower and more interpretable sensitivity intervals than its continuous counterpart
(MUB) for proportions. The MUBP accurately captured the true bias for most binary outcomes when
the proxy was at least moderately predictive of the latent outcome (Pearson correlation above about
0.3) and achieved improved coverage when uncertainty in the probit coefficients was incorporated
through Bayesian credible intervals.

Subsequent research has demonstrated the practical value of these indices in diverse real-world set-
tings. West and Andridge (2023) applied the MUBP to evaluate bias in pre-election polling for the
2020 U.S. presidential election. The main case study drew on the ABC/Washington Post polls con-
ducted by Abt Associates in September and October 2020, focusing on likely voters in key states
including Wisconsin, Michigan, and Pennsylvania. The estimand of interest was the proportion in-
tending to vote for Donald Trump. Concerns about non-ignorable selection arose from the possibility
that Trump supporters were systematically less likely to participate in pre-election polls. Population
benchmarks were drawn from three major sources: the November 2020 CPS Voter Supplement,
the 2020 ANES pre-election survey, and the AP/NORC VoteCast 2020 data. Each source offered
advantages and limitations: CPS lacked direct measures of ideology and party identification, ANES
had relatively small state samples, and VoteCast was not entirely probability-based. Covariates har-
monized across sources included sex, age, education, race/ethnicity, political ideology, and party
identification. Results showed that MUBP-adjusted estimates of Trump support were consistently
higher than those produced by standard weighting alone. In many cases, the adjusted estimates
narrowed the gap between poll results and the certified election outcomes. At the same time, the
authors emphasized the practical challenges of implementing the MUBP, particularly the difficulties
of aligning covariates across benchmark datasets.

Applications have also extended beyond political polling. Andridge (2024) investigated estimates of
COVID-19 vaccine uptake from the Census Household Pulse Survey (HPS) and the Delphi-Facebook
COVID-19 Trends and Impact Survey. Both surveys overestimated uptake relative to CDC bench-
marks—by 14 and 17 percentage points, respectively—despite their very large sample sizes. The
HPS was treated as a non-probability survey due to its extremely low response rate (6—7%). Auxil-
iary covariates included sex, age, education, race/ethnicity, and state, harmonized with the American
Community Survey. MUBP analysis indicated that the observed overestimation was consistent with
non-ignorable selection, especially if unvaccinated individuals were less likely to respond.

Validation studies have reinforced the empirical patterns and limitations observed in earlier appli-
cations. Hammon and Zinn (2024) conducted a validation study using the German General Social
Survey (GGSS) as a finite population. Ten binary outcomes, including unemployment, union mem-
bership, and religious affiliation, were analyzed by comparing the full GGSS population to an artificial
non-probability sample defined by internet use and political interest. They concluded that the MUBP
performs well in detecting selection bias in estimated proportions when the assumptions of the un-
derlying PPMM are satisfied. They emphasized that a moderate difference in the proxy distributions
between sampled and non-sampled cases is crucial for correctly indicating the true bias. In their anal-
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ysis, this condition was even more relevant than a very high correlation between X and Y, although
a strong correlation is an important condition to avoid ineffective and very wide intervals of potential
selection bias. The same study applied the MUBP to a large river-sampled online survey in Germany,
where the authors demonstrated the practical utility of the MUBP for assessing the robustness of
estimated proportions under different assumptions about the selection mechanism.

An evaluation of potential non-ignorable selection bias was conducted using the 2019 Health Sur-
vey Mailer (HSM), an off-wave supplement to the Health and Retirement Study (HRS) with an 83%
response rate. Despite this high participation, eligibility restrictions raised concerns about system-
atic exclusion. Using demographic and health covariates common to the HSM and the HRS core,
Schroeder and West (2025) estimated MUBP-adjusted proportions for ten binary health outcomes.
Weighted and MUBP-adjusted estimates were generally consistent, with overlapping confidence and
credible intervals for most outcomes. Larger MUBP shifts were observed only when auxiliary proxies
were strong (biserial correlations above 0.5), while weaker proxies yielded wider credible intervals
and smaller adjustments. Benchmark analyses treating common covariates as outcomes confirmed
that both methods moved estimates toward the population truth. The study also compared results
using the National Health Interview Survey (NHIS) as an alternative population source, finding lower
biserial correlations and wider credible intervals when fewer common covariates were available. Be-
yond these empirical findings, the authors emphasized broader implications for survey researchers:
MUBP can be especially valuable in panel studies that include informative covariates shared across
waves, where population-level information is easier to obtain and proxy correlations tend to be higher.
They also highlighted the importance of identifying strong auxiliary predictors to ensure efficiency and
interpretability of bias adjustments. Overall, the results suggested that selection bias in the HSM was
likely ignorable given the available covariates, and that standard weighting sufficed, while the MUBP
provided reassurance and diagnostic insight into potential non-ignorable selection bias.

While the HSM study examined a traditional survey application, subsequent research has adapted
these indices for use in administrative and short-term estimation contexts. Gémez-Echeverry et al.
(2025) applied the MUB to flash estimates constructed from gradually filling non-probability samples,
such as administrative data used for short-term economic indicators. The authors proposed three
practical implementations that differ in how the sensitivity parameter ¢ is handled: MUB(C.5) fixes
¢ = 0.5, MUB(C) uses plausible values of ¢ to approximate the range of potential bias values that are
consistent with the observed data, and MUB(M) estimates ¢ using lagged and current information.
Simulation results showed that MUB(M) achieved the best overall performance, particularly when se-
lection bias was substantial, demonstrating that anchoring ¢ to historical data improves adjustment
accuracy. The study also found that the correlation between the target variable and the selection
mechanism was more influential than the specific distributional shape of the target variable in deter-
mining bias. A case study using turnover data from Statistics Netherlands confirmed these findings,
with MUB(M) producing the lowest estimation errors across several economic sectors.

Across simulation studies and empirical applications, several consistent patterns emerge regarding
the performance and practical utility of the SMUB and MUBP as diagnostics for non-ignorable se-
lection bias. When auxiliary variables are at least moderately predictive of the outcome, typically
with correlations above 0.3 to 0.4, these outcome-aware indices reliably capture both the direction
and magnitude of bias, outperforming traditional representativeness diagnostics that ignore outcome
distributions. Their performance declines predictably when proxies are weak, signaling insufficient
auxiliary information rather than masking uncertainty. The treatment of the sensitivity parameter ¢
plays a key role: fixed values such as ¢ = 0.5 offer simple summaries but can be less accurate
than analyses spanning the full ¢ € [0, 1] range, while approaches that estimate ¢ from historical or
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lagged data yield the most precise adjustments. Bayesian formulations, which propagate uncertainty
from both proxy construction and model estimation, tend to produce better-calibrated intervals than
maximum likelihood estimation. Applications across health, political, and administrative domains con-
firm that the SMUB and MUBP can uncover non-ignorable selection risks overlooked by conventional
diagnostics, provided that proxies are strong and covariates are harmonized across data sources.

4 Discussion

The goal of this paper was to review and synthesize recent developments in diagnostic measures
of selection bias for non-probability samples, focusing on the SMUB and the MUBP. Both indices
provide accessible and interpretable tools for quantifying the sensitivity of survey estimates to non-
ignorable selection. Their main strengths lie in their parsimony and practical feasibility. The use of a
single sensitivity parameter ¢ captures the continuum between ignorable and non-ignorable selection,
while the construction of a proxy variable summarizes the influence of multiple auxiliary covariates
into a single dimension, simplifying implementation. Moreover, these indices can be computed even
in the absence of population microdata, provided that sufficient population-level summary statistics
for the auxiliary variables are available. Compared to traditional approaches, the SMUB and MUBP
have been shown to detect non-ignorable bias in both simulations and empirical applications more
effectively.

Building on this foundation, selection of the auxiliary variables of Z should be guided by both predic-
tive power for the outcome of interest and availability of reliable population benchmarks. In the PPMM
framework, Z is used to construct the proxy X and to supply population summaries that anchor iden-
tification, so variables that are strongly related to Y and measured consistently across surveys are
preferred. These covariates must be predictive of Y but also collected in comparable form across data
sources to ensure valid application of the SMUB and MUBP. Weak correlations inflate the sensitivity
of results to ¢ and may produce wide, uninformative sensitivity intervals. Researchers should report
the estimated correlation to communicate the strength of the proxy.

Reliable population statistics are usually obtained from large probability surveys. However, due to
the increasing challenges faced by these methods, some government agencies are turning to admin-
istrative data sources to produce official statistics (Berzofsky et al., 2025), making them a promising
source of auxiliary information to implement PPMM-based indices. It is worth noting that adminis-
trative data also face issues related to quality and coverage, and because of their nonprobabilistic
nature, a non-ignorable missing data mechanism can cause systematic biases that standard adjust-
ment methods may not fully correct. Nonetheless, the PPMM-based measures discussed here could
also be applied to evaluate bias in administrative datasets and support their use in the production of
official statistics.

In some applications, the auxiliary variables Z needed to construct the proxy may not be directly
available in the non-probability sample. In such cases, these variables can be obtained by linking
the sample to external sources. Little et al. (2020) suggest that, when suitable auxiliary variables
are unavailable, data fusion techniques can be used to integrate variables with the required prop-
erties from another independent dataset. Linking to administrative register data can be particularly
advantageous, as these sources often provide rich and reliable information. However, when such
linking procedures are employed, uncertainty arising from potential mismatch errors should be prop-
erly accounted for. Recent work by Slawski et al. (2025) has developed a general framework for
valid post-linkage inference in the presence of mismatch error. Incorporating these ideas into the
estimation of the indices discussed in this paper represents a promising direction for future research.
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Once auxiliary variables are selected and population benchmarks are identified, estimation can pro-
ceed directly. Closed-form expressions for SMUB and SMAB permit straightforward maximum likeli-
hood (ML) estimation using sample statistics and external population summaries. Little et al. (2020)
and Andridge et al. (2019) provide accompanying R functions github. com/bradytwest/Indices0fNISB)
that implement both ML and Bayesian estimation for these indices. A preliminary R package is also
available at github.com/randridge/ppmm. Together, these open-source tools facilitate replication of
published results, illustrate practical implementation of the indices, and, importantly, are designed to
lower the barrier to their application across a wide range of research domains.

The next step involves assessing how sensitive the conclusions are to different assumptions about
the selection process. Because the true selection mechanism is rarely known, sensitivity analysis
provides a transparent way to evaluate robustness. A practical approach is to report sensitivity in-
tervals, which bound the plausible range of bias under varying assumptions. The midpoint ¢ = 0.5
offers a convenient single-number summary corresponding to equal dependence on X and Y, and
has simple closed-form expressions in the continuous case. A Bayesian formulation further extends
this approach by propagating uncertainty across all model components.

The PPMM framework relies on the assumption that (Y, X) follows a bivariate normal distribution.
Gomez-Echeverry et al. (2025) reported that deviations of Y from normality exert a weaker influence
on the performance of the MUB than changes in the strength of the non-ignorable selection mecha-
nism or the predictive power of the proxy. Although the distributional shape plays a secondary role, it
can marginally affect estimator accuracy when the selection mechanism is strongly non-ignorable or
when the auxiliary variables are only moderately informative. Scenarios that combine current auxiliary
variables with lagged information on the target variable appear to offer some protection against depar-
tures from normality. Overall, results obtained under normality tend to perform better than those with
larger deviations. Further research examining the robustness of the SMUB and MUBP to their distri-
butional assumptions is needed; the gamma-based extension proposed by Andridge and Thompson
(2015) could provide additional insights.

Recent work has extended this framework beyond its original focus on means and proportions. West
et al. (2021) extended the approach to regression coefficients in both linear and probit models, while
ongoing research by Andridge and colleagues is adapting the method to ordinal and nominal out-
comes through versions of the MUBP based on ordinal and multinomial probit models. Complemen-
tary methodological developments have re-expressed the PPMM as a selection model (Yiadom and
Andridge, 2024) and extended the framework to subgroup estimation. Together, these efforts rein-
force the conceptual foundation of the indices and expand their applicability across a broader range
of survey estimation problems.

Ongoing research aims to refine the SMUB and MUBP by accounting for sampling uncertainty from
finite probability survey benchmarks. This refinement is especially relevant when benchmarks are
drawn from moderately sized reference samples rather than large-scale data sources, where sam-
pling error can materially affect the accuracy of the indices. Work in progress is also focused on
improving proxy construction using machine learning methods such as Bayesian additive regression
trees (BART), which can capture complex non-linear relationships between auxiliary variables and
outcomes, potentially yielding stronger proxies and tighter sensitivity intervals.

The original articulation of proxy pattern—mixture models emphasized that auxiliary covariates are
indispensable for evaluating bias, a principle that equally applies to traditional methods for inference
from non-probability samples. Valid estimation ultimately depends on the availability of high-quality
auxiliary information. While the SMUB and MUBP can be computed using summary-level rather than
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microdata, their effectiveness still hinges on the accuracy and relevance of the covariates used.

In general, best practices for drawing valid inferences from non-probability samples (or from probabil-
ity samples with low response rates) call for the identification of a large reference probability survey
targeting the same population. Such a reference data source supplements the non-probability sample
by providing auxiliary information on population characteristics that are essential for bias adjustment.
Both data sources must include a set of common, harmonized covariates measured in the same way
for individuals from the same target population. These shared covariates should be strong predictors
of the key variables observed only in the non-probability sample. In practice, this requires identifying
a large, representative probability survey such as the ACS, CPS, NHIS, or ANES that includes com-
parable measures, allocating sufficient time for harmonization when variables differ across surveys,
and verifying after data collection that the chosen covariates are indeed predictive of the outcomes of
interest. These steps are by no means trivial but remain indispensable, as methods for non-probability
inference, whether based on microdata modeling or on population-level sufficient statistics, all rely on
the consistency and predictive strength of harmonized covariates.

In this regard, we strongly support the argument made by Elliot (2022), who noted that the growing
reliance on non-probability samples creates an urgent need for well-supported probability surveys
to provide reliable benchmark information. Sustained investment in government-funded probability
surveys is critical not only to preserve their role as independent data sources but also to strengthen
their capacity to serve as analytical partners for non-probability survey inference, ensuring coverage
of key covariates across the many domains where inference from non-probability samples is needed.
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Abstract

Model-based approaches to inference are common in the presence of complex survey data. Although
statistical modeling is an often necessary approach for analyzing data, there is no firm consensus as
to how these analyses should handle sampling weights. Using a case study of international health
surveillance surveys, this paper examines the roles of weights in the generalized linear models (GLMs)
and generalized linear mixed-effect models (GLMMs). We considered two different ways of includ-
ing weights with model estimates: using weighted likelihood functions for model fitting and weighted
average values of individual predictions. We compared GLM and GLMM estimates as well as un-
weighted and weighted variants of these models. We found that including weights in the model fitting
processes does not substantially change the model parameter estimates and predictions. The dif-
ference between weighted and unweighted descriptive statistics is more pronounced than that of the
model parameter estimates. We recommend comparing the weighted and unweighted descriptive
summaries as a standard analysis routine in practice.

Keywords: multilevel modeling, complex sample survey, weights, diabetes prevalence.

1 Introduction

Most researchers in the social sciences and public health use sample survey data for finite popu-
lation inference and account for complex sample design features if they are related to the survey
outcome (Si, Lee, and Heeringa, 2024). When the sampling design features are informative, e.g.,
the selection leads to the sample distribution of the quantity of interest deviating from the underlying
population distribution, appropriate analysis methods are necessary to adjust for the sample discrep-
ancy. Despite this general recommendation, there have been historical debates on whether survey
weights are necessary when fitting statistical models. Survey weights often require special treatments
to meet researchers’ analytic goals and are sometimes considered to be a nuisance when they only
inflate the variance of an estimate without changing the point estimate itself. In addition to model
specification, the various ways handling weights can also be due to factors such as researchers’
familiarity with using survey weights, the quality of documentation on how weights are constructed,
and the availability of auxiliary information about the population. Using a case study of international
health surveillance surveys, this paper examines the roles of weights in the generalized linear models
(GLMs) and generalized linear mixed-effect models (GLMMs).

Motivated by the need of meeting the World Health Organization’s (WHO) recommended diabetes
targets (Gregg et al., 2023), we aim to estimate and compare diabetes prevalence between countries.
We use the WHO Stepwise Approach to Surveillance (STEPS) surveys (Riley et al., 2016), which are
cross-sectional probability sample surveys conducted in more than 100 countries and collect various
health risk indicators to provide population level estimates. Most STEPS surveys have implemented

The Survey Statistician 42 January 2026, Vol. 93, 42-51.



Early Career Survey Statistician

multistage stratified data collections. First, enumeration areas are selected as primary sampling units
(PSUs) and then households are selected as secondary sampling units. The final stage randomly
selects eligible individuals from each household. Following the design of the STEPS survey with
multistage stratified sampling, every individual 7 in the sample was assigned a survey weight w;. To
properly estimate the sampling variance, it is necessary to account for stratification, PSU clustering,
and weights in the analysis. Further, we are also interested in assessing whether the sample survey
design features affect the estimation of diabetes prevalence across multiple countries.

The paper structure is organized as follows. Section 1.1 describes the data and measures used in this
study in detail. Section 2 introduces the model-based inference approach. The results from different
methods in Section 3 are then compared. Section 4 summarizes the main takeaways from the study.

1.1 Data and Measures

We used a subset of the WHO’s STEPS data in this analysis, which were collected from 10 different
countries between 2015 and 2016. This dataset was processed, resulting in 26,752 individuals. We
define a case with diabetes as having any of the following: (1) a fasting plasma glucose of 7.0 mmol/L
or higher, (2) hemoglobin A1c (HbA1c) level of 6.5% or higher, or (3) self-reported use of glucose-
lowering medication or use of insulin or oral hypoglycemic drugs. This definition of diabetes is used
in the Global Monitoring Framework for Non Communicable Diseases (Gregg et al., 2023). Once
these cases are computed, a binary indicator variable for diabetes is then defined and used as the
dependent variable in the analysis. Eligible participants who have been assigned survey weights are
included. The person level covariates used in predicting our outcome are body mass index (BMI),
age, sex, and highest completed education level.

Table 1: Description of Each Country’s Sample and Sampling Weights

Country Sample Size Sum of Weights Mean SE
Algeria 6,393 25,888,236 4,049.47 1,316.80
Benin 5,073 2,441,103 481.20 1,686.59
Brunei 2,018 102,824 50.95 43.13
Ethiopia 9,800 34,097,395 3,479.33  3,707.59
Guyana 1,178 203,440 172.70 144.86
Iraq 4,071 14,942,707 3,670.53  3,569.90
Kiribati 2,156 57,561 26.70 59.80
Nauru 1,387 4,212 3.04 0.33
Solomon Is. 2,522 341,164 135.28 123.54
Vietnam 3,758 78,831,165 20,976.89 17,094.49

Table 1 includes further detailed information regarding each country sample. The ‘Sample Size’ col-
umn refers to the total number of eligible participants assigned a sampling weight and the ‘Sum of
Weights’ is the calculated total sum of the sampling weights. The ‘Mean’ column is the mean value
of the sampling weights and ‘SE’ column is the standard error of the weights.

There were missing values for some respondents’ BMI and education. The amount of item nonre-
sponse is less than 5% of the records. We assumed missing at random and used multiple imputation
to fill in missing item values with a proportional odds model accounting for the order of the BMI and
education categories. Along with these variables, other covariates used in multiple imputation were
the indicator variable for a diabetic case, age, and sex. We used one imputed dataset for simplicity,
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even though multiple completed datasets could have been pooled for analysis via combining rules.
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04 Country
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Figure 1: Observed proportions of individuals with diabetes by age group and country.

Figure 1 displays how the observed proportions of individuals with diabetes change across age groups
for each country included in our analysis. The generally increasing trends are similar between coun-
tries but the changing rates over time are accentuated for Algeria, Brunei, Guyana, Iraq, Kiribati and
Nauru. Table 1 shows that the sample sizes across countries also varies largely. Further, the likely
cause for the spikes shown at specific age cohorts is due to small sample size for those ages.

2 Modeling Approach

We use the individual level data to model the probability of having diabetes in a logistic regression.
First, we define the outcome variable as:

1 ifindividual i in country j has the disease,
Yij =
’ 0 if individual i in country 5 does not have the disease,

fori=1,...,n;and j =1,...,J, where n; is the total number of individuals, and J is the total number
of countries. Our GLM model is specified as

0 Pr(y; = 1|1X7;)
Pr(y; = 01X7;)

} — X8, (1)

where lej denotes the person-level covariates, including BMI, age, sex, and education, and country
indicators.
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In the GLMM, we include country-level and PSU-level random intercepts to borrow information across
countries and clusters, stabilize estimates for small countries and account for the PSU clustering
effects with the following specification:

o {PT(yz'j = 1| X", uj, vgpy)
Pr(yi; = 0| X", uj, )

} = X/ﬁ + uj + Vg, (2)

where X’ denotes the person-level covariates, u;’s are the country-varying effects, and vy;’s are the
PSU-varying effects, where &[i] is the PSU index & that individual : is assigned to, u; i N(0,02), vy, iifl
N(0,02), with both random effects assumed to be independent, identically and normally distributed
with a mean of 0 and variance o2 and o2, respectively. The intra-country correlation (ICC) is also
measured:

2
u

2 2 4 w2’
Ouwtos+ 5

g

Although we considered different interactions between the categorical variables and country level pre-
dictors, we did not include additional covariates because of model estimation problems. We consider
two different ways to account for weights in estimating the country-specific diabetes prevalence as
the proportion of people with the characteristics described in 1.1.

1) Using a weighted average of the estimated predicted probability p;; = Pr(y;; = 1|X{j) of having
diabetes for individual i in country j based on Model (1) conditional on X{j. For Model (2) this is
expressed as Pr(y;; = 1| X', u;,vy). The weighted average of the predicted probabilities is given
based on the Hajek estimator (Hajek, 1971). For country j, the weighted prevalence is given by

D ies; Wi * Dij

- ;
0; T )

where s; is the sample of individuals in country j.

2) Including weights in the model fitting processes of either the GLM in (1) or the GLMM in (2). We use

the pseudo maximum likelihood (PML) estimation to obtain the parameter estimates that maximum

the weighted likelihood function, where each individual’s likelihood is powered by the corresponding

weight value (Skinner, 1989). The weighted GLM likelihood lyy ¢/ (-) and weighted GLMM likelihood
lwarm (y, X', B, w H

lwarmm(-) are as below.
( exp Uﬂ) )yij ( 1 )(1%]‘) w; @
P 1+ exp(X'i;8) 1+ exp(X'i;8)
lwermm(y, X', B,u,v,w) = H

< exp(X'B + uj + vgpi) )y” < 1 )<1yij> v )
21 [ \1+exp(X'B + u; + vi) 1+ exp(X'B + uj + vip)) '

We normalize the weights when fitting the GLMM. Rabe-Hesketh and Skrondal, 2006 show that the
weighted likelihood function requires weights at each level of the data hierarchy. Based on the STEPS
survey design, different countries independently conducted the surveys, and there was no random
selection of countries. To effectively pool estimates across countries, we scaled the person-level
weights using method 2 described in Pfeffermann et al., 1998. The weight adjustment scales the
weights w; of individuals in country j, for i € s;, by adjusting the sum to be equal to the sample
size of each country n;. The adjustment factor a; for individuals in country j can be expressed as:
anjw’ the product of which and the weight w; will be used in the pseudo maximum likelihood
i€s; Tt

(PML) estimation based on the GLMM. This scaling method has been described as performing better

n

n

aj =
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in simulations where the design is considered informative (Pfeffermann et al., 1998).

3 Model Inference

We fit GLM and GLMM models, both unweighted and weighted, to predict the diabetes prevalence with
age (30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65-69), BMI (<25, <25 & <30, and >30),
education (no education, primary school, high school [HS] & above), sex (male, and female), and
country indicators (Algeria, Benin, Brunei, Ethiopia, Guyana, Iraq, Kiribati, Nauru, Solomon Islands,
and Vietnam).

We account for stratification and clustering in the standard error estimation for both models. We
use analytic variance estimation via Taylor series linearization by default in the R survey package
(Lumley, 2024) and Stata (StataCorp, 2025), i.e., defining the complex survey design object including
strata codes, PSU codes, and sampling weights (for weighted estimates). To obtain country-specific
estimates, we apply the unconditional approach for variance estimation and takes the full complex
sample design into account when analyzing subpopulations (Heeringa, West, and Berglund, 2017).
When summarizing the model predictions, the complex survey design features (PSUs, strata and
weights) are accounted for to obtain design-based estimates using expression (3).

3.1 Model Estimation

95% Confidence Intervals for Coefficients in GLM

Vietnam A ——
Solomon Islands A ——
Nauru ——
Kiribati 1 = =
Iraq 1 a3
—o—
= =
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Ethiopia - —o5
Brunei-
Benin 1 ——
BMI >= 30+ -
BMI >=25 & <30+ -
HS & Above 1 -,
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Female - E 3
Age 65-69 1 Q=
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Age 55-59 1 -0
Age 50-54 - = =
Age 45-49+ = =
Age 40-44 = =
Age 35-39 = =
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Key
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- Weighted
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Figure 2: Comparison of coefficient estimates and 95% confidence intervals for the true coefficients
between unweighted GLM 1 and weighted GLM 4.

First, we fit the unweighted GLM in (1) and weighted GLM in (4). The reference categories for each of
the predictors are those persons who are aged 30-34, male, have received no formal education, have
a BMI < 25 and reside in Algeria which is the first country in alphabetical order. The model coeffi-
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cient estimates together with the corersponding 95% confidence intervals for the true coefficients are
presented in Figure 2 . Including weights in model fitting tends to increase the variance of coefficient
estimation, resulting in wider confidence intervals as shown in Figure 2.

When comparing the coefficient point estimates of the weighted model versus the unweighted model,
the weights slightly change our interpretation of the coefficients associated with each country. For ex-
ample, across all countries, the weighted estimate’s 95% confidence interval for the effect of primary
school contain zero when its corresponding unweighted estimate does not. For all countries, the age
coefficient estimates in the weighted model are either lower or higher than those in the unweighted
model, changing without any apparent pattern. The opposite trend is the case for coefficients as-
sociated with education where the weights are reducing the magnitude for the effects of both age
categories. These subtle changes are due to the differences in the maximum likelihood estimates
when the weights are added in the GLM model fitting. The role of weights depends on the model
specification and its dependency on the sample design features. Therefore, fitting both unweighted
and weighted models is helpful when analyzing complex survey samples to gain more insight into
how the weights interact with the model fitting process.

95% Confidence Intervals for Parameters in GLMM

Bw. Country Var. - 2

Female o

BMI >= 30  J
BMI >=25 & <30+ -
HS & Above -

Primary School-

Age 65-69- —e— | Key

Unweighted
Age 60-64 - ®

- Weighted
Age 55-59+ d

Model Parameters

Age 50-54 - ==
Age 45-49 -
Age 40-44 - = =

Age 35-39- &

Intercept-

Figure 3: Comparison of coefficient estimates and 95% confidence intervals between unweighted and
weighted generalized linear mixed-effect models.

Next we fit the unweighted GLMM in (2) and weighted GLMM in (5). The ICC measuring the intra-
country similarity is estimated to be 0.084 for the unweighted model and 0.094 in the weighted model.
Figure 3 compares the estimated model coefficients for the weighted and unweighted GLMM models.
In general, the model coefficients are similar between both models, although the weighted GLMM
model estimates have larger variances.

In sum, with either GLM or GLMM, including the weights in model fitting does not substantially change
the model parameter estimates.
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Table 2: Model predicted (Pred), weighted model predicted (Weighted pred), observed (Obs) and
weighted observed (Weighted Obs.) diabetes prevalence in 10 countries with standard error values
reported in parentheses.

Country Obs Pred Pred
GLM Weighted GLM  GLMM Weighted GLMM
Algeria .166 (.007) .166 (.002) .163 (.002) .158 (.004) .154 (.004)
Benin .073 (.008) .073 (.001) .075 (.001) .066 (.003) .067 (.003)
Brunei 184 (.011) .184 (.003) .182 (.003) 175 (.006) .168 (.008)
Ethiopia .036 (.003) .036 (.001) .032 (.001) .032 (.001) .027 (.001)
Guyana 234 (.014) .234 (.004) .239 (.004) .219 (.005) .223 (.005)
Iraq .215 (.009) .215 (.002) .220 (.002) .204 (.004) .205 (.004)
Kiribati .208 (.013) .208 (.003) .213 (.003) .201 (.009) .201 (.008)
Nauru .233 (.015) .233 (.004) .232 (.004) 228 (.013) 227 (.013)
Solo. Is. .082 (.007) .082 (.001) .086 (.001) .076 (.004) .078 (.006)
Vietnam .053 (.004) .053 (.001) .050 (.001) .047 (.001) .044 (.001)
Country  Weighted Obs. Weighted pred Weighted pred
GLM Weighted GLM  GLMM Weighted GLMM

Algeria .153 (.007) .156 (.002) .153 (.002) 147 (.004) 144 (.004)
Benin (.011) (.003) .069 (.003) .062 (.005) (.007)
Brunei (.014) (.003) .164 (.003) .159 (.006) (.008)
Ethiopia (.003) (.001) .030 (.001) .029 (.001) (.001)
Guyana (.017) (.005) .220 (.005) .201 (.005) (.007)
Iraq (.011) (.003) .217 (.003) .204 (.005) (.005)
Kiribati . (.014) . (.007) 211 (.007) 199 (.007) : (.011)
Nauru .235 (.015) .236 (.005) .235 (.005) 231 (.013) .230 (.013)
Solo. Is. .079 (.010) .076 (.001) .079 (.001) .071 (.004) .073 (.006)
Vietnam .046 (.004) .049 (.001) .046 (.001) .043 (.001) .040 (.001)

3.2 Model Prediction

Using both the weighted and unweighted variants of the GLM and GLMM described above, we predict
the response probability for each individual and estimate prevalence by country. The top table in Table
2 compares the observed prevalence as the simple proportion of diabetic cases divided by the total
sample size with the predictions from the GLM in (1), weighted GLM in (4), GLMM in (2), and weighted
GLMM in (5). The bottom table in Table 2 applies weights to the individual probabilities based on (3)
and presents the weighted observation using expression (3) and prediction values. Based on Table 2,
model-based predictions have lower standard errors than the observed prevalence of each country.
We have omitted the model-based error in predicting the probabilities, but the prediction variability is
smaller than the sampling error. The country-level prevalence values calculated as the average of
individual predictions from the GLM are the same as the observed summaries, which is as expected
because the GLM model includes the fixed effects of countries. Nevertheless, the GLMM includes the
random effects of countries, and partial pooling across countries yields predicted summaries different
from the observed values. Comparing GLM and GLMM before and after weighting, we see that using
weighted likelihood estimation does not substantially change the predicted values or standard errors.
The predictions based on GLMM have more variability than those based on GLM, probably due to the
inclusion of random effects.
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Applying weights to the individual probabilities based on (3) does change the point estimates across
countries and increases the standard errors. This is true for both observed and predicted values
from all models. The weighted predictive averages based on the weighted GLM are the same as
the weighted observed summaries but the standard errors are lower. The reason for the weighted
predictive averages being the same is because the weights have been normalized to equal the sum
of the sample size within each country. Overall, this shows that using a weighted average of the pre-
dicted probabilities generates larger influences than including weights in the model fitting processes.
Weights are more influential for descriptive summaries than model estimates, which is consistent with
the literature findings, e.g., Si, Lee, and Heeringa, 2024.

4 Conclusion

In this study, we used a case study with international health surveys to assess the role of survey
weights in model inference and prevalence estimation. We considered two different ways of includ-
ing weights with model estimates: using weighted likelihood functions for model fitting and weighted
average values of individual predictions. We compared GLM and GLMM estimates as well as un-
weighted and weighted variants of these models. We found that including weights in the model fitting
processes does not substantially change the estimated model coefficients and predictions. The dif-
ference between weighted and unweighted prevalence summaries is more pronounced than that of
the model parameter estimates. We recommend comparing the weighted and unweighted descriptive
summaries as a standard analysis routine in practice.

Finally, our empirical comparisons cannot be validated without knowing the gold-standard or true
values. When comparing these diabetes estimates to those published in other sources, there may be
some cases where the unweighted estimates are closer to estimates found by experts in these fields,
while other cases have weighted estimates with closer comparisons. This dilemma demonstrates the
need to work with experts in the topic of analysis who can properly evaluate survey estimates beyond
the statistical component. As pointed out above, we only use one set of predicted probabilities for the
point estimates and omitted the prediction error due to model fitting. The model-based error is smaller
than the sampling error. Future work would be needed to develop practical methods that account for
both modeling and sampling error, such as using Monte Carlo simulation.

5 Data and Software

This paper uses data from the Algeria 2016 (Ministry of Health (Algeria), Population and Hospital
Reform, and World Health Organization (WHO), 2017), Benin 2015 (Ministry of Health (Benin), and
World Health Organization (WHO), 2015), Brunei Darussalam 2015-2016 (Ministry of Health (Brunei),
and World Health Organization (WHO), 2016), Ethiopia 2015 Ethiopia Public Health Institute, Federal
Ministry of Health (Ethiopia) and World Health Organization (WHO), 2016, Guyana

2016 (Pan American Health Organization (PAHO), Ministry of Public Health of Guyana, and the
Bureau of Statistics (Guyana), 2019), Iraq 2015 (Ministry of Health (Iraq), Ministry of Planning (Iraq),
World Health Organization (WHQ), 2015), Kiribati 2015-2016 (Ministry of Health and Medical Services
(Kiribati), World Health Organization (WHO), 2015), Nauru 2015 (Ministry of Health (Nauru), World
Health Organization (WHO), 2016), Solomon Islands 2015 (Ministry of Health (Solomon Islands),
World Health Organization (WHO), 2020), and Viet Nam 2015 (Ministry of Health (Vietnam), World
Health Organization (WHO), 2016) STEPS surveys. These surveys were implemented by the agen-

The Survey Statistician 49 January 2026, Vol. 93, 42-51.



Early Career Survey Statistician

cies listed in each citation along with support by the World Health Organization. These datasets are
available upon request from the https://extranet.who.int/ncdsmicrodata/index.php/homeWHO NCD
Microdata Repository.

The svyglm function in the https://cran.r-project.org/package=surveysurvey package for R software
was used to fit GLMs (Lumley, 2010). The https://www.stata.com/manuals/memelogit.pdfmelogit
function within Stata software was used to fit the GLMMs.

The https://cran.r-project.org/package=micemice package of R software was used for multiple impu-
tation (Van Buuren and Groothuis-Oudshoorn, 2011).
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Abstract

Small area estimation (SAE) provides reliable inference for domains with limited survey sample data
by borrowing strength across areas through modeling. The typical area-level model assumes normally
distributed random effects, an assumption that may not hold in practice. This paper empirically exam-
ines the performance of residual maximum likelihood (REML) and adjusted REML estimators under
general area-level models with non-normal random effects. Using simulations with heavy-tailed and
asymmetric distributions, we evaluate point estimation and prediction interval performance. REML
remains reasonably robust in estimating the variance component and supporting reliable predictions,
but zero boundary estimates can degrade interval performance when the number of domains is small.
Adjusted REML reduces boundary issues and yields more reliable interval coverage while maintaining
competitive estimation accuracy. These results highlight adjusted likelihood methods as a practical
and robust option even when the normality assumption is uncertain.

Keywords: data linkage, survey statistics, uncertainty quantification.

1 Introduction

In survey sampling, researchers often aim to estimate population parameters such as totals, means,
or proportions based on data from a representative sample. In many practical settings, however,
it is also of interest to estimate similar characteristics for specific subpopulations or domains (e.g.,
regions, demographic groups, or institutions). Large-scale surveys are typically designed to yield
reliable estimates for large domains, but for smaller domains, the sample sizes may be too small or
even zero, to produce direct estimates with acceptable precision. This situation gives rise to the small
area problem.

To address this challenge without increasing sample sizes, small area estimation (SAE) techniques
have been developed to “borrow strength” across related areas. Model-based SAE methods achieve
this by linking data from different areas through statistical models that include area-specific random
effects and auxiliary information. These approaches enable more precise and reliable estimation of
small area parameters.

Suppose that the population of interest, U, is partitioned into m areas ( or subpopulations), denoted by
Ui, ---, U, and that we are interested in estimating the corresponding areameans {¢;, i = 1,--- ,m}.
Let s; denote the sample drawn from area U;. When the sample size n; is small, we may encounter
the small area issue. A widely used framework in SAE is the two-level area-level model, which for
areai=1,---,m, can be expressed as:

Level 1: (Sampling model): ¢;|6; nd N(6;, D;);

Level 2: (Linking model): 6; &' G(x,3, A, ¢).

(1)
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The Level 1 model represents the sampling distribution of the direct estimator ¢;, which may be a
weighted or unweighted estimate for area i. For example, §j; could be the sample mean based on n;
observations from area i with sampling variance D; = o2 /n;, where ¢ is known or reliably estimated
from all areas (Fay and Herriot, 1979; Otto and Bell, 1995; Hawala and Lahiri, 2018). The Level 2
model links the true small area means 6; to a vector of known auxiliary variables x; = (xi1,- -+ ,zp)’,
often obtained from administrative records, census data, or other external sources. We assume
that the Level 2 distribution G is a fully parametric distribution, not necessarily normal, with mean
E(¢;) = x3, variance Var(¢;) = A > 0, and any additional parameters ¢. The coefficient vector
8 € RP and the variance component A are unknown and must be estimated from the data.

The classical area-level model proposed by Fay and Herriot (1979) assumes normality at both levels.
The normality assumption at Level 1 may not be considered as restrictive as the normality of 6;, due
to the central limit theorem’s effect on direct estimator ¢; (Rao and Molina, 2015; Jiang and Torabi,
2022). To relax this assumption, recent studies have explored non-normal alternatives for the Level
2 distribution G (Chen, Hirose, and Lahiri, 2024). For instance, Bell and Huang (2006) used a t-
distribution to mitigate the influence of outliers; Fabrizi and Trivisano (2010) proposed exponential
power and skewed exponential power distributions to handle heavy-tailed or asymmetric effects; and
Jiang and Torabi (2022) employed a skewed normal distribution.

The above two-level model can equivalently be expressed as the linear mixed model:

yAZ:91+el:X;ﬁ+uZ+6la ’L:]-aama (2)
where random effects u;’s and sampling errors ¢;’s are independent with w; i G(0, A, ¢) and e; nd
N (0, D;). The small area parameter of interest is 6, = x5 + u;, i = 1,--- ,m. When A is known, the

best linear unbiased predictor (BLUP) of #; that minimize the mean squared prediction error (MSPE)
among all linear unbiased predictors, is given by

0; = (1 — B;)§; + Bix3, (3)

where B; = D;/(A + D,) is the shrinkage factor, 5 = ((A) is the standard weighted least squares
estimator of 5. The BLUP effectively shrinks the direct estimator y; toward the regression synthetic
estimator x;B, with the degree of shrinkage determined by B;. In this paper, we assume A > 0.
In practice, since A is unknown, it must be estimated from the data, leading to the empirical BLUP
(EBLUP):

A~

0i = (1= Bi)yi + Bixi, (4)
where B; = D;/(A+ D;) and 3 = B(A).

When G is normal, several methods have been proposed to estimate A, including the Fay-Herriot
method-of-moments (FH) estimator (Fay and Herriot, 1979), the Prasad-Rao simple method-of-moments
(PR) estimator (Prasad and Rao, 1990), the maximum likelihood (ML) estimators and the residual
maximum likelihood (REML) estimators (Datta and Lahiri, 2000). When the number of areas m is
small, standard variance estimation methods, particularly the PR estimator, often produce boundary
estimate A = 0, leading to B; = 1 for all i, even when some of the true B; are not close to 1 (Li
and Lahiri, 2010; Chen, Hirose, and Lahiri, 2024). This causes an overshrinkage problem in EBLUP,
since now the EBLUP of 6; reduces to the regression synthetic estimator. Moreover, with A = 0,
it also causes the problem of degenerate distribution and prevents the use of parametric bootstrap
methods for uncertainty quantification, such as estimating MSPE or constructing prediction intervals.
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To address this issue under normal random effects, several adjusted likelihood methods have been
developed to guarantee positive estimates of A (Li, 2007; Yoshimori and Lahiri, 2014; Hirose and
Lahiri, 2018). These methods solve the two problems above simultaneously in SAE applications. In
addition, they show that the biases of the adjusted ML and REML estimators are of order O(m™!)
(Li and Lahiri, 2010), and those of the parametric bootstrap MSPE being o(m~!) (Hirose and Lahiri,
2018). However, the performance of these adjusted estimators when the random effects are non-
normal remains largely unexplored.

In this study, we investigate methods for estimating variance components under a general area-level
model that allows for possibly non-normal random effects. Laird and Ware, 1982 and Cressie, 1990,
among others, have favored the REML method over the ML method for variance component estima-
tion in complex small area models. This preference was later supported by Datta and Lahiri (2000), in
which they showed that the REML estimator has a lower order of bias than the ML estimator. There-
fore, in this paper, we focus on the REML approach. Following Jiang (1996), we define the REML
estimator of variance components as the solution to the REML equations, which we introduce in the
next section. Although Jiang (1996) theoretically showed that REML estimates are consistent under
certain identifiability and information conditions, their empirical performance under non-normal ran-
dom effects has not been well studied in SAE. We therefore (i) empirically evaluate the performance
of REML estimators under various non-normal settings, and (ii) extend the adjusted REML methods
of Li and Lahiri (2010) to the general area-level model, assessing their performance through Monte
Carlo simulations.

The remainder of this paper is organized as follows. Section 2 provides the list of notations and regu-
larity conditions. Section 3 reviews the estimation methods for variance components, including REML
and adjusted REML estimators. Section 4 presents Monte Carlo simulation results comparing differ-
ent estimators under various model settings. Section 5 concludes with a summary and discussion.

2 A list of notations and regularity conditions

We introduce the following notations that will be used throughout the paper:
y = (91, ,9m), @am x 1 column vector of direct estimates;
X' = (%1, ,Xm), @ p x m known matrix of rank p;
Y =diag(A+ Dy, -, A+ D,,), am x m diagonal matrix;
B = (X'271X)"1X'n-ly, weighted least square estimator of 3 with known A;
P=x"!_2lx(X's1Xx)1x'n-1
We assume the following regularity conditions throughout the paper:
r.1 rank(X) = pis fixed;
r.2 sup;s; hii = O(m™'), where h;; = x;(X'X) 'x;;

r3 0< infizl D; < Sup;>1 D; < 0.
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3 REML and adjusted REML estimators

The REML approach introduced by Patterson and Thompson (1971), eliminates dependence on nui-
sance parameters by basing inference on linear transformations of the data that remove the fixed
effects. Under normality at both levels, the restricted likelihood function is given by:

1
Lrp(A) = ¢|X'S71X|72 (%72 exp (—2y’Py> (5)

where cis a constant independent of A. Let [z (A) denote the corresponding restricted log-likelihood.

The REML estimator Arp satisfies:
94 —§[yPy—tr(P)}
=0

(6)

In general (without assuming normality), the REML estimate Ay is defined as solution of (6).

Following Li and Lahiri (2010), we also consider the same adjusted restricted likelihood under the
general area-level model:
Lagj(A) = A x Lgrg(A). (7)

The adjusted maximum likelihood estimator Aadj is obtained by maximizing L.q;(A) or its logarithmic
form, l,q;(A).

Since Lrg(A) is a continuous positive function of A and limyg_,oc A X Lrg(A) = 0form > p+ 2, it
follows from Lemma 2.1 of Li (2007) that the maximizer fladj is strictly positive.

Specifically, because Lrg(A) > 0 for all A, we have A x Lrg(A) <0for A <0and A x Lrg(A) >0
for A > 0. Moreover, since A x Lrg(A4) — 0 as A — oo, there exists some Ay > 0 such that

Ao X LRE(A()) = II]EX{A X LRE};

which ensures that the maximizer Ag is positive.

3.1 Parametric bootstrap prediction intervals

Atraditional prediction interval for 6; is of the form éiiza/z\/m, where 2, /; is the 100(1—a/2)th stan-
dard normal percentile and mspe is an estimate of the mean squared prediction error of §;. However,
such intervals have coverage errors of order O(m '), which may be inadequate for small area ap-
plications. Chatterjee, Lahiri, and Li, 2008 proposed a parametric bootstrap method that constructs
intervals from the bootstrap distribution approximation of Efl‘l(ei — 9}) under a normal linear mixed
model, where 6 = D;(1 — B;). This method achieves improved coverage error of order O(m3/2).

Chen, Hirose, and Lahiri (2024) extended this method to the general area-level model (1) with non-
normal level-2 distributions, and interestingly found that the bootstrap intervals can exhibit overcov-
erage under certain conditions. Their simulations also showed that there was high percentage of
zero estimates in Apy, estimator which affects the performance of associated bootstrap intervals. The
result is consistent with the findings in Li and Lahiri, 2010.

In this paper, we assess the performance of the similar parametric bootstrap procedures under non-
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normal models using the REML and adjusted REML estimators of A. Specifically, let
B =xif +uj + ¢

where v % G(0, 4, ) and e "™ N (0, D;) fori = 1,--- ,m. Denote by 3*, A*, §*, and 67 the quantities

computed from bootstrap samples y* = {yf, i = 1,--- ,m}, and let 6 = x;B + u;. The bootstrap
distribution of 6771 (6 — 47) is then used to approximate the distribution of ;! (6; — 6;). For a given
significance level «, let ¢; and ¢, denote the a/2 and 1 — «/2 quantiles of the bootstrap distribution,

respectively. The parametric bootstrap prediction interval for 6, is then given by (éi + qi61,0; + quo1)-

4 Monte Carlo Simulations

To empirically evaluate the performance of various variance estimators and their associated prediction
intervals in small m settings, we consider m = 10 and m = 15. Following Li and Lahiri, 2010, we use
an unbalanced pattern for the sampling variances (D;), consisting of five groups of small areas with
common D; values within each group. Specifically, we set D; € {4.0,0.6,0.5,0.4,0.2} and fix A = 1.
Without loss of generality, we take x5 = 0. To reflect practical conditions, we still estimate the mean
even when it is theoretically zero. Since areas within each group are exchangeable, we summarize
results by group means in the tables.

We consider two non-normal Level 2 distributions in the area-level model (1): (i) a ¢-distribution with
5 degrees of freedom (symmetric case), and (ii) a shifted exponential (SE) distribution (asymmetric
case). For each distributional scenario, we generate N = 1,000 independent datasets {y;, i =
1,...,m} and use 1,000 bootstrap samples to construct the parametric bootstrap prediction intervals.

We examine three estimators of A: the PR estimator APR which does not rely on distributional as-
sumptions, the REML estimator Agp and the adjusted REML estimator A,. We use both bias and
mean squared error to compare different estimators. Let AU) be the estimate for the jth simulation
run. We compute the following Monte Carlo measures:

. 1M . 1M
Bias(4) = > (AY) — 4), RMSE(4) = ~ » (AG) — A2,
j=1 j=1

Table 1 shows the percentages of zero estimates in A and A*. For m = 10, the PR estimator yields
the highest rate of zero estimates in both A and A*. Under the shifted exponential distribution, REML
also result in a zero estimate in A although the percentage of 0 is relatively low (about 0.1%). All
methods can produce zero estimates in A*, and the adjusted REML estimator exhibits the lowest
percentage in all cases. As m increases to 15, the chance of zero estimate decreases across all
methods.

Table 2 summarizes the small-sample performance of the three variance estimators in terms of bias
and RMSE. Both PR and REML generally show smaller bias than adjusted REML. Overall, REML
achieves the best performance in terms of both bias and RMSE under both distributions. The per-
formance of adjusted REML estimator improves as m increases in terms of both bias and RMSE.

In SAE applications, prediction is often the primary objective. To investigate prediction accuracy of
EBLUP with different plug-in variance estimates, we approximate the true MSPE through Monte Carlo
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Table 1: Percentages of zero estimates in A and A* for different estimation methods.
m APR ARE AAR AI*DR AI*KE AZR
t {uz}
10 21.900 0 0 33411 0.015 <0.001
15 11.700 0 0 25120 0.001 0
Shifted exponential {u; }
10 26.200 0.100 0 36.673 0.022 0.001
15 16.100 0 0 27.714 0.001 <0.001

Table 2: Comparison of different estimators of A for m = 10 and m = 15 with true value of A = 1.

Monte Carlo Bias Monte Carlo RMSE
m PR RE AR PR RE AR
t{ui}

10 0.035 -0.015 0.720 1.225 0.901 1.409
15 0.074 0.011 0.437 1.031 0.762 1.002

Shifted exponential {u;}
10 0.053 -0.043 0.690 1.418 1.119 1.653
15 0.086 0.014 0.443 1.148 0917 1.173

simulations. Let «91@ and égj) be simulated true value and the EBLUP for area i in the jth simulation
respectively,i=1,---,m; j=1,---, N. We also compute the Monte Carlo mean squared prediction
error of 6;:

N
1 5(5) (]
MSPE (4 =% Z (6 — 6

Figure (1) shows the simulated MSPE results. When m = 10, Gi(ARE) tends to have the smallest
MSPE when the sampling variance is large (D; = 4), and 6;(Agg) and 6;(Aar) outperform 6;(Apg)
in the remaining groups. When m = 15, 6;(Arg) and 0;(AAg) perform similarly across all groups and
better than ;(Apg).

For interval estimation, we compare two traditional intervals of the form 6, + za/gﬁ/ spe based on
Apg and Agg, and three parametrlc bootstrap intervals based on Apr, Agg, and A AR- Derivations of
mspe(Gz) using Apr and Arg, appear in Prasad and Rao (1990) and Datta and Lahiri (2000), respec-
tively.

Tables 3 and 4 present the empirical coverage probabilities and average lengths for nominal 95%
intervals. When m = 10, the parametric bootstrap method using Aag (PB-AR) performs the best
in terms of the coverage probabilities and the average lengths. The PR-based traditional interval
(PR) and PB-PR show severe undercoverage across all groups. The traditional REML interval also
undercovers, especially for group 1. PB-RE achieves good coverage but yields substantially longer
intervals than PB-AR. This may be because the REML method sometimes produces zero estimates.
Since the estimate A* appears in the denominator of the term & 51 1(9;k — é;‘) used in our parametric
bootstrap method, this quantity becomes undefined whenever A*E = 0. To address this issue, we
replaced those zero estimates with 0.01. In such cases, the resulting values can be extremely large,
which may in turn lead to overly wide prediction intervals. As m increases, all methods improve,
although PR, RE, and PB-PR still exhibit undercoverage. Overall, PB-AR provides competitive cov-

The Survey Statistician 57 January 2026, Vol. 93, 52-61.



Early Career Survey Statistician

(m =10, 1) (m = 10, SE)
I R S 477 T R
— - Adjusted REML| — - Adjusted REML|
© ®© |
o o
& o
© ©
< <
o (=)
N N
c 7 (=) -
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
(m =15, 1) (m = 15, SE)
S — —
i T R T R
Adjusted REML] o Adjusted REML]
3 - 3
w w o
o L -]
= 5 ©
= =
< <
o | o
o~ | N ]
S - o -
T T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Figure 1: Simulated mean squared prediction error of 0;(A).
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erage probabilities and interval lengths, showing only slight undercoverage for Group 1 under the
shifted exponential distribution.

Table 3: Average Monte Carlo coverage and average length of different intervals for m = 10 with
nominal coverage = 95% under t-distribution and shifted exponential distribution.

PR RE PB-PR PB-RE PB-AR
t{ui}
G1 84.10(12.78) 88.70(3.52) 83.90(11.18) 96.25(9.12) 95.10(4.26)
G2 8565(11.22) 93.90(253) 8565(6.74) 96.75(5.39) 95.15(2.56)
G3 85.65(11.22) 93.90(2.53) 85.65(6.74) 96.75(5.39) 95.15(2.56)
G4 86.00(10.76) 94.60(2.24) 86.10(569) 96.70(4.42) 94.65(2.19)
G5 86.25(9.65) 96.30(1.77) 86.60(3.97) 97.25(2.94) 94.70(1.63)

Shifted exponential {u; }
87.85(3.31) 84.10(10.41) 94.55(9.52) 94.85(4.18
G2 83.85(10.52) 93.70(2.44) 8390(6.19) 9550(5.41) 94.80(248

G1 84.20(12.06 ( ) ( )
( ) ( ) ( )
G3 83.85(10.52) 93.70(2.44) 83.90(6.19) 9550 (5.41) 94.80(2.48)
( ) ( ) ( )
( ) ( ) ( )

~— N N ~—

G4 84.30(10.14) 9545(2.20) 84.75(5.26) 9595(4.42) 95.00(2.14
G5 87.05(9.08) 96.80(1.80) 87.35(3.69) 96.00(3.02) 94.70 (1.61

Table 4: Average Monte Carlo coverage and average length of different intervals for m = 15 with
nominal coverage = 95% under t-distribution and shifted exponential distribution.
PR RE PB-PR PB-RE PB-AR
t {'LLZ}
G1 90.40(10.76) 90.60(3.52) 90.13(9.52) 97.97 (6.46) 95.00 (4.07)
G2 90.67(9.82) 93.50(246) 90.70(6.02) 97.60(3.98) 95.17(2.50)
G3 89.93(9.74) 93.87(2.33) 90.00(5.65) 97.30(3.69) 94.80(2.34)
G4 90.37(9.61) 93.73(2.17) 90.20(518) 9713(3.34) 9443(2.15)
G5 9110(899) 9527 (1.68) 91.17(3.75) 97.57(2.35) 94.67(1.62)

Shifted exponential {u;}

G1 87.73(10.63) 89.23(3.40) 87.73(9.36) 95.83(7.14) 93.73(4.09)
G2 89.13(9.68) 93.60(2.40) 89.20(5.85) 96.50 (4.24) 94.97 (2.45)
G3 88.07(9.56) 93.63(2.28) 88.10(5.47) 96.27 (3.94) 94.40(2.29)
G4 89.03(9.44) 94.03(2.13) 88.67(5.02) 9597 (3.56) 94.60(2.11)
G5 88.83(8.85) 95.60(1.69) 88.97(3.64) 96.10(2.51) 94.37(1.60)

5 Discussion

This study provides empirical evidence on variance component estimation in general area-level mod-
els that allow non-normal random effects. The results indicate that the REML estimator can remain
reasonably robust to deviations from normality, even when the number of areas is relatively small (for
example, m = 10). Under both heavy-tailed and asymmetric random effect distributions, according to
our simulation results, the bias of the REML estimator is similar to the PR estimator and its RMSE is
smaller than both PR and adjusted REML estimators. Moreover, associated EBLUP based on REML
estimate tends to perform well in prediction accuracy.

The simulation results also show that the effectiveness of parametric bootstrap prediction intervals
depends heavily on the variance component estimator. When zero estimates are frequent, particularly
when using the PR variance estimator, bootstrap intervals become unreliable due to the induced
degeneracy. In contrast, the adjusted REML estimator reduces boundary estimates and supports
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stable bootstrap inference, leading to improved coverage across all simulation settings considered.
This indicates that parametric bootstrap intervals based on adjusted REML estimates could be an
effective alternative, when m is small.

There are promising directions for future work. For example, a deeper theoretical investigation of ad-
justed REML under non-normal random effects, including refined bias corrections and accurate MSPE
estimation of EBLUP with adjust REML variance estimate, would strengthen its methodological foun-
dations. Overall, the findings highlight that positive and stable estimation of variance components is
essential for reliable small area prediction and inference. Adjusted likelihood methods offer a practi-
cal and robust alternative in applications where the normality assumption for random effects may not
hold.
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Small area estimation (SAE) has become increasingly important in both research and practical appli-
cations. A small area refers either to a geographic area or to a subpopulation for which direct esti-
mates are unreliable because of limited domain-sample sizes. SAE addresses this issue by borrowing
strength - that is, by using auxiliary information through statistical modeling to improve estimation ac-
curacy. However, this improvement involves a trade-off, which forms the central theme of the book.
The authors address a crucial gap between classical SAE models and the growing demand for reli-
able estimation in the presence of model misspecification, outliers, and complex data structures.
Intended for researchers and graduate students in statistics, data science, and related fields, the book
also offers practical guidance for practitioners, including those working in government and public sec-
tor organizations.

The book comprises seven well-structured chapters that progress logically from fundamental concepts
to cutting-edge developments. Each chapter reinforces its theoretical discussions with illustrative
examples, simulation experiments, or case studies based on real data.

Chapter 1 ‘Small Area Estimation: A Brief Overview’ presents the motivation and fundamental ideas
behind SAE. It outlines key estimation strategies, including direct and indirect estimation methods
such as the Fay-Herriot model and the nested-error regression (NER) model, and provides an overview
of available software packages.

Chapter 2 ‘SAE Methods Built on Weaker Assumptions’ examines how SAE methods and mean
squared prediction error (MSPE) estimation can be developed with fewer or less restrictive statis-
tical assumptions, making them more robust to model misspecification. It introduces techniques such
as the robust empirical Bayes estimator, the regression average, non-Gaussian mixed models and
heteroscedastic NER models. The chapter also includes simulation studies and practical examples,
such as grape production and income data.

Chapter 3 ‘Outlier Robustness’ explores methods that make SAE robust to outliers. Robust tech-
niques like the robust EBLUP, M-quantile regression, and density power divergence, which reduce
outlier influence while keeping efficiency, are introduced. Detecting and adjusting for outliers to im-
prove prediction accuracy are also covered.

Chapter 4 ‘Observed Best Prediction’ introduces a method designed to make SAE more robust to
model misspecification. Unlike traditional EBLUP, observed best prediction (OBP) estimates model
parameters by minimizing the observed mean squared prediction error, giving more weight to areas
with high sampling variance leading to predictions that remain reliable even when the assumed model
is partly wrong. Moreover, the observed best selective predictor (OBSP), which combines variable se-
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lection and parameter estimation, and the compromised best predictor (CBP), which can be described
as a weighted average of the EBLUP and the OBP, are explored.

Chapter 5 ‘More Flexible Models’ addresses advanced SAE methods that use semi-parametric, non-
parametric, and functional models to reduce dependence on parametric assumptions. These models
employ tools like splines, kernel functions, and functional mixed-effects models to capture complex,
nonlinear relationships between variables. By allowing model flexibility, they improve robustness
against model misspecification and perform better even for time-series data.

Chapter 6 ‘Model Selection and Diagnostics’ discusses how to choose and validate models in SAE. It
reviews classical and modern selection tools such as information criteria, fence methods, and shrink-
age selection. The chapter also explains diagnostic techniques like (robust) goodness-of-fit tests and
the tailoring method to detect violations of the model assumptions.

Chapter 7 ‘Other Topics’ discusses several additional topics connected to robust SAE. It covers bench-
marking, Bayesian, and machine learning methods (like mixed-effects random forests, neural net-
works, and gradient boosting), as well as approaches for handling missing data and classified mixed
model prediction. The chapter concludes by discussing new challenges - such as Big Data, data
quality, and privacy protection (differential privacy) - and calls for future SAE methods that remain
robust in modern data environments.

The book is an impressive and timely contribution to the literature on SAE, skillfully combining a deep
theoretical framework, modern methodological advances, and practical insights for real-world appli-
cations. A notable strength of the book lies in its integration of theory and applications. The authors
devote substantial attention to real-world examples, including data on income and poverty, agricul-
tural yields, and health indicators. Although the book is mainly aimed at researchers and graduate
students, this hands-on approach is particularly valuable for practitioners, helping them understand
and adopt robust SAE methods with greater ease.

©The author. 2026. Published by International Association of Survey Statisticians. This
is an Open Access article distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.
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Abstract

The review presents the main features of the R2BEAT R package (Fasulo et al., 2023), which is
designed for optimal sample allocation. The package integrates the Bethel (1989) algorithm, which
extends optimal allocation (Tschprow, 1923; Neyman, 1934) to the multi-domain and multi-purpose
case, and it also implements the extension proposed by Falorsi et al. (1998) for handling complex
sampling designs. The package streamlines the entire sample design workflow, from sample optimi-
sation to selection of sampling units.

Keywords: sampling, stratification, two-stage, design effect.

1 Introduction

Sample surveys conducted by National Statistical Institutes (NSls) and other organisations often pur-
sue multi-domain and multi-purpose objectives. Consequently, they are required to produce ac-
curate estimates for multiple parameters and across various domains, both geographical and non-
geographical.

Since surveys are subject to budgetary and logistical constraints, their design must be carefully
planned to ensure high-quality estimates for the parameters of interest. Within this framework, sev-
eral crucial decisions must be made, including determining the sample size, defining the stratification
scheme, and allocating sampling units across strata and stages.

The proposed package, R2BEAT (standing for R “to” Bethel Extended Allocation for Two-stage), has
been developed within this context (Barcaroli et al., 2023). It integrates the Bethel (1989) algorithm,
which extends optimal allocation (Tschprow, 1923; Neyman, 1934) to the multi-domain and multi-
purpose case, and it also implements the extension proposed by Falorsi et al. (1998) for handling
complex sampling designs. Therefore, it fills an existing gap in the range of statistical software dedi-
cated to sample size allocation, providing an advanced and flexible tool for the R community.

The paper is organised as follows. Section 2 describes the structure of the package and the case
study used to illustrate its functionality. Section 3 explains the workflow for stratified sampling design
- very common in economic surveys - while Section 4 focuses on two-stage sampling design with
stratification of the primary stage units - widely used in household surveys. Finally, Section 5 provides
conclusions.

For additional details and overview of further functions, readers may refer to the companion paper by
Barcaroli et al. (2023). The workflow presented is based on the most recent functions available on
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the GitHub page of the package which are expected to be included in the forthcoming official release
of the package.

2 Preliminarities

2.1 Structure of the package

The R2BEAT package provides a comprehensive set of functions for designing and selecting samples
through optimal allocation, both for stratified and two-stage with stratification of the primary stage units.

The appropriate sampling design to apply in a specific situation depends on the information available
in the sampling frame, for example, for implementing stratification or an unequal-inclusion-probability
sampling design. In addition, to perform optimal allocation, information on the target variable(s) or at
least on a suitable proxy is required. Such information may be obtained from a sampling frame, such
as a register, or from a sample survey, either a concurrent survey or a previous wave of the same
survey, and can be used to guide the allocation of the sampling units.

R2BEAT is able to manage both the scenarios and the typical workflow for designing and selecting a
sample involves three main steps: (1) preparing the input data, (2) defining the sampling design and
computing the optimal allocation, and (3) selecting the final sample units.

Toinstall the latest stable version of R2BEAT from CRAN, use the command install.packages ("R2BEAT")
within the R environment. The most recent development version is available on GitHub and can be
installed by executing devtools: :install_github("barcaroli/R2BEAT_2.0").

2.2 Case study

In this paper, we develop the workflow under a stratified sampling design and a two-stage sampling
design with stratification of the primary sampling units’. In both cases, a sampling frame covering the
entire population of interest is required, whereas information on the target variable(s) is obtained from
a previously conducted sample survey. The case in which such information is available directly on
the sampling frame differs slightly from this setting, and readers are referred to Barcaroli et al. (2023).

The sampling frame considered in this paper, pop.RData, refers to a population of 2,258,507 individ-
uals and contains the following variables:

'data.frame': 2258507 obs. of 13 variables:

$ id_ind :int 123456789 10 ...

$ id_hh : Factor w/ 963018 levels "H1","H10","H100",..: 111 2 3 3 3 3 ...
$ municipality : num 1111111111 ...

$ province : Factor w/ 6 levels "north_1","morth 2",..: 1111111111 ...
$ region : Factor w/ 3 levels "north","center",..: 1111111111 ...

$ sex :dint 1212112211 ...

$ cl_age : Factor w/ 8 levels "(0,14]","(14,24]",..: 3 785466 441 ...
$ active :num 1101111110 ...

$ unemployed :num 0000000000 ...

$ inactive :num 0010000001 ...

$ income_hh : num 30488 30488 30488 21756 29871 ...

'"To reproduce the analyses presented in these examples, all datasets are available for download at
https://github.com/barcaroli/R2BEAT _datahttps://github.com/barcaroli/R2BEAT_data.
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In particular, it contains

* id_ind: individual identifier,

* id_hh: household identifier to which the individual belongs,

* municipality: municipality identifier in which the individual lives,
» province: province (NUTS3) identifier in which the individual lives,
* region: region (NUTS2) identifier in which the individual lives;

demographic information:

» sex: sex of the individual,
» cl_age: age class of the individual in ten-year intervals;

information on target variables:

* active: binary indicator for occupational status “active”,

* inactive: binary indicator for occupational status “inactive”,

» unemployed: binary indicator for occupational status “unemployed”,
* income_hh: income.

Furthermore, for the present purpose, sampling data from a previous survey are also considered,
sample.RData, comprising a two-stage (municipalities and individuals) sample of 9,421 units drawn
from Pop.RData. This dataset includes the same variables described above and, in addition, the
following variables useful for the present purpose:

» weight: the sampling weights assigned to each sampling unit,

* stratum_2: the strata used for stratifying the municipalities,

* SR: binary indicator for the Self-Representative (SR) municipalities. Itis equal to 1 for the munic-
ipalities that are included certainly in the sample (inclusion probability equal to 1), 0 otherwise.

3 Stratified sampling design

Stratification of the sample is very common and highly effective. When one or more variables corre-
lated with the survey’s target variables are available in the sampling frame, it is possible to partition
the sampling units into strata and select an independent sample from each of them in order to obtain
more efficient estimates.

Defining the proper number of sampling units to be collected in each stratum is an allocation problem.
The optimal allocation (Tschprow, 1923; Neyman, 1934) assigns a larger portion of the sample to
strata with greater population size and, in particular, to those characterised by higher variability of
the target variable. In such strata, a greater sample size is required to achieve the desired level of
efficiency of the estimates.

The allocation problem in the multivariate and multi-domain case can be formulated as an optimisation
problem (Bethel, 1989), where the objective is to minimise the cost of the survey, usually expressed
in terms of sample size, subject to a set of precision constraints on the estimates.

3.1 Step 1: Input preparation

From this premise, it follows straightforwardly that the inputs required to perform optimal allocation
are strata information and a set of precision constraints for the estimates of the target variables.
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The strata information can be obtained using the function prepareInputToAllocation_beat.1st.
The parameters to be specified in the function are:

frame: the sampling frame containing necessarily the identifier of the units, strata and domain
variables and optionally the target variable(s).

sample (optional): sample survey data, containing necessarily the strata and domains variables,
the target variable(s) and the sampling weights. In this way, statistical summaries of the target
variables will be estimated on the sample. Strata and domains variables must be consistent
with those defined for samp_frame dataframe. Default is NULL, meaning that just sampling
frame data are used,

ID: name of the identifier of the units in the sampling frame.

stratum: either name of the variable in samp_frame, which is taken as the stratum, or the name
of the variables which have to be concatenated to obtain the stratum. In the latter case, the
variables used to build the stratum are retained.

domain: name of the variable(s) identifying the domain(s) for which estimates of the target vari-
ables must be disseminated. Domain(s) must be aggregation of the strata.

target: names of the variable(s) in the sampling frame identifying the target variable(s) leading
the planning of the survey.

weight (optional): the sampling weights, whether the target variable(s) is (are) available only
on sample data. The default is NULL, meaning that the target variables are available in the
sampling frame and, therefore, the statistical summaries are computed on it.

Suppose that the sample is to be stratified by province, while the estimates of mean income and
the incidence of unemployed individuals are to be controlled at the regional level. The parameter in
prepareInputToAllocation_beat.1st can be set as follows:

inputl <- preparelnputToAllocation_beat.1lst(frame=pop,

sample=samp,

ID="id_ind",

stratum=c("province"),
domain="region",
target=c("income_hh","unemployed"),
weights="d")

The function returns three objects:

1.

file_strata: a dataframe of strata in which the population size, the mean (M1, M2, ...) and the
standard deviation of the target variables in the population (S1, S2, ...) is provided. Furthermore,
one column is specified for each domain. The global domain is included by default and is named
DOM1. Two additional columns are filled automatically in: CENS, an identifier whether the stratum
must be censused or not (the default is equal to 0 for all of them) and COST indicating the cost
of the each interview in the stratum (the default is equal to 1 for all of them).

'data.frame': 6 obs. of 11 variables:

$ STRATUM : Factor w/ 6 levels "north_1","north 2",..: 34125 6
$ province: Factor w/ 6 levels "north_1","north 2",..: 34125 6
$ DOM1 : Factor w/ 1 level "Total": 111111

$ DOM2 : Factor w/ 3 levels "north","center",..: 2 2 11 3 3

$ N : num 591517 205173 462420 482122 336608 ...

$ M1 : num 21673 21054 27930 24332 16923 ...

$ M2 : num 0.1032 0.1547 0.0212 0.0316 0.2922 ...
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$ S1 : num 19618 16565 26151 19252 14686 ...
$ S2 :num 0.304 0.362 0.144 0.175 0.455 ...
$ CENS :num 0 00000
$ COST cnum 111111

2. var_list: a vector of target variables as they appear in file_strata (i.e. M1, M2, ...or S1, S2,

).

3. ID_stratum: a dataframe reporting the stratum to which each unit in the samp_frame belongs.

Then, the precision constraints in terms of coefficient of variation (CV) for each target variable in each
domain have to be planned. Assume that the maximum acceptable coefficients of variation are 2% at
the national level and 5% at the regional level for the mean of income, while 5% at the national level
and 7% at the regional level for the incidence of unemployment. Then:

cvl <- data.frame(DOM=c("DOM1", "DOM2"),
CV1=c(0.02, 0.05),
CV2=c(0.05, 0.07))
cvl
DOM CV1 CV2
1 DOM1 0.02 0.05
2 DOM2 0.05 0.07

3.2 Step 2: Optimal allocation

The optimal allocation is then computed using the beat . 1st function and the inputs file_strata and
cvl previously described:

allocl <- beat.lst(file_strata=inputi$file_strata,
errors=cvl)

The final sample size of the optimal resulting allocation satisfying the precision constraints is 9,688.
The object allocl is a list of seven output objects:

1. n: a vector containing the optimal allocation for each stratum. Its total, sum(alloc1$n), is equal
to 9,688.

2. file_strata: the input dataset file_strata with an additional column, n, indicating the optimal
allocation.

3. alloc: a dataframe specifying for each stratum the optimal allocation (0OPT), the proportional
allocation (PROP), and the uniform allocation (UNIF).

4. sensitivity: adataframe with the precision constraints (P1annedCV), the expected CV (ExpectedCV),
i.e. the CV that are expected to be obtained the optimal allocation), and the sensitivity (Sensitivity

10%) for each variable and each domain category. Sensitivity provides a suggestion about the
expected variation in sample size if the planned errors change by 10%.

5. ExpectedCV: a dataframe with the maximum of the expected coefficients of variation (Actual
CV), for each variable in each domain.

6. PlannedCV: a dataframe with the maximum coefficients of variation admissible for each domain
and for each variable. It is the input errors dataframe, provided by the user.

7. param_alloc: a vector summarising all the parameters used for performing the optimal alloca-
tion.

In general, a reduction in the CV corresponds to a higher required level of precision, which in turn
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requires a larger sample size, and vice versa.

3.3 Step 3: Selection of sampling units

Given the allocation, the sample can be selected using the function strata from the R package sam-
pling (Tillé and Matei, 2023). For proper implementation, prior to sample selection, itis recommended
that both the sampling frame and the allocation dataframe are ordered by stratum:

library(sampling)
alloci$file_strata <- allocli$file_stratalorder(alloci$file_strata$STRATUM),]
pop <- merge(pop,inputl$ID_stratum,by="id_ind")
pop <- poplorder (pop$STRATUM) , ]
s <- strata(data=pop,
stratanames="STRATUM",
size=alloci$file_strata$n,
method="srswor")
sample_str <- getdata(data=pop, m=s)

Finally, sample_str is the sample of size 9,688, stratified by province, which will yield estimates of
mean income and the incidence of unemployment consistent with the planned precision constraints
defined in cv1.

4 Two-stage sample design with stratification of the primary stage units

Sampling units may be organised in clusters; for example, individuals within households, workers
within enterprises, or households within enumeration areas or municipalities.

For logistical and economic reasons, it may be useful to exploit this clustering. The typical case is
household surveys. In these surveys, municipalities (Primary Stage Units, PSUs) are usually strati-
fied. Then, within each stratum, a sample of municipalities is selected, typically with probability pro-
portional to size, and within the selected municipalities a sample of households (Secondary Stage
Units, SSUs) is drawn.

This sampling design is more convenient because it reduces the management complexity and there-
fore costs. However, this advantage comes at the expense of a reduction in the efficiency of the
sample design, which must be taken into account when planning the sample.

In this context, the allocation problem is more complex, since the both PSUs and SSUs must be
allocated. A solution can be obtained by following Falorsi et al. (1998). They propose iterating the
Bethel algorithm, adjusting the design effect? at each iteration. Convergence is usually achieved
within 5-6 iterations.

4.1 Step 1: Input preparation

The function prepareInputToAllocation2 behaves similarly to the function described in Section 3.1
and likewise generates all the input objects required for the optimal allocation.

However, since this sample design is more complex, it needs more parameters:

2]t denotes how much the sampling variance under the adopted sampling design is inflated with respect to SRS, on
equal sample size. The design effect for SRS is equal to 1, whereas for clustered sampling designs it is greater than 1.
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frame: the sampling frame containing necessarily the identifier of the units, strata and domain
variables and optionally the target variable(s).

RGdes: the sampling data containing necessarily the strata and domains variables, the target
variable(s) and the sampling weights. It must be a design object created with the R package
ReGenesees®.

RGcal (optional): the sampling data containing necessarily the strata and domains variables, the
target variable(s) and the sampling calibrated weights. It must be a calibration object created
with the R package ReGenesees®. If NULL (default), it is set equal to the design object, RGdes.
id_PSU: name of the identifier of the PSU.

id_SsSuU: name of the identifier of the SSU.

stratum: name of the variable in the sampling frame which is taken as the stratum. In contrast
to the function used for the stratified sampling design, in the current version, this function does
not perform variable concatenation. Therefore, it is recommended to prepare the concatenated
variables beforehand.

target: names of the variable(s) in the sampling frame identifying the target variable(s) leading
the planning of the survey.

deff_level: name of the variable(s) identifying the domain level at which compute the design
effect. Although this information is applied in the algorithm at the stratum level, it is advisable
to aggregate it to a higher hierarchical level to obtain more stable design effect estimates. The
resulting design effect value is then applied to all strata belonging to the corresponding higher-
level domains.

domain: name of the variable(s) identifying the domain(s) for which estimates of the target vari-
ables must be disseminated. Domain(s) must be aggregation of the strata.

delta: the average size of SSUs in terms of elementary units in each stratum. If SSUs match
the survey units, delta must be equal to 1 in all the strata. Otherwise, it should be set equal to
the average size of SSUs in terms of elementary units in the stratum.

minimum: minimum number of SSUs to be interviewed in each selected PSU.

Suppose that the sample is to be a two-stage, municipalities and individuals, in which the municipali-
ties are stratified by province, while the estimates of mean income and the incidence of unemployed
individuals are to be controlled at the regional level and have been previously investigated in another
sample survey. Furthermore, the design effect will be computed at the regional level.

A propedeutic step, before preparing the inputs for the optimal allocation, is to create the design object
useful for computing the design effects and the estimator effects. The package ReGenesees is used
for the present purpose also in the prepareInputToAllocation2 function.

Since samp is a two-stage (municipalities, municipality, and individuals, id_ind) sample with strati-
fication of the municipalities (stratum_2), the design object, RGdes, is defined as follows:

library(ReGenesees)

samp$stratum_2 <- as.factor(samp$stratum_2)

RGdes <- e.svydesign(data=samp,

ids=~municipality+id_ind,
strata=~stratum_2,
weights=~weight,
self.rep.str=~SR,

3For all the details see Zardetto (2015) and Zardetto (2023).
“See above.
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check.data=TRUE)
Then, the parameter in prepareInputToAllocation2 can be set as follows:

input2 <- preparelnputToAllocation2(frame=pop,
RGdes=RGdes,
id_PSU="municipality",
id_SSU="id_ind",
stratum="province",
target=c("income_hh", "unemployed"),
deff_level="region",
domain="region",
delta=1,
minimum=120)

The function returns six dataframes:

1. strata: a dataframe with the same structure as the output provided by the function
preparelnputToAllocation_beat.1st described in Section 3.1.

2. deff: a dataframe of strata with the design effect for each variable (DEFF1, DEFF2, ...) and the
average size of the SSUs in the PSUs (b_nar).

3. effst: a dataframe with the estimator effect for each variable in each stratum®. When RGcal is
NULL the estimator effect is equal to 1 for all the variables in each stratum.

4. rho: a dataframe with the intraclass correlation coefficient® for each variable in each stratum
and for municipalities included for sure in the sample (Self-Representative). The correlation
coefficient for larger municipalities (i.e. included certainly in the sample, since their selection
probability is equal to 1) is equal to 1 by default.

5. psu_file: a dataframe of PSUs with the related stratum and their size (PSU_MOS) .

6. des_file: a dataframe of strata with the size, delta and minimum’.

All of these objects, except deff (included for documentation purposes only), serve as inputs for the
optimal allocation step.

Then, as before, the precision constraints in terms of coefficient of variation (CV) for each target
variable in each domain have to be planned. Assume, in this case, that the maximum acceptable
coefficients of variation is 2% at the national level and 5% at the regional level for the mean of income,
while 5% at the national level and 7% at the regional level for the incidence of unemployment. Then:

cv2 <- data.frame(DOM=c("DOM1", "DOM2"),
CV1=c(0.02, 0.05),
CvV2=c(0.05, 0.07))

The estimator effect measures how much the sampling variance under the chosen estimator is inflated or deflated
relative to the Horvitz—Thompson estimator (Horvitz and Thompson, 1952), under the same sample design. By definition,
the Horvitz—Thompson estimator has an estimator effect equal to 1, while for instance a calibrated estimator (Deville and
Sarndal, 1992) typically yields values lower than 1.

5The correlation coefficient captures the degree of similarity among units within clusters. Positive values indicate strong
within-cluster similarity, leading to higher design effects and poorer CVs. In contrast, negative values reflect greater within-
cluster heterogeneity.

"By modifying this dataframe, it is possible to set different minimum values according to the strata.
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DOM CVl Cv2
1 DOM1 0.02 0.05
2 DOM2 0.05 0.07

4.2 Step 2: Optimal allocation

The optimal allocation is then computed using the beat.2st function and the inputs previously de-
scribed:

alloc2 <- beat.2st(file_strata=input2$file_strata,

errors=cv2,
des_file=input2$des_file,
psu_file=input2$psu_file,
rho=input2$rho,
effst=input2$effst)

iterations PSU_SR PSU NSR PSU Total SSU

SN -

0 0 0 0 9688
1 17 42 59 12677
2 19 76 95 11962
3 20 68 88 11944

The final sample size of the optimal resulting allocation satisfying the precision constraints comprises
88 PSUs, 20 Self-Representative (PSU_SR) and 68 Non-Self-Representative (PSU_NSR), and 11,944
SSUs.

The object alloc2 is a list of eight output objects:

1.

8.

iteractions: a dataframe that, for each iteration, provides a summary of the number of PSUs
(PSU_Total), distinguishing between Self-Representative (PSU_SR) and Non-Self-Representative
(PSU_NSR) units, as well as the number of SSUs (SSU). This output is also printed to the screen.
file_strata: a dataframe equal to the input dataframe file_strata with additional columns:
DEFT1, DEFT2, ...reporting the square root of the design effect for each variable within each
stratum, and n, specifying the optimal allocation.

. alloc: a dataframe with optimal (ALLOC), proportional (PROP), equal (EQUAL) sample size

allocation.

. planned: a dataframe with the precision constraints (Planned CV) for each variable in each

domain.

. expected: a dataframe with the expected CVs with the given optimal allocation (Expected CV)

for each variable in each domain.
sensitivity: a dataframe with a summary of the sensitivity at 10% for each domain and each
variable.

. deft_c: a dataframe with the design effect for each variable in each domain in each iteration.

Note that DEFT1_0, DEFT2_0, ...is always equal to 1 if deft_start is NULL. Otherwise is equal to
deft_start. While DEFT1, DEFT2, ...are the square root of the final design effect related to the
given allocation reported also in file_strata.

param_alloc: a vector with a resume of all the parameter given for the allocation.

As before, a reduction in the CV corresponds to a higher required level of precision, which in turn re-
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quires a larger sample size, and vice versa. Moreover, for a fixed sample size, reducing the minimum
number of units per PSU decreases the CV, since the sample is spread across more PSUs and the
design effect decreases. Conversely, increasing the minimum leads to higher CVs.

4.3 Step 3: Selection of sampling units
The PSUs are then selected using:
sample_1st <- select_PSU(alloc=alloc2, type="OPT", pps=TRUE)

The selected PSUs are stored in the sample_PSU element of the output list. Using these, the final
sample of secondary units can be selected:

PSU_sampled <- sample_lst$sample_PSU

sample_2st <- select_SSU(df = pop,
PSU_code ="municipality",
SSU_code ="id_ind",
PSU_sampled=PSU_sampled)

Finally, sample_2st is the two-stage sample of size 13,090, with the municipalities stratified by province,
which will yield estimates of mean income and the incidence of unemployment consistent with the
planned precision constraints defined in cv2.

A slight discrepancy may arise between the number of SSUs determined during allocation and those
obtained after PSU selection. This occurs because the PSU selection process enforces the minimum
number of SSUs (here, 120) per selected PSU, which may result in an increase in the total number
of SSUs.

The two samples, sample_str and sample_2st, achieve the same level of precision, in terms of CVs,
for the estimates of average income and unemployment incidence at both national and regional level.
However, in the two-stage design the sampling units are clustered, which reduces the efficiency of
the sample. As a result, a larger sample size, 13,090 instead of 9,688, is required to satisfy the same
precision constraints.

5 Concluding remarks

R2BEAT stands out for its comprehensive approach to statistical data production, covering all stages
from design to sample selection. It is especially flexible and adaptable, offering optimal allocation
for both stratified and two-stage with stratification of the primary stage units sampling designs. This
makes it valuable for various organisations, including national statistical institutes (NSls), private re-
search firms, research institutes and universities.

R2BEAT leverages auxiliary variables, improving sample design and allocation by making use of
additional data from registers or previous surveys. Its user-friendly output allows for easy analysis and
validation of the allocations and sample used in the survey. As the package stems from an ongoing
development effort, it is continuously updated and maintained to guarantee maximum consistency
and efficiency in the implementation of the methodology for sample design and selection.
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Argentina
Reporting: Verénica Beritich
INDEC hosted officials from the United Nations System in Argentina

On September 11th, the authorities of INDEC, together with the authorities of the Ministry of Foreign
Affairs, International Trade and Worship of Argentina, took part in a meeting with representatives of
14 organizations of the United Nations System in Argentina. The purpose of this meeting was to
strengthen data production in the country. The institutional work plan was presented, highlighting the
use of official statistics to promote economic, social, and environmental development, and inviting
international agencies to work in coordination with INDEC on projects involving the National
Statistical System.

The use of administrative records is one of the structural pillars of the projects shared in this meeting,
and INDEC's obligation is to harness all that potential to produce better data. Other key pillars
highlighted by INDEC’s authorities included the crucial support of the United Nations agencies in
Argentina in breaking down the natural barriers that exist within the State, and the need to work in a
coordinated manner to provide information that meets the growing demand and thus deliver timely,
high-quality statistics for decision-making.

The working session was divided into two parts. At the beginning, representatives of each multilateral
organization briefly described the projects they are promoting, which are primarily based on
information produced by INDEC. Afterwards, the main current lines of work of the Institute were
presented:

o Strengthening the statistical structure through projects that include the continuous updating
of population projections and the implementation of the new Master Urban Household
Sample of the Argentine Republic (MMUVRA).

e Expanding the conceptual frameworks for the production of new economic, social, and
environmental statistics and incorporating the integrated governance system.

o Developing an integrated system of administrative records for statistical use, based on
statistical records of population, housing, and economic units.

e Applying technological innovation in statistical operations and in the harmonization of
administrative records.

e Strengthening institutions by coordinating activities between national State agencies that
provide information and produce statistics and international organizations in the field.

General information can be found at https://www.indec.gob.ar.

For further information, please contact https://www.indec.gob.ar/indec/web/Institucional-Indec-
Contacto.
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Australia
Reporting: Paul Schubert

Enhancing household survey frames when you don’t have a population register

National Statistical Offices (NSOs) across the globe have an urgent need to address increasing
collection costs, caused by the increased difficulty in making contact with households and securing
their cooperation, while maintaining data quality. The biggest threat to data quality that all NSOs are
working to safeguard against is nonresponse bias given the increasing trends of survey
nonresponse.

Unlike Scandinavian countries (for example), Australia does not have a population register; frame
information to assess and help adjust for nonresponse biases in household surveys has been very
limited.

The goal of the Australian Bureau of Statistics’ (ABS) Data Improved Frames From the Address
Register (DIFFAR) project is to address these challenges head-on by delivering improved survey
frames for household surveys. The improvement comes from augmenting existing survey frames -
a full population list of addresses eligible for selection - with categorical auxiliary information derived
from the Person Level Integrated Data Asset (PLIDA) that can support more efficient and targeted
survey designs, operations and processes (for more about PLIDA, see: Person Level Integrated
Data Asset (PLIDA) | Australian Bureau of Statistics.)

The key methodological innovation of the DIFFAR project is the use of a random forest model, a
machine learning approach, to predict the probability that an address has certain characteristics
based on its reported PLIDA data — for example, whether a low-income household resides at the
address or a child is present at the address. These predicted probabilities are then used to group
addresses into decile categories which can be used to:

e ensure representation of key subpopulations in the sample design and selection
e track response during data collection operations to prioritise groups for follow-up
e improve estimation results through this use of auxiliary information.

It is important to note that this method protects the privacy of personal information from PLIDA by
not using it directly to categorise addresses.

While with DIFFAR the ABS is still in the early days of introducing more and better use of auxiliary
information in our survey processes, it has already enabled us to reduce biases in survey estimates,
and improve efficiency of sample designs by up to 20%. It has also identified subpopulations that
are under-represented in response so far during enumeration, allowing data collection staff to
prioritise these subpopulations in follow-up, and delivering a more representative final sample. The
use of DIFFAR information in estimation has provided new insights into subpopulations that are
currently under-represented in weighted estimates, and is providing the information required to
remove the resulting nonresponse bias from estimates.

For further information, please contact Bruce Fraser.
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Brazil
Reporting: Andrea Diniz da Silva

Learning Paths: Professional Training and Statistical Literacy

The Brazilian Institute of Geography and Statistics has created a set of Learning Paths for various
audiences: professionals from the public and private sectors, academics, policy makers, and other
professionals interested in the topics offered. The courses will be offered free of charge, remotely,
with synchronous and asynchronous activities. To ensure regional reach, spots are reserved for
each region of Brazil. Spots are also distributed equally between men and women. This aims to
ensure nationwide reach and a diverse range of trainees. Participants are expected to disseminate
the knowledge, references, and materials provided in each course.

There are six Learning Paths: Current Situation Analysis and Public Communication; Improving
Municipal Planning: Regulations and Indicators; Data Science, Big Data, and Artificial Intelligence;
Demographic Census and Municipal Planning; Statistics, Territory, and Public Policies; and the
National System of Statistics and Geography. The courses in these Paths are mostly taught by IBGE
staff, but also include guest professors.

All Paths focus on statistics, their production, use, and understanding, thus fulfilling a dual role:
professional training and statistical literacy.

Canada
Reporting: Darren Gray

Statistics Canada’s generalized systems are migrating to R and Python

Statistics Canada’s generalized systems have supported our statistical production infrastructure for
many years, providing efficient, vetted, and reusable solutions that can be deployed across multiple
programs. These systems are used throughout the Integrated Business Statistics Program (IBSP),
numerous economic and social surveys, and in our Census program. They are also shared
internationally at no cost, supporting methodological consistency and cooperation among National
Statistical Organizations (NSOs).

Statistics Canada is modernizing its broader statistical systems through a progressive shift toward
open-source technologies such as R and Python. These languages offer extensive statistical,
analytical, and machine-learning capabilities for better scalability and performance, and they align
with the technical skill sets of new statisticians, analysts, data scientists, and programmers joining
the agency. This modernization strengthens our ability to work within global statistical and data-
science communities.

As part of this broader initiative, we are migrating our SAS-based generalized systems to R and
Python. For some of the systems, this includes not just a change in programming language but new
functions, features, and overall enhancements. The modernization is already well underway: Banff
and G-Series were released publicly in early 2025, and additional systems are on the way. In addition
to using R and Python, we also plan on making the source code publicly available on our GitHub
account to improve transparency, enhance code quality, and encourage collaboration. The table
below summarizes the migration plan and targeted release dates for our SAS-based generalized
systems:
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Current system

(SAS-based) Functionality New system (Language) Release date
Banff ilicljri)tliJr:gtion and (BF?yr:Lfonf( Banff Processor January 2025
G-Series ;’(ijrjrljestment 5618 G.Series (R) January 2025
Probabilistic October 2025 (internal);

G-Sam Jasper (R) preparing for public

sampling dissemination
G-Confid Disclosure control G-Confid (Python) March 2026 (planned)
G-Link Record linkage  G-Link (Python) March 2026 (planned)

Weighting and

G-Est i .
estimation

Yoho (R) June 2026 (planned)

Releasing these systems publicly will strengthen collaboration, reduce duplication of effort across
agencies, and promote international methodological consistency. For questions or further
information, please feel free to reach out to Darren Gray at darren.gray@statcan.gc.ca.

Released systems:
Statistics Canada (2025). Banff. Python package version 3.1.3,
https://github.com/StatCan/gensol-banff.

Statistics Canada (2025). Banff ~ Processor. Python package  version 2.0.3,
https://github.com/StatCan/gensol-banff-processor.

Statistics Canada (2025). G-Series. R package version 3.0.2,
https://github.com/StatCan/gensol-gseries.

Croatia
Reporting: Ksenija Dumici¢
New Developments in the 2024 EU SILC Survey Methodology in Croatia

In 2025, Drzavni zavod za statistiku (DZS) released the 2024 wave of EU-SILC, based on an updated
sampling design and updated data-collection practices. The 2024 sample was drawn as a random
sample of private-household dwellings, using the 2021 Population, Households and Dwellings
Census as the sampling frame. From 13,049 randomly selected households, 9,410 completed
interviews were obtained, yielding a household-level response rate of 77.53 % (DZS, 2025a; DZS,
2025b). The survey retains its panel-design structure: selected households remain in the sample for
a four-year rotation, enabling both cross-sectional and longitudinal analyses of income, poverty,
material deprivation, and other living conditions indicators. Data collection was carried out primarily
via computer-assisted personal interviewing (CAPI), supplemented by telephone interviewing (CATI)
when necessary, by authorised and certified DZS interviewers (DZS, 2025b). Importantly, the 2024
wave introduced a methodological innovation by integrating administrative data sources for

The Survey Statistician 78 January 2026, Vol. 93, 75-85


mailto:darren.gray@statcan.gc.ca
https://github.com/StatCan/gensol-banff
https://github.com/StatCan/gensol-banff-processor
https://github.com/StatCan/gensol-gseries
https://podaci.dzs.hr/2025/en/97252
https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787
https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787
https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787

Country Reports

income variables, such as wages, pensions, and social transfers, alongside traditional household
interviews. This hybrid approach strengthens data accuracy, reduces respondent burden, and marks
a break in the time series compared with previous years when income was collected solely via
interviewing (DZS, 2025a). The updated sampling frame based on the 2021 Census ensures up-to-
date population coverage; weighting procedures account for unequal selection probabilities, unit
non-response, and post-stratification to known population totals at national and regional (HR-NUTS
2) levels. These enhancements considerably improve the representativeness, reliability, and
European comparability of Croatian EU-SILC data, aligning the survey with best practices in
longitudinal income and living conditions measurement across EU member states.

References

DZS (2025a) Indicators of Poverty and Social Exclusion, 2024 (EU-SILC Survey). First Release,
ZUDP-2025-1-1. Zagreb: DZS. Available at: https://podaci.dzs.hr/2025/en/97252

DZS (2025b) Income and Living Conditions Survey — survey documentation and methodological
notes. Zagreb: DZS. Available at: https://dzs.gov.hr/in-focus/survey-researches/income-and-living-
conditions-survey/1787

France
Reporting: Philippe Brion
Audience Measurement in France

Audience measurement aims to understand and quantify the number of people exposed to media
content, whether on a television channel, radio station, website, or any other medium.

Behind this generic term "measurement" lie, beyond technical aspects, concepts and approaches
that can be quite different. There are two main types of audience measurement. On one hand, there
are declarative measurements, based on sample surveys, generally involving large samples. Press
and radio audience measurements mainly rely on this type of method. On the other hand, there are
automatic measurements, which require the installation of a technical measurement system and are
based on panel tracking. Television and internet measurements have been built on this type of
method.

Many factors contribute to making audience measurement increasingly complex. First, media are
evolving, and their usage is becoming more and more fragmented. Accurately measuring the
audience of the multitude of available content would require significantly increasing sample sizes.
However, the digitalisation of media now offers other data sources: return path data from operator
boxes or from publishers’ websites and applications. This has led to the emergence of hybrid
measurements, resulting from the combined use of these return path data for a precise estimate of
the number of visitors/viewers, together with panel data to provide socio-demographic profiles.

Moreover, historically, audience measurements have been constructed in silos: one measurement
per medium. However, media are no longer managed in silos, and their content circulates from one
channel to another, creating the need for a global cross-media measurement, particularly for
advertising campaign measurement. This is why statistical fusion approaches have multiplied,
allowing different studies to be brought together by associating respondents based on their similarity
across a number of criteria, prioritised according to their explanatory power on the variables of
interest, here the audiences. For example, a respondent in the television audience measurement is
associated with the radio audience of a “twin” to estimate duplication between the two media. These
approaches are becoming more sophisticated today to more broadly take into account media and
available data, whether from sample surveys or exhaustive sources. The aim is to create virtual
populations on which advertising contacts are distributed according to probabilistic models.
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In France, television, radio, and internet audience measurements are carried out by Médiamétrie.
More recently, this institute has launched audience measurement for SVOD platforms.

More information :

https://static-
webmail.mediametrie.com/Livre+blanc+Hybride+et+|A/EN/Mediametrie+White+Paper+Hybrid+and+Al.pdf

Contact : Aurélie Vanheuverzwyn (avanheuverzwyn@mediametrie.fr)

Hong Kong Special Administrative Region, China

Reporting: Ronald Chan
Applications of Large Language Models in Statistical Work

The Census and Statistics Department (C&SD) of Hong Kong, China is actively exploring the
applications of Large Language Models (LLMs) to streamline and enhance statistical operations.
This initiative supports C&SD's digital transformation strategy to modernise workflows, improve
service quality and optimise resource allocation.

Key LLM applications include:

» Program development: Automating code generation for statistical programming (Python and
SAS), assisting with debugging, and improving documentation efficiency.

» Data processing: Extracting and analysing information from unstructured text data, including
open-ended survey responses, sales receipts and corporate announcements.

» Insights generation: Supporting data validation and review by identifying potential trends,
anomalies and patterns in statistical datasets.

» User services: Developing intelligent chatbots to handle public inquiries and enhance internal
knowledge management.

C&SD is implementing these LLM applications through a carefully planned, phased approach,
focusing on enhancing cost-effectiveness of internal processes in the initial phase. To ensure
responsible implementation, C&SD will establish robust safeguards, including expert validation of
LLM outputs to prevent potential errors and biases. Additionally, computing capabilities are being
enhanced to securely handle internal data while providing sufficient power to run LLMs effectively.

For more information, please contact Ronald Chan (rchchan@censtatd.gov.hk).

Lithuania

Reporting: Danuté Krapavickaité
Baltic-Nordic-Ukrainian (BNU) network workshop on survey statistics

The 28™ event of the BNU network was organized in Vilnius on August 25-29, 2025. 51 statisticians
participated onsite and online from the network countries and from France, Great Britain, the
Netherlands and Switzerland. The main topic was “Addressing nonresponse in survey statistics”,
other topics were also included.

The keynote speakers gave the talks relevant to the practitioners and theoreticians in survey
statistics. The lecture of Alina Matei was entitled “Spatially balanced sampling and its applications in
official statistics”. It stimulates to introduce sample coordination system in the case of enterprise
surveys and to create the sampling designs for agriculture and social surveys. The lecture of

The Survey Statistician 80 January 2026, Vol. 93, 75-85


https://static-webmail.mediametrie.com/Livre+blanc+Hybride+et+IA/EN/Mediametrie+White+Paper+Hybrid+and+AI.pdf
https://static-webmail.mediametrie.com/Livre+blanc+Hybride+et+IA/EN/Mediametrie+White+Paper+Hybrid+and+AI.pdf
mailto:rchchan@censtatd.gov.hk

Country Reports

Guillaume Chauvet “Bootstrap methods in survey sampling with focus on the rescaling bootstrap”
will find applications in the future activities of the network. It is useful in social surveys when the
survey population is large. The lecture of Jacek Wesolowski “Rotation sampling schemes and
Chebyshev polynomials” showed a view of pure mathematics to survey sampling. We were honoured
by participation of Professor Carl-Erik Sarndal with the talk “The nonresponse dilemma: some
thoughts on its origin, impact and future role in survey statistics”. It was a pleasure to have among
us the founders of the network Imbi Traat and Janis Lapins.

Representatives from the network countries gave invited lectures. Other participants gave the
contributed presentations, which were discussed by the discussants, appointed in advance. Topics
relevant to official statistics, application of machine learning in survey statistics, adjustment for
nonresponse were popular. The round table discussions were going on the following urgent topics:

“Teaching of survey sampling”; “Modern methods in survey sampling: machine learning, Al, SAE,

nonprobability samples”; “Dealing with non-sampling errors and accuracy estimation”.

Many young statisticians took part in the workshop. It was their first workshop, in which they
presented results of their research. We expect that this event will stimulate their positive attitude to
the further development of the statistical science and participation in it.

The workshop was sponsored by Vilnius Gediminas Technical University, State Data Agency,
Nordplus, Lithuanian Statistical Society, Lithuanian Mathematical Society and International
Association of Survey Statisticians. On behalf of the participants of the workshop, we express sincere
thanks for support which has made the event interesting and pleasant.

You may visit the workshop home page:
https://wiki.helsinki.fi/xwiki/bin/view/BNU/Events/Workshop%200n%20Survey%20Statistics%202025/

The Netherlands

Reporting: Lianne Tessers-Ippel
Smartphone-first questionnaire design at Statistics Netherlands (CBS)

As smartphones have become the primary device for online survey participation in household
surveys, Statistics Netherlands (CBS) developed a smartphone-first redesign of its web
questionnaires and evaluated this in a large-scale field experiment. The experiment examined six
factors: a revised login process, a smartphone-first designed questionnaire layout, alternative grid
formats (including carousel and accordion designs), the inclusion of smileys and icons, a speech-to-
text encouragement for open questions, and questionnaire length. The questionnaire redesign also
aligned with the CBS corporate design system and accessibility requirements.

The results revealed few significant differences across indicators of response behaviour, data
quality, and respondent satisfaction. This indicates that the smartphone-first design can be
introduced without jeopardising comparability over time or introducing measurement bias. The new
design will be gradually implemented in production surveys to ensure a user-friendly experience
that is consistent across devices.

A detailed report on the experiment by Deirdre Giesen, Maaike Kompier and Jan van den Brakel is
available at “Experiment smartphone-first questionnaire layout” (https://www.cbs.nl/en-
gb/background/2025/42/experiment-smartphone-first-questionnaire-layout).

For more information please contact Deirdre Giesen at d.giesen@cbs.nl.
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Poland

Reporting: Tomasz Zadto

The 5th Polish Statistics Congress took place from July 1 to 3, 2025, in Warsaw. It was organized
by Statistics Poland and the Polish Statistical Association. The event covered topics such as
mathematical statistics, survey sampling and small area estimation, population, social, economic,
regional, and spatial statistics, data analysis and classification, Al methods, big data and data
science, Polish statistics in the international context, history of Polish statistics, communication and
education, public statistics and data management systems, as well as data integration and
harmonization in official statistics.

The program included two keynote speeches by:

e Professor Partha Lahiri (University of Maryland, College Park) on "Poverty Mapping”

e Professor Ronald Lee (University of California, Berkeley) on “How low fertility and shrinking
populations will impact our economies”.

A panel discussion titled “From data to decisions - for social and economic development" was also
held, along with 28 sessions and a poster session.

The survey sampling and small-area estimation session organized by Janusz Wywiat, Mirostaw
Szreder, and Tomasz Zadto contained four presentations:

e invited presentation: “ltem Count Techniques under Some Assumption Violations” by
Barbara Kowalczyk and Robert Wieczorkowski,

¢ invited presentation: “Comparing Institutional Performance” by Nicholas Longford,

e “On the Maximum Likelihood Estimation of Population and Domain Means” by Janusz
Wywiat,

e “On Complex Estimators Under the Pathak Sampling Scheme” by Krzysztof Szymoniak-
Ksigzek.

Program of the conference: https://kongres2025.stat.gov.pl/en/Program

Abstracts and presentations: https://kongres2025.stat.gov.pl/en/Ksiega_abstraktow
Video recordings: https://kongres2025.stat.gov.pl/en/Transmisja

10th Edition of the Statistical Olympiad

The Statistical Olympiad is organized by Statistics Poland and the Polish Statistical Association and
is addressed to high school students. Its goal is to promote statistical knowledge and develop skills
in socio-economic data analysis through a three-stage competition that selects finalists and
laureates. The 10th edition is co-financed by the Ministry of Education and Science, and its first stage
took place in November 2025.

The Statistical Olympiad has three consecutive stages designed to gradually evaluate and enhance
students' statistical reasoning and data analysis skills. The first stage, the school level, is organized
by each participating school and involves an online test that assesses basic knowledge and problem-
solving skills in statistics. Schools register their contestants in the Olympiad IT system and appoint
a School Committee to oversee the round. The Central Committee then provides the School
Committees with the results achieved by the participants.

The regional stage is conducted simultaneously across the country’s 16 regions (voivodeships)
under supervised conditions and features a longer, more challenging online exam that includes
applied and interpretive problems. Successful participants from the school stage compete at this
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level for spots that qualify them for the central stage, and rankings are based on test scores with
clearly defined tie-breaking rules.

The central stage is held in two parts: an initial central-round online test that filters the top
participants, followed by a final written examination for a limited number of contestants who work on
more complex, open-ended problems requiring deeper analysis, interpretation of socio-economic
data, and clear written justification of methods and conclusions. The final ranking and the list of
laureates are based on the combined results from both parts of the central stage.

Winners and finalists of the Statistics Olympiad can gain admission to many prestigious universities
in Poland without needing to go through the regular admissions process. In the ninth edition of the
competition, the three finalists received gift cards valued at PLN 6,000, PLN 5,000, and PLN 4,000.

United States

Reporting: Andreea L. Erciulescu
Principles and Practices for a Federal Statistical Agency

The Committee on National Statistics (CNSTAT) of the National Academies of Sciences,
Engineering, and Medicine, identified 5 principles and 10 practices for federal agencies and units to
adopt when conducting their activities involving collection, compilation, processing, or analysis of
information for statistical purposes. These principles and practices, along with the 16 U.S. federally
recognized statistical agencies and units, are provided in the eighth edition of the report titled
Principles and Practices for a Federal Statistical Agency and available at the following link: Principles
and Practices for a Federal Statistical Agency - 8th Edition | The National Academies Press.

The 5 principles are as follows:

1) relevance to policy issues and society

2) credibility among data users and stakeholders

3) trust among the public and data subjects

4) independence from political and other undue external influence
5) continual improvement and innovation

The 10 practices are as follows:

1) a clearly defined and well-accepted mission

necessary authority and procedures to protect independence
commitment to quality and professional standards of practice
professional advancement of staff

an active research program

)
)
)
)
6) strong internal and external evaluation processes for an agency’s statistical programs
) coordination and collaboration with other agencies
) respect for data subjects and data holders and protections of their data
) dissemination of statistical products that meet users’ needs

0

10) openness about sources and limitations of the data provided
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Country Reports

The 16 federally recognized statistical agencies and units are as follows:

e Bureau of Economic Analysis (U.S. Department of Commerce)

e Bureau of Justice Statistics (U.S. Department of Justice)

e Bureau of Labor Statistics (U.S. Department of Labor)

e Bureau of Transportation Statistics (U.S. Department of Transportation)

e Census Bureau (U.S. Department of Commerce)

e Economic Research Service (U.S. Department of Agriculture)

e Energy Information Administration (U.S. Department of Energy)

o National Agricultural Statistics Service (U.S. Department of Agriculture)

o National Center for Education Statistics (U.S. Department of Education)

o National Center for Health Statistics (U.S. Department of Health and Human Services)
o National Center for Science and Engineering Statistics (National Science Foundation)
o Office of Research, Evaluation, and Statistics (Social Security Administration)

o Statistics of Income Division (U.S. Department of the Treasury)

o Center for Behavioral Health Statistics and Quality (Substance Abuse and Mental Health
Services Administration; U.S. Department of Health and Human Services)

e Microeconomic Surveys Unit (U.S. Federal Reserve Board)

e National Animal Health Monitoring System (Animal and Plant Health Inspection Service, U.S.
Department of Agriculture)

Uruguay
Reporting: Marcelo Bisogno, Juan Pablo Ferreira and Juan José Goyeneche

Weighting the 2023 Uruguay Census: Correcting Omission Through Doubly Robust
Estimators

The 2023 Population, Household, and Housing Census of Uruguay applied a mixed methodology
that combined the traditional census operation (CAWI + CAPI) with the inclusion of individuals
identified through administrative registers. This integration improved population coverage and
reduced net undercount by incorporating individuals who were not effectively enumerated but
showed “signals of life” in systems such as education, health, or social security. This approach
contributed to adjusting aggregate population totals and the age—sex structure.

The inclusion of individuals from administrative registers particularly improved coverage at higher
geographic levels, such as departments. However, this strategy presents limitations when more
granular territorial information is required. Geographic allocation based on administrative registers
tends to concentrate individuals in urban areas, where administrative activity is more complete,
potentially leading to underestimation of the population in rural areas or smaller communities.
Moreover, administrative registers cannot replace the census operation, as they do not contain key
census variables such as housing conditions, household equipment, household structure and
composition, or socioeconomic characteristics. For this reason, individuals “incorporated through
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registers” improve coverage but do not constitute complete observations for producing many census
indicators.

Despite the strategy implemented, overall omission reached 10.3%, meaning that one in ten
individuals was not enumerated. This omission was differential, with higher incidence in lower
socioeconomic areas and regions with more difficult access. Consequently, the enumerated
population does not represent a random selection of the total population but rather a subset with
patterns of self-selection associated with social and territorial characteristics.

To produce valid estimates for census variables not available in administrative registers, it was
necessary to construct weights that corrected differential omission. Households that were effectively
enumerated were treated as a non-probability sample, and a doubly robust estimation approach was
applied, combining a model for the propensity to be enumerated with a superpopulation model for
each variable of interest. Under this framework, estimates can be unbiased if at least one of the
models is correctly specified.

The propensity to be enumerated was estimated under the assumption that the response mechanism
is Missing At Random (MAR), along with the construction of nonresponse classes at the level of
groups or enumeration areas, assuming that the propensity (i.e., voluntarism) is homogeneous within
each nonresponse class. Finally, a post-stratification estimator (a specific case of the linear
regression estimator) was applied so that the estimates match the simple age—sex structure of the
population. The resulting weights correct differential omission, reduce bias, and yield reliable
indicators at the global level and for different domains of estimation.

For more information: mbisogno@ine.gub.uy , jferreir@ine.gub.uy , jgoyeneche@ine.gub.uy
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Upcoming Conferences and Workshops

Events on survey statistics and related areas

2026 Survey Costs Workshop

Date: 9-10 February 2026 2026 Survey Costs Workshop
Location: Maryland, USA

Webpage: https://aapor.org/aapor-2026-survey-costs-workshop/

20th IAOS Conference
Date: 12-14 May 2026

Location: Vilnius, Lithuania

Vilnius
conference

JAOS

2026

Webpage: https://www.isi-next.org/conferences/iaos-2026/

14th International Francophone Conference on Surveys
Date: 19-22 May 2026

14%me colloque francophone international

Location: Vannes, France sur les SFJS

. 19-22 mai 2026 — Vannes / Campus de Kercado ¥ &
Webpage: https://sondages2026.sciencesconf.org/
5th ISI Regional Statistics Conference Sth Is I

Date: 3-5 June 2026

Location: Valleta, Malta

REGIONAL STATISTICS
CONFERENCE
MALTA 2026

N——

The Seventh International Workshop on Business Data Collection Methodology

Webpage: https://www.isi-next.org/conferences/isi-rsc-malta-2026/

Date: 8-10 June 2026
Location: Heerlen, the Netherlands

Webpage: https://2026bdcmw.wordpress.com/

The Small Area Estimation Conference 2026 /'

Date: 15-19 June 2026 /

Location: Bucharest, Romania SAE 2026

SMALL AREA ESTIMATION
Webpage: https://sae2026.faa.ro/ 2026 CONFERENCE
BNU Workshop on survey statistics 2026 Warkenap on Survey Satshis
Date: 24-28 August 2026
Location: Riga, Latvia Py 245282020

Webpage:
https://wiki.helsinki.fi/xwiki/bin/view/BNU/Events/Workshop%200n%20Survey%20Statistics %202026/
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In Other Journals

Journal of Survey Statistics and Methodology

Volume 13, Issue 4, September 2025
https://academic.oup.com/jssam/issue

Survey Methodology

An Experimental Comparison of Modular and Non-Modular Approaches for Administering Surveys
via Smartphone Apps

Christopher Antoun, Brady T. West, Xin (Rosalynn) Yang, Syed Junaid M. A. Zaidi and Jennifer
Sinibaldi

Question form Matters: Examining Trust in Government Through Open and Closed Survey Items
Jana Bernhard-Harrer and Katharina Pfaff

Is Consent to Further Panel Participation Selective? The Case of a Self-Administered Family Panel
Survey Announcing Organizational Change
Almut Schumann and Claudia Schmiedeberg

Survey Statistics

Synthesizing Surveys with Multiple Units of Observation: An Application to the Longitudinal Aging
Study in India
Joshua Snoke, Erik Meijer, Drystan Phillips, Jenny Wilkens and Jinkook Lee

Bayesian Tree Models for Survey Sample Data
Daniell Toth, Scott H. Holan and Diya Bhaduri

Journal of Official Statistics

Volume 41, Issue 4, December 2025
https://journals.sagepub.com/toc/jofa/41/4

Articles

The Poverty Free Life Expectancy in Europe
Gianni Betti, Federico Crescenzi and Andrea Nigri

Official Statistics and Government Decision Making: A Bibliometric and Thematic Analysis of
Policy-Related Academic Research
Ana Bozi¢ Verbi¢

Why are Measures of Aggregate Hours Worked by the Unincorporated Self-Employed So Volatile?
Cindy Michelle Cunningham and Sabrina Wulff Pabilonia

Decomposing Residential Resale House Prices into Structure and Land Components
Erwin Diewert and Ning Huang
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In Other Journals

Connected and Uncooperative: The Effects of Homogenous and Exclusive Social Networks on
Survey Response Rates and Nonresponse Bias
Jonathan Eggleston and Chase Sawyer

STAHL: Seasonal, Trend, and Holiday Decomposition with Loess
Vincent Haller, Sebastien Daniel and Benoit Bellone

Age-Period Modeling of Mortality Gaps: The Cases of Cancer and Circulatory Diseases
Giacomo Lanfiuti Baldi, Andrea Nigri and Han Lin Shang

Higher-Level Aggregation Using Long-Term Links in the Swedish CPI
Olivia Stahl

When Cleaning Data Introduces Bias: A Critical Examination of Post-Hoc Methods in Detecting
Insufficient Effort Responding
Melissa Dan Wang, Leifeng Xiao and Xuan Zang

Research Note
Which Nordic Countries Are the Most and Least Urban? The Muddling World of Urbanity Statistics
Marianne T@nnessen

Book Review
Review of “Register-Based Statistics — Registers and the National Statistical System”
Paul A. Smith

Volume 41, Issue 3, September 2025
https://journals.sagepub.com/toc/jofa/41/3

Foreword

Celebrating JOS Forty Years: Future Research Needs in the New Era of Official Statistics
Lilli Japec, Henri Luomaranta-Helmivuo, Li-Chun Zhang, Suad Elezovic and Yingfu Xie

JOS40

First Forty Years of Journal of Official Statistics
Risto Lehtonen

Challenges in a Federal Statistical Agency Ecosystem: The U.S. Census Bureau Robert L. Santos
GDP and Beyond: Dilemmas and Heresies
Steve MacFeely

Future Pathways Embracing Multisource Statistics and Novel Data Sources at National Statistical
Offices
Anders Holmberg

Some Dimensions of Statistical Ethics and Scientific Integrity That Warrant Exploration Through
Empirical Studies of Stakeholder Information Needs
John L. Eltinge
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In Other Journals

Input Privacy Enhancing Technologies for Statistical Production: Motivations and Challenges
Fabio Ricciato

Statistical Disclosure Control: Moving Forward
Josep Domingo-Ferrer, David Sanchez and Krishnamurty Muralidhar

Competence, Training, and Collaboration of Universities with National Statistical Offices
Danny Pfeffermann

Where Have the Respondents Gone? Did We Lose Them or Failed to Win Them? And Is It Too
Late?
Barry Schouten

The Future of Interviewer-Administered Surveys
Kristen Olson

Future Research Considerations for Mixed-Mode Surveys
Leah Melani Christian

Modernizing Data Collection
Frauke Kreuter

Census Transformation and the Future of Population Statistics
James J. Brown and James Chipperfield

Calibration Weighting for Analyzing Non-Probability Samples
Jae Kwang Kim

Blending Administrative and Nonprobability Survey Data to Enhance National and Subnational
Estimates
Dan Liao and Paul P. Biemer

Future Challenges in Sampling and Estimation
Guillaume Chauvet

The Unknown Future of Statistical Data Editing: Some Imputations
Sander Scholtus

Machine Learning Methods for Estimation in Official Statistics
M. Giovanna Ranalli

Small Area Estimation in the Era of Machine Learning and Alternative Data Sources: Opportunities,
Challenges, and Outlook
Nikos Tzavidis

Some Challenges and Research Needs for the Analysis of Integrated Data

Raymond L. Chambers

Challenges and Opportunities for Analytic and Causal Inference with Official Statistics
F. Jay Breidt, Robert Ashmead and Susan M. Paddock
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In Other Journals

Enhancing Microsimulation by Open Data
Ralf Thomas Miinnich

Challenges and Future Directions for International and Cross-Cultural Comparability
Julie de Jong

Survey Research Methods

Volume 19, No.4, 2025
https://ojs.ub.uni-konstanz.de/srm/

Articles

Using Large Language Models for Coding German Open-Ended Survey Responses on Survey
Motivation
Leah von der Heyde, Anna-Carolina Haensch, Bernd Weil3, Jessica Daikeler

A Matter of Perspective? Differences Between Adolescent—Parent and Parent-Teacher Pairs in
Responses to the Strengths and Difficulties Questionnaire Using a Scottish National Cohort Study
Madison Bunker, Valeria Skafida, Emma Davidson

The Effects of Study Duration on Nonresponse and Measurement Quality in a Smartphone
App-Based Travel Diary
Danielle Remmerswaal, Peter Lugtig, Barry Schouten, Bella Struminskaya

Invitation Messages for Business Surveys: A Multi-Armed Bandit Experiment
Johannes J. Gaul, Florian Keusch, Davud Rostam-Afschar, Thomas Simon

Effects of Replacing Telephone with Web, Mail, and Mixed-Mode Data Collection in an
Establishment Follow-Up Survey
Benjamin Kiifner, Joseph W. Sakshaug, Stefan Zins, Claudia Globisch

The Effect of Targeted Incentives on Response Rates and Representativeness: Evidence From the
Next Steps Age 32 Survey
Alessandra Gaia, Matt Brown, Tugba Adali, Stella Fleetwood, Christy Lai

Retrieving True Preference under Authoritarianism
Jongyoon Baik, Xiaoxiao Shen

Measuring Gender and Sex in Surveys: Lessons Learned from 50 Years of Cross-National Survey
Data and Nonresponse Patterns
llona Wysmulek
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In Other Journals

Volume 19, No.3, 2025
Special Issue: Survey Climate and Trust in Scientific Surveys
https://ojs.ub.uni-konstanz.de/srm/issue/view/243

Editorial

Survey Climate and Trust in Scientific Surveys: Introduction to the Special Issue
Henning Silber, Bettina Langfeldt, Bella Struminskaya, Michael Traugott

Articles

Predicting Survey Nonresponse with Registry Data in Sweden between 1993 and 2023: Cohort
Replacement or a Deteriorating Survey Climate?
Sebastian Lundmark, Kim Backstrém

Effects of Survey Design Features on Response Rates: A Meta-Analytical Approach Using the
Example of Crime Surveys
Jonas Klingwort, Vera Toepoel

Survey Attitude as Indicator for Survey Climate and as Predictor of Nonresponse and Attrition in a
Probability-Based Online Panel
Benjamin Rosche, Hugo Bons, Joop Hox, Edith De Leeuw

Trust, Concerns and Attitudes: Examples for Respondent (Non-)Cooperation in SHARE
Imke Herold, Michael Bergmann, Arne Bethmann

Trust in Survey Results: A Cross-Country Replication Experiment
Adam Stefkovics, Zoltan Kmetty

Public Confidence in Official Statistics in the UK: Characteristics of Respondents and Changes
Over Time
Olga Maslovskaya, Annamaria Bianchi

Using Experimental Vignettes to Study How Survey Methods and Findings Affect the Public’s
Evaluation of Public Opinion Polls: Considering a Dual-Process Approach

Allyson L. Holbrook, Paul J. Lavrakas, Timothy P. Johnson, Andrew Crosby, Polina Polskaia,
Xiaoheng Wang, Xiaoyan Hu, Evgenia Kapousouz, Young Ik Cho, Henning Silber

Volume 19, No.2, 2025
https://ojs.ub.uni-konstanz.de/srm/issue/view/244

Articles

Quality of Expenditure Data Collected With a Mobile Receipt Scanning App in a Probability
Household Panel
Alexander Wenz, Annette Jackle, Jonathan Burton, Mick P. Couper, Brendan Read

Pre-Trained Nonresponse Prediction in Panel Surveys with Machine Learning
John Collins, Christoph Kern
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In Other Journals

Surely Shorter Is Better? A Questionnaire Length Experiment in a Self-Completion Survey
Tim Hanson, Eva Aizpurua, Rory Fitzgerald, Marta Vukovic

Internet Coverage Bias in Web Surveys in Europe
Alessandra Gaia, Emanuela Sala, Chiara Respi

The Impact of Scale Direction on Data Quality
Ting Yan, Alexandru Cernat, Florian Keusch

Response Burden and Response Quality in Web Probing: An Experiment on the Effects of Probe
Placement and Format
Patricia Hadler

Effects of Mode and Transitioning to a Mixed-Mode (Web/Phone) Design on Categorical Survey
Estimates: Do Question Characteristics Matter?
Mengyao Hu, Vicki Freedman, Justin Kamens

Effects of Changing the Incentive Strategy on Panel Performance: Experimental Evidence From a
Probability-Based Online Panel of Refugees
Jean-Philippe Décieux, Sabine Zinn, Andreas Ette

Other Journals

Statistical Journal of the IAOS
https://content.iospress.com/journals/statistical-journal-of-the-iaos/

¢ International Statistical Review
https://onlinelibrary.wiley.com/journal/17515823

o Transactions on Data Privacy
http://www.tdp.cat/

¢ Journal of the Royal Statistical Society, Series A (Statistics in Society)
https://rss.onlinelibrary.wiley.com/journal/1467985x

¢ Journal of the American Statistical Association
https://amstat.tandfonline.com/uasa20

e Statistics in Transition — New Series
https://sit.stat.gov.pl
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Welcome New Members!

We are very pleased to welcome the following new IASS members:

Title First name Surname Country
Mrs. Clyde E. Charre de Trabuchi Argentina
Mr. Tony Labillois Canada
Ms. Anita Harmina Croatia
Dr. Yannick Lemel France
Dr. Christophe Lefranc France
Dr. Jan Pablo Burgard Germany
Dr. Faisal Awartani Israel
Mr. Leonard Warren  Cook New Zealand
Mr. Bjorn K. Getz Wold Norway
Mrs. Awa Thiongane Senegal
Dr. Willie Lahari Solomon Islands
Dr. Hyoung |l Lee South Korea
Professor Beat Hulliger Switzerland
Dr. Philippe Eichenberger Switzerland
Professor H. Oztas Ayhan Turkey
Professor Peter J. Lynn United Kingdom
Dr. Tarek Al Baghal United Kingdom
Mr. Gary Bennett United Kingdom
Professor Martin R. Frankel United States
Professor Roderick J Little United States
Dr. Daniel Kasprzyk United States
Mr. Edward J. Spar United States
Dr. Keith Rust United States
Dr. J. Michael Brick United States
Dr. David Alan Marker United States
Ms. Francesca Perucci United States
Professor Juan Pablo Ferreira Neira Uruguay
Mr. Oliver J. M Chinganya Zambia
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IASS Executive Committee Members

Executive officers (2025 - 2027)

President:

President-elect:

Vice-Presidents:

Scientific Secretary

VP Finance and IASS conferences support

Liaising with ISI EC and ISI PO plus
administrative matters

Chair of the 2025 Cochran-Hansen Prize
Committee

Chair of the 2024 Hukum Chandra Prize
Committee

IASS representative on the ISI Awards
Committee

IASS representatives on the World Statistics
Congress Scientific Programme
Committee

IASS representative on the World Statistics
Congress short course committee

IASS representative on the ISI publications
committee

IASS Webinars 2025-2027

Volunteer for supporting training and
Webinar activities within ISI Statistical
Capacity Development Committee

IASS representative on the Regional
Statistics Conference 2026

IASS Social Media

Ex Officio Member:

IASS Linkedin Account:

Partha Lahiri (USA)

Ralf Minnich
(Germany)

Katherine Jenny
Thompson (USA)

Partha Lahiri (USA)
Ralf Mdnnich
(Germany)

Ralf Mdnnich
(Germany)

Robert Clark
(Australia)

Ralf Minnich
(Germany)

Partha Lahiri (USA)

Haoyi Chen (China)

Gaia Bertarelli
(Italy)

Conchita Kleijweg
(The Netherlands)

plahiri@umd.edu

muennich@uni-trier.de

jennythompson731967@gmail.com

plahiri@umd.edu

muennich@uni-trier.de

muennich@uni-trier.de

robert.clark@anu.edu.au

muennich@uni-trier.de

plahiri@umd.edu

gaia.bertarelli@unive.it

c.kleijweg@isi-web.org

https://nl.linkedin.com/company/international-association-of-survey-statisticians-iass

IASS Facebook Account: https://www.facebook.com/iass.isi/

IASS X Account: https://x.com/iass_isi/

IASS Webmasters: Ujjayini Das (ujstat@umd.edu) and Sabrina Zhan (SabrinaZhang@westat.com)
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IASS Institutional Members

International organisations:

e FEurostat (European Statistical Office) — Unit 01: External & Inter., Luxembourg

National statistical offices:
e Australian Bureau of Statistics, Australia
¢ Instituto Brasileno de Geografia y Estatistica (IBGE), Brazil
e Statistics Canada, Canada
e Statistics Denmark, Denmark
e Statistics Finland, Finland
o Statistisches Bundesamt (Destatis), Germany
¢ International Rel. & Statistical Coordination, Israel
¢ |stituto nazionale di statistica (ISTAT), Italy
e Statistics Korea (KOSTAT), Republic of Korea
¢ Direcgao dos Servigos de Estatistica e Census (DSEC), Macao, SAR China
o Statistics Mauritius, Mauritius
e Statistics New Zealand, New Zealand
o Statistics Norway, Norway
¢ Instituto Nacional de Estatistica (INE), Portugal
e Statistics Sweden, Sweden
o Office for National Statistics Service (ONS), United Kingdom
¢ National Agricultural Statistics Service (NASS), United States

e National Center of Health Statistics, United States

Universities:
e Department of Mathematics and Statistics, University of Ottawa, Canada

e Univ. of Tuscany, Dept. Economics & Management, Italy

Other statistical organizations:
¢ Institut Public de Sondage d'Opinion Secteur (Ipsos), Italy
e WESTAT Inc., United States
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