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Letter from the Editors 

 

Dear colleagues and readers, 

We wish you a happy new year!  

In this issue of The Survey Statistician (TSS), we bring you the latest news from the International 
Association of Survey Statisticians (IASS). This includes updates from the newly elected president, 
Partha Lahiri, and the appointed scientific secretary, Jenny Thompson. We also reveal the winner of 
the 2026 Waksberg Award.   

TSS is privileged to publish papers by accomplished researchers and practitioners from around the 
world, as well as by young researchers. We are launching a new section called `Debate'. In it, 
Changbao Wu and Li-Chun Zhang answer `yes' and `no', respectively, to the question, `Are non-
probability samples the future of surveys?'. In the `Ask the Experts' section, Anne-Sophie Charest 
and Jörg Drechsler review differential privacy and its application to survey data. In the `New and 
Emerging Methods' section, Sergio D. Martinez, Brady T. West and Rebecca R. Andridge discuss 
measures of non-ignorable selection bias for non-probability samples. Section `Early Career Survey 
Statistician' features two articles: ̀ Modeling complex survey data: a case study of international health 
surveillance surveys' by Timothy Raxworthy, Yajuan Si and Grace Chung, and ̀ Variance component 
estimation under a general area-level model' by Yuting Chen and Hanqing Li.Sylvia Harmening 
reviews the book `Robust Small Area Estimation: Methods, Theory, Applications, and Open 
Problems' by J. Jiang and J. S. Rao. The `Software Review' section is dedicated to an R package 
for optimal allocation and sample selection; the authors of this paper are Giulio Barcaroli, Ilaria 
Bombelli, Andrea Fasulo, Alessio Guandalini and Marco D. Terribili. 

Country reports, a list of upcoming conferences and workshops, a list of articles published in other 
journals and other news about the IASS are also presented. 

This issue of TSS marks a change in the editorial board, and we would like to thank the outgoing 
editors: Danutė Krapavickaitė, Annamaria Bianchi and Veronica Ballerini. We would particularly like 
to thank Danutė Krapavickaitė for her invaluable work as Editor-in-Chief of TSS in recent years. We 
would also like to welcome the new editors and express our gratitude to the current TSS editors for 
their rigour and dedication:  Gaia Bertarelli, Mehdi Dagdoug, Francesco Pantalone, Jenny 
Thompson, Ton de Waal and Peter Wright. Finally, we would like to thank all the authors and 
contributors to this issue.  

To help keeping TSS interesting, please share your knowledge and experience by presenting 
interesting topics and providing overviews of different areas of survey statistics and new ideas. 

We hope you enjoy reading the January 2026 issue! 

 

Alina Matei and Andrea Diniz da Silva 

TSS Editors 
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Letter from the President 
Dear Members, 

Following a productive and inspiring 65th World Statistics Congress in The Hague, I am deeply 
honored to begin my term as President of the International Association of Survey Statisticians (IASS) 
for 2025–2027. 

Stepping into this role, I am reminded of the immense dedication required to keep our global 
community vibrant. I want to personally thank our outgoing President, Natalie Shlomo. Her 
leadership and mentorship have been invaluable to me as President-Elect (2023-2025), and she 
leaves the Association with a clear and ambitious path forward. My thanks also go to our departing 
Vice-presidents Eric Rancourt, Jiraphan Suntornchost, Andres Gutierrez, and Annamaria Bianchi, 
as well as the ISI Executive Council and Permanent Office. Their tireless work behind the scenes is 
the reason our initiatives continue to thrive.  Please refer to the Scientific Secretary’s report for a list 
of our predecessors’ recent accomplishments.  

I am delighted to work alongside our newly approved Executive Committee: Ralf Münnich (President-
Elect), and our Vice Presidents Gaia Bertarelli (Italy), Robert Clark (Australia), Haoyi Chen (China), 
and Katherine Jenny Thompson (USA). Together, we represent a diverse range of perspectives that 
will guide our strategy through 2027. 

We are at a crossroads where traditional survey methods are meeting new data frontiers, and the 
IASS must be the home for that transition. To that end, we will continue to champion excellence 
through our flagship awards: the Hukum Chandra Prize (2026) and the Cochran-Hansen Prize 
(2027). These awards are more than just accolades; they are our way of ensuring that the next 
generation of survey statisticians, particularly from developing regions, has a seat at the global table. 

Our Monthly Webinar Series will remain a cornerstone of our value to you. We are designing these 
sessions to be more than just lectures. We want them to be a space for: 

● Discovery: Exploring frontier research in survey design and data integration. 
● Problem Solving: Discussing the `messy’ real-world challenges faced by National Statistical 

Offices. 
● Practice: Providing hands-on training for the tools and software used daily. 

Maintaining our financial health is a priority, and because membership fees currently do not support 
financial conference sponsorships, we are exploring a new seed partnership model. By funding 
specific deliverables, like short courses, in exchange for a share of the proceeds, we can continue 
to support 2026 conferences in a way that is sustainable for the Association. We also remain 
committed to providing no-cost co-sponsorships for mission-aligned events worldwide. 

Please feel free to reach out to me directly at plahiri@umd.edu. I look forward to working with all of 
you to make the next two years a period of growth and innovation for the IASS. 

With best wishes, 

Partha Lahiri  

IASS President 2025–2027 
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Report from the Scientific Secretary 
Happy new year!  

As the new scientific secretary of the IASS, I’ll begin by thanking my predecessor Annamaria Bianchi 
(Italy) for her excellent work. This report primarily lists the efforts and achievements of the previous 
Executive Committee (EC), along with a few updates from the new EC, which has been meeting 
monthly since October 2025.  

The new EC’s first order of business was to discuss our communication. While we appreciate the 
timeliness of a monthly newsletter, it can be time-consuming to prepare and risks redundancy with 
the Scientific Secretary report in the January and July The Survey Statistician (TSS). Henceforth, 
these two reports serve as quarterly newsletters, with separate newsletters issued in April and in 
October.  For timely updates and information, visit us at LinkedIn, Facebook, and Twitter (@iass_isi).  
To advertise events, seminars, or job opportunities through IASS social media, email 
gaia.bertarelli@unive.it with `IASS Social Media Post’ in the subject line.  

The IASS made several contributions to the 65th World Statistics Congress (WSC), held at The 
Hague from 5-9 October 2025.  For details – and pictures – see the IASS October 2025 newsletter. 
Besides contributing to the WSC, the IASS provided financial support for three workshops: the 
workshop in honour of Professor Yves Tillé on the occasion of his retirement, Neuchâtel, Switzerland 
from 25-26 June 2025, the Baltic-Nordic-Ukrainian Network (BNU) Workshop in Vilnius, Lithuania 
from 25-29 August 2025 and the European Network for Better Establishment Statistics, 9th, biennial 
European Establishment Statistics Workshop (EESW25) in Rome, Italy from 5-7 November 2025. 
The IASS sponsored four invited talks the Fourth Workshop on Methodologies for Official Statistics 
in Rome, Italy from 1-2 December: `On adversarial risk analysis in official statistics’ by F. Ruggeri 
(Italy), the keynote address; `Statistical Inference for a finite population mean with machine learning-
based imputation for missing survey data’ by D. Haziza (Canada) and M. Dagdoug (Canada); `A 
contamination model for multivariate zero-inflated data’ by D. Di Cecco (Italy), D. Filipponi (Italy) and 
I. Guarnera (Italy); and ̀ Small area estimation via spatio-temporal M-quantile modeling’ by N. Salvati 
(Italy), F. Schirripa Spagnolo (Italy), M. Bugallo (Spain) and D. Morales (Spain).   

As said in the President’s report, the IASS is unable to offer financial funding for workshops or 
conferences in 2026 but continues to offer no-cost co-sponsorships to conferences of interest to 
IASS members. These conferences include the Survey Cost Conference to be held in Washington, 
D.C., on February 9-10, 2026, the 5th ISI Regional Statistics Conference (RSC) in Valletta, Malta, 
from 3-5 June 2026, and the Small Area Estimation Conference 2026 (SAE 2026) will be held in 
Bucharest, Romania, from 15-19 June 2026. 

We have conducted five successful webinars since July 2025:  `Debiased calibration estimation 
using generalized entropy under selection bias’ by Jae Kwang Kim (U.S.A.), `Targeted designs to 
address survey nonresponse’ by Peter Lynn (U.K.), `Sampling for business surveys at Statistics 
Canada’ (2025 Waksberg Award Lecture) by M. A. Hidiroglou (Canada), `R-indicators for assessing 
representativeness for survey and non-survey data’ by Natalie Shlomo (U.K.), and `Some history of 
the use of models in survey sampling’ by Richard Valliant (U.S.A.). See our events page for updates 
in 2026. Expect to see a variety of topics ranging from theoretical to operational and presenters from 
developed and from emerging nations. 

There are three open calls that should be of interest to the IASS membership: 

1. Guest editors Maria Rosaria Ferrante and Natalie Shlomo seek contributions to a Special Issue 
of Survey Methodology on the theme `Shaping the future of survey statistics in the data-driven 
era’. The deadline for submission is 31 January 2026. Submit manuscripts through  

https://www.linkedin.com/company/international-association-of-survey-statisticians-iass/
https://www.facebook.com/iass.isi
https://x.com/iass_isi
mailto:gaia.bertarelli@unive.it
https://isi-iass.org/home/wp-content/uploads/IASS-News-October-2025.pdf
https://www.isi-next.org/conferences/isi-rsc-malta-2026/
https://isi-iass.org/home/events/
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https://mc04.manuscriptcentral.com/surveymeth and indicate in the cover letter that the 
submission is for the special issue. 

2. Nominations are open for the 2027 Waksberg Award. This annual invited paper series honors 
the late Joseph Waksberg with a paper that reviews the development and current state of an 
important topic in the field of survey statistics and methodology. The recipient receives an 
honorarium and gives the 2027 Waksberg Invited Address. The paper will be published in an 
upcoming issue of Survey Methodology targeted for December 2027. Send nominations of 
individual candidates by 15 February 2026 to Paul Smith (P.A.Smith@soton.ac.uk). 
Nominations should include a CV and a letter of nomination and will remain active for 5 years. 

3. Applications are open for the Hukum Chandra Memorial Prize. This prize is awarded by the IASS 
to a mid-career researcher. The recipient will receive an honorarium of 500 Euros and will be 
invited to present a special webinar with discussion in the IASS Webinar Series in October 2026.  
Nominations should include an extended abstract (maximum five pages) on the proposed 
webinar content, comprising original published or unpublished work. Each submission must also 
be accompanied by a short CV (max two pages). Send applications to Robert Clark 
(robert.clark@anu.edu.au) by 23:59 GMT on 22 May 2026. 

 
Lastly, I am grateful for the opportunity to serve the IASS in this formal capacity. Please feel free to 
contact me with suggestions for monographs (preferably open access), special issues or edited 
books on topics of interest to IASS membership.  
 

Jenny Thompson 

IASS Scientific Secretary 2025-2027 

Jennythompson731967@gmail.com 

 

 

https://mc04.manuscriptcentral.com/surveymeth
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2026 Waksberg Award 
 

We are pleased to announce that Dr. Frauke Kreuter is the 2026 recipient of 
the Waksberg Award. 

 
About the Waksberg Award 
 
The journal Survey Methodology established an annual invited paper series in 

2001 in honor of Joseph Waksberg to recognize his contributions to survey statistics and 
methodology. Each year, a prominent survey statistician is chosen to write a paper that reviews the 
development and current state of an important topic in survey statistics and methodology, reflecting 
the mixture of theory and practice that characterized Joseph Waksberg’s work. 

Joseph Waksberg was a giant in survey sampling for nearly seven decades, beginning at the U.S. 
Census Bureau in 1940 and moving to Westat in 1973, where he served as Chairman of the Board 
from 1990 until his death in 2006. The award includes an honorarium made possible by a grant from 
Westat. 

 
About Dr. Frauke Kreuter 
For the past two decades, Dr. Kreuter has spearheaded novel research in survey methodology, 
especially at the interface with big data and large-scale computing. Her work on survey paradata 
served as foundation for the emerging field of adaptive and responsive survey designs, more recently 
she shaped the discipline’s thinking about the connection between surveys and AI. 

 
Through her service on NASEM committees, Dr. Kreuter contributed to establishing principles of 
privacy protection in federal statistical data products based on combined data sources. She has also 
directed and built training programs, producing a new generation of data-science-savvy survey 
researchers. 

 
Dr. Kreuter will give the Waksberg Invited Address at the Statistics Canada Symposium in 2026 
and will write a paper planned for publication in the December 2026 issue of Survey Methodology. 

 
Selection Committee 
 
The recipient of the 2026 Waksberg paper was selected by a four-person committee appointed by 
Survey Methodology and the American Statistical Association: Jae-Kwang Kim (chair), Kristen 
Olson, Paul Smith, and Alina Matei. 

 
For more information on the Waksberg Award, please visit:  

https://www150.statcan.gc.ca/n1/pub/12-001-x/award-prix-eng.htm 

 
Jae-Kwang Kim 

Chair of the 2026 Waksberg Award Committee 

https://www150.statcan.gc.ca/n1/pub/12-001-x/award-prix-eng.htm
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Other news 
 

- The call for nominations for the 2027 Waksberg Award is open until February 15, 2026. Paul 
A. Smith, chair of the 2027 Committee, can be contacted at P.A.Smith@soton.ac.uk for 
further details. For more information on the Waksberg Award, please visit 
https://www150.statcan.gc.ca/n1/pub/12-001-x/award-prix-eng.htm 

 

- The journal Statistics in Transition New Series (https://sit.stat.gov.pl/) has been selected for 
inclusion in Web of Science, which represents one of the most trusted, publisher-independent 
global citation databases. 
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Debate

Are Non-probability Samples the Future of Surveys?

YES
Changbao Wu

Department of Statistics and Actuarial Science

University ofWaterloo, Canada, cbwu@uwaterloo.ca

Non-probability samples are an indispensable

part of the future of surveys. It is not because

non-probability samples are a preferred source

of higher-quality data; rather, it is part of the

evolving landscape in the field of survey sam-

pling and official statistics. The ups and downs

in the development of probability samplingmeth-

ods over the past 80 years, the emergence of

data from non-traditional sources, and recent

methodological advances in dealing with non-

probability survey samples have offered a glimpse

into the future of the field.

There is no denying that the widespread pursuit

of probability samples and the development of

probability sampling theory have been part of

the feel-good stories of the statistical sciences.

Probability sampling and probability samples,

however, are a fairy tale of a magic world that is

often fractured in reality. There are more philo-

sophical and practical issueswith probability sam-

ples than steep declines in response rates, sky-

rocketing costs, and the inability to meet timely

demands. To quote Meng (2022),

“By the time the data arrive at our desk or disk,

even themost carefully designed probability sam-

pling scheme would be compromised by the im-

perfections in execution, from (uncontrollable)

defects in sampling frames to non-responses

at various stages and to measurement errors in

the responses. In this sense, the notion of prob-

ability sample is always a theoretical one, much

like efficient market theory in economics, which

offers a mathematically elegant framework for

idealization and for approximations, but should

never be taken literally.”

It is important to distinguish between a

non-probability sample and an arbitrary dataset.

NO
Li-Chun Zhang

University of Southampton, UK & Statistisk sentral-

byrå, Norway, L.Zhang@soton.ac.uk

Let me start by removing two potential confu-

sions in order to discuss the “future of surveys”.

First, non-probability samples are not new. In

fact, they are ancient — e.g. any population

census yields none other than a non-probability

sample due to the unknown over-/under-counting

errors, and probability sampling (Neyman, 1934)

was historically the fruit of scientific evolution

from purposively selected non-probability sam-

ples (e.g. Kiær, 1896). Second, although “sur-

vey” may refer broadly to any purposeful ex-

amination of someone or something, for sur-

vey statisticians the term is restricted to an ob-

servation process that is based on a designed

questionnaire (or instrument) which requires in-

formed consent and participation of the data sub-

jects. This may be contrasted to “non-survey”

observational big data (Zhang and Haraldsen,

2022), such as administrative registers, trans-

action records, remote sensing signals, internet

webpages (of products, businesses). Despite

the lack of a probability design, statistical use

of such non-survey big data is both a neces-

sity and an opportunity to be embraced, e.g. in

order to address the “official statistics Olympic

challenge” (Holt, 2007). The key is integration

of relevant sources (Zhang, 2012), such as frames

of population units, non-survey datasets with com-

plementary or overlapping information, and not

least probability sample surveys.

So what I contest here is the value of survey

data obtained from non-probability samples, typ-

ically web panels, contrary to survey data from

probability samples.

Much can be said about the different quality di-

mensions related to non-probability surveys; but

limited space demands focus. From a scien-
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Non-probability samples refer to datasets with

unknown inclusion mechanisms and/or an un-

known sampled population but containmeasure-

ments on variables of interest. There needs

to be a “design feature” for any non-probability

sample to ensure that key study variables and

auxiliary variables are included and that an ap-

propriate population is defined. Probability sam-

ples with severe nonresponse and/or imperfect

sampling frames, samples collected through com-

mercial online or phone panels or through com-

binations of convenient tools, and incomplete

administrative records with relevant information

on file are all examples of non-probability sam-

ples.

Like it or not, non-probability samples are on the

rise and will be a major part of the field’s future.

However, recent methodological advances un-

equivocally show that reliable auxiliary informa-

tion from the target population is the most cru-

cial ingredient of any defensible statistical anal-

ysis of non-probability samples. This is where

probability samples or census data can fill the

gap, and “a few high-quality national probabil-

ity surveys with carefully designed survey vari-

ables can play a pivotal role in the analysis of

non-probability survey samples” (Wu, 2022).

New data sources will continue to emerge, and

the future of surveys will be a blended universe

of probability and non-probability samples, with

probability sampling theory remaining one of the

pillars of statistical frameworks.

References
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tific point of view, the core issue is the initial se-

lection problem of non-probability samples, now

that survey nonresponse and measurement er-

ror are present in probability and non-probability

samples alike.

Now, there have been recently a flourish of tech-

niques proposed for the so-called two-sample

setting, where the target variable exists in a non-

probability sample and some common covari-

ates exist in a separate probability sample ad-

ditionally. While it is necessary (and potentially

helpful) to devise remedies given incomplete aux-

iliary information as such, one must not lose

sight of the core selection problem. In fact, in

many register-rich countries, it would be easy

to replace the additional probability sample en-

tirely by a population frame containing the same

covariates. Stripping away the distraction caused

by the incompleteness of auxiliary information,

one would still be left to confront the initial non-

probability selection problem.

In theory, as we know from the history of statis-

tics, there are no guaranteed cures of the selec-

tion problem, such as in the context of treatment-

control analyses or observational studies. The

task-specific judgment required for useful gen-

eralisations from any particular sample to the

population, if taken for granted unwittingly, is

detrimental compared to the trust one can rightly

place in transparent, target-agnostic inference

from probability sampling. It serves well to re-

mind us on this point that Neyman (1934) called

“themethod of sampling representative”, not that

any particular sample can ever be representa-

tive.

Moreover, practical speaking, any adjustment

technique of non-probability selection may as

well be considered for survey nonresponse in

probability samples, and empirical studies so

far have only evidenced increasing risks of bias

when comparing “well built” non-probability sam-

ples to “low response rate” probability samples

(Dutwin and Buskirk, 2017).

Of course, decreasing response rates in proba-

bility samples and increasing costs thereby are
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serious challenges that need to be handled by

continuously improving the surveymethodology.

Multisource statistics based on non-survey big

data have providedmany alternatives in the past

and will become even more important in future.

But the transition has been and will be gradual,

especially in official statistics due to the high

quality requirements. Adopting design-based

audit sampling as a standard for validation and

quality assessment is attractive in this respect

due to its transparent probability-inference ba-

sis (Zhang, 2021, 2023).

In other words, sample survey will remain a valu-

able method of statistical investigation in future,

but only if it is based on probability sampling to

start with.
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Differential Privacy and its Application to Survey Data 
Anne-Sophie Charest1 and Jörg Drechsler2,3,4 

1 Université Laval, Canada, anne-sophie.charest@ulaval.ca 
2 Institute for Employment Research, Germany, joerg.drechsler@iab.de 

3 Ludwig-Maximilians-Universität (LMU), Munich, Germany 
4 University of Maryland, USA 

 

Abstract 

Differential privacy has emerged as a rigorous and broadly applicable framework for protecting 
confidential data, offering guarantees that do not depend on unverifiable assumptions. In this paper, 
we first present the definition of differential privacy and explain how it can be achieved in simple 
settings using standard mechanisms. We then examine the application of differential privacy to 
survey data and outline five key issues that complicate its use in this context. 

Keywords: differential privacy, confidentiality, surveys, sampling, weighting, imputation. 

 

1 Introduction 
Confidentiality for survey and census data has long been a central concern. Confidentiality in this 
context means protecting participants' identities and data by keeping it private and secure, 
preventing unauthorized access, and only reporting results in aggregated forms to build trust and 
encourage honest answers, especially for sensitive topics. These goals are often achieved through 
a combination of techniques such as anonymization, encryption, strict access controls, and clear 
communication of data usage. Focusing on anonymization, many techniques have been used to limit 
the risk of disclosing private information: data suppression, swapping, data perturbation, and, more 
recently, synthetic data (see for example Hundepool et al., 2012). These approaches aim to reduce 
disclosure risks but applying them effectively requires deciding when the risk is acceptable. A 
previous paper in this newsletter (Shlomo, 2022) reviewed traditional disclosure risks, namely 
identity, attribute, and inferential disclosure, and described how statisticians have estimated these 
risks over several decades. It also briefly introduced alternative privacy models proposed by 
computer scientists, such as differential privacy (DP). 

DP provides guarantees that differ fundamentally from assumption-based risk estimates. Indeed, 
traditional disclosure risk metrics depend on unverifiable assumptions regarding the knowledge and 
capabilities of ill-intended users of the data, henceforth called attackers, that try to learn sensitive 
information about the units included in the data. Because of these assumptions traditional risk 
metrics can fail when new external data becomes available, whereas DP offers provable protections 
that do not rely on assumptions about the attacker’s knowledge. Although the idea originated in 
computer science, an increasing number of statisticians are actively contributing to research in the 
field, motivated in part by the Census Bureau’s adoption of DP to protect data from the 2020 U.S. 
Census (Abowd, 2018) and by the appeal of its clean theoretical guarantees. 

However, the use of DP in the context of surveys is not straightforward. In fact, we will discuss in 
this paper five key issues that complicate this application. But, first, we present the DP framework in 
detail and outline a few methods to achieve this guarantee.  
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2 Differential Privacy 

DP was first proposed by Dwork et al. (2006) and has been a very active research area since, 
particularly in the last ten years or so. The term now encompasses a broad family of definitions, such 
as (𝜀, 𝛿)-DP, concentrated DP, and Rényi DP, each designed to address specific analytic or 
operational needs. We present the original definition in detail and provide references to a few 
important variants below. In the following section, we will explain how one can achieve DP, for 
example with the addition of carefully selected noise to a statistic of interest. 

2.1 Pure DP 
This is the original definition, now referred to as pure DP. It is important to understand that DP is the 
property of an algorithm, which takes as input a dataset to generate some output (for example, a 
statistic, a parameter estimate or even a synthetic dataset) and not the property of a specific output. 
This algorithm is usually called a randomized mechanism because satisfying the DP constraint 
generally requires the addition of randomness. This randomness plays a crucial role: it ensures that 
the mechanism’s outputs cannot depend too heavily on any single individual’s data. More 
precisely, a randomized mechanism 𝑀 with output space 𝑆 satisfies 𝜀-differential privacy for a given 
privacy parameter 𝜀 > 0 if and only if for any two neighboring datasets 𝐷 and 𝐷′ and any 𝐴 ⊆ 𝑆, we 
have that 𝑃[𝑀(𝐷) ∈ 𝐴] 	≤ 	 𝑒! 	𝑃[𝑀(𝐷′) ∈ 𝐴].  

To illustrate, we can look at a class of algorithms that achieve DP by adding independent discrete 
random noise to the statistic of interest, say the population total, i.e., instead of reporting the true 
total the algorithm would return a noisy total where the noise is chosen in such a way that the 
probability that the algorithm returns a specific value t ∈ 𝐴 if dataset D was used as the input is very 
close to the probability of returning the same value if dataset D’ was used as the input. How close 
these two probabilities need to be is governed by the parameter 𝜀. 

Note that neighboring datasets can be defined in different ways, but the key idea is that they differ 
in the data of a single individual. For a classic tabular dataset where rows represent observations 
and columns represent variables, datasets 𝐷 and 𝐷′ are neighbors if they differ by exactly one row. 
More precisely, we talk about unbounded DP if 𝐷′ is obtained by adding or removing one row from 
𝐷, and bounded DP if 𝐷 and 𝐷′ have the same number of rows but differ in the values of one 
individual’s record. There are subtle but important differences between these two definitions; see for 
example chapter 2 of Li et al. (2017). Other data structures require alternative notions of neighboring 
datasets. For example, in network data, one may define neighbors by removing or adding a single 
edge (Nissim et al., 2007) or a single node (Kasiviswanathan et al., 2013). 

The guarantee offered by the pure DP definition can be interpreted in several ways. One is plausible 
deniability: an individual can claim that their data has any value, and the output of a DP mechanism 
cannot be used to refute that claim, even if an adversary holds as much information as the entire 
dataset except for that individual. This is because adding any row to this known dataset creates a 
neighboring dataset, and under DP the mechanism’s output must be almost as likely under each of 
these possibilities. Consequently, no observer can reliably determine which specific values the 
individual contributed. 

Another interpretation, given in Wasserman and Zhou (2010), is in the form of a hypothesis test. 
Pure DP implies a strict limit on how well any statistical test can distinguish whether the mechanism’s 
output came from 𝐷 or from 𝐷′. Specifically, for any test of level	𝛼, the power of that test must be 
smaller or equal to 𝑒!𝛼, so that the power of the test is very similar to its level. Thus, under 𝜀-
differential privacy with sufficiently small values of 𝜀, even the most powerful test cannot reliably 
determine which of the two neighboring datasets produced the observed output, ensuring privacy for 
that individual. 
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Another important aspect of DP is the set of useful properties that follow directly from the definition. 
First, DP is immune to post-processing, meaning that any computation applied to the output of a DP 
mechanism will preserve the privacy guarantee. Second, DP composes in a straightforward way: 
when several DP mechanisms are applied to the same dataset, their privacy losses accumulate in a 
mathematically quantifiable manner, allowing to keep track of the privacy loss over multiple data 
releases. For example, 𝑘 mechanisms that each satisfy 𝜀-differential privacy jointly satisfy at most 
𝑘𝜀-differential privacy. Because of this composition, the parameter 𝜀 is sometimes also referred to 
as a privacy budget; it defines the total amount of privacy leakage that is still considered acceptable. 
Based on the composition property one can then decide how this privacy budget should be spent 
across several outputs from a single dataset. More details on these properties can be found in Dwork 
and Roth (2014). 

2.2 Approximate DP 
Pure DP is a very strict guarantee, concerned with the worst-case scenario, because the inequality 
𝑃[𝑀(𝐷) ∈ 𝐴] 	≤ 	 𝑒! 	𝑃[𝑀(𝐷′) ∈ 𝐴] must hold for any possible 𝐷 and 𝐷’, even very implausible ones. 
A variant allows the guarantee not to hold when the probabilities of an output are small. More 
precisely, a randomized mechanism 𝑀 is said to satisfy (𝜀, 𝛿)-differential privacy with 𝜀 > 0 and 𝛿	 >
0 if for any two neighboring datasets 𝐷 and 𝐷′ and for any 𝐴	 ⊆ 	𝑆 we have that 𝑃[𝑀(𝐷) ∈ 𝐴] ≤
	𝑒! 	𝑃[𝑀(𝐷") ∈ 𝐴] + 𝛿. This variant is more frequently used than pure DP, which is the special case 
where 𝛿 = 0, and often is referred to as simply DP.  

2.3 Other variants 
Many other variants of differential privacy have been proposed over the years. These alternatives 
might modify the definition of neighbouring datasets or the way the privacy loss is measured. 
Desfontaines and Pejó (2020) surveys hundreds of such definitions inspired by DP. A few variants 
are worth mentioning: Rényi DP (Mironov, 2017), widely used in machine learning and in DP 
stochastic gradient descent, zero-concentrated DP (Bun and Steinke, 2016), which offers tighter 
composition bounds and Gaussian DP, which offers an analytically tractable, hypothesis-testing–
based framework with tight composition rules (Dong et al., 2022). 

Another active line of work focuses on settings with no trusted curator, where privacy must be 
guaranteed at the user level, that is before the data is stored in a central database (see for example. 
Kasiviswanathan et al., 2011). This local differential privacy model is used in practice, for example, 
in large-scale telemetry systems (Apple, 2017).  

3 Achieving DP 
DP is typically achieved through the addition of randomness. There are a few building block 
mechanisms, which are often combined to obtain mechanisms for more complex tasks. These are 
described in Dwork and Roth (2014) and summarized below. 

3.1 Noise addition for numeric outputs 
Noise addition is the basic building block of many differentially private algorithms. Under pure DP, 
the standard approach is the Laplace mechanism. Suppose you want to release the output of some 
function 𝑓 applied to a dataset 𝐷, the Laplace mechanism will add Laplace noise to the value of 
𝑓(𝐷). The variance of the added noise depends on the global sensitivity of the function, which is the 
maximum possible change in the value of 𝑓	when computed on any two neighboring datasets 𝐷 and 
D′, that is, the largest difference |𝑓(𝐷) 	− 	𝑓(𝐷′)| over all such pairs. More precisely, the Laplace 
mechanism for a function 𝑓 releases 𝑓(𝐷) 	+ 	𝑋, where 𝑋 is drawn from a Laplace distribution with 
mean 0 and scale equal to the global sensitivity of 𝑓 divided by 𝜀. The sensitivity must be computed 
for each function 𝑓. For instance, the sensitivity of a counting query is 1, while the sensitivity of the 
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mean depends on the range of the possible values for the individual values. For a dataset for which 
the size 𝑛 can be treated as public knowledge, each observation is in [𝑎, 𝑏], then the range is 𝑅 =
𝑏 − 𝑎 and the sensitivity of the mean is 𝑅/𝑛. Note that if we cannot provide bounds for the individual 
values, then the sensitivity will be infinite, and thus it will not be possible to achieve DP. In practice, 
one may estimate the range from the observed data, but this will require spending some of the 
privacy budget. 

For approximate DP, the standard mechanism is to add Gaussian noise, with variance determined 
by the global sensitivity of the function and the privacy parameters ϵ and 𝛿. Other variants include 
adding geometric noise, or discrete or truncated noise distributions. Extensions also exist for 
multidimensional outputs, with mechanisms designed to handle vector-valued or high-dimensional 
functions. 

3.2 Exponential mechanism for non-numeric outputs 
Noise addition works well for numeric outputs, but many tasks require selecting from a set of 
categorical or structured outcomes. The exponential mechanism is a second fundamental building 
block that provides a general framework for releasing non-numeric outputs under differential privacy. 
It selects an output 𝑟 with probability proportional to exp(𝜀𝑢(𝐷, 𝑟)	/	(2𝛥𝑢)), where 𝑢(𝐷, 𝑟) is a utility 
score for reporting 𝑟 on dataset 𝐷 and 𝛥𝑢 is the sensitivity of this utility score. This mechanism is 
especially useful when the goal is to select the “best’’ option according to a data-dependent criterion, 
such as choosing a model or a quantile, while ensuring that the choice does not reveal too much 
about the underlying data. For example, one may use the exponential mechanism to publish the 
mode of a categorical variable by using the number of observations in dataset 𝐷 with value equal to 
𝑟 as utility function 𝑢(𝐷, 𝑟). This utility function has sensitivity 𝛥𝑢	 = 1.  

3.3 More complicated mechanisms 
Most DP mechanisms are constructed from these basic building blocks, together with the 
composition and post-processing properties of DP. For tasks such as regression, for example, one 
may add noise directly to the data, perturb the objective function, or add noise to the final output, or 
even decide to use more robust statistics to reduce the amount of noise required (see for example 
Alabi et al., 2022). The optimal strategy is problem-dependent, and in many settings remains an 
active area of research. 

In machine learning, using differentially private versions of stochastic gradient descent (DP-SGD) 
has become the dominant approach for training models with differential privacy. The privacy 
guarantees of these algorithms rely on privacy accounting. Simple composition is far too loose when 
models are trained over tens of thousands of gradient steps. Privacy accounting methods provide 
tight bounds by exploiting subsampling amplification (Balle et al., 2018) and advanced composition 
frameworks such as Rényi DP (RDP), zero-concentrated DP (zCDP), and Gaussian DP (GDP). 
Without such accounting techniques, training would appear to consume impractically large privacy 
budgets, rendering DP-SGD useless in practice. Several accounting methods exist (Abadi et al., 
2016; Bun and Steinke, 2016; Mironov, 2017; Dong et al., 2022; Koskela et al., 2020), each trading 
off accuracy, efficiency, and ease of implementation. 

3.4 Practical challenges 
Implementing DP in practice raises several important challenges. A first difficulty is choosing the 
privacy parameter 𝜀. Although DP offers a formal privacy guarantee, it is really only meaningful if 𝜀	is 
relatively small. There is little consensus on what values are acceptable in applied contexts, and 
existing legal or regulatory frameworks such as the European Data Protection Regulation (GDPR), 
(Regulation (EU) 2016/679) offer only high-level guidance (Lee and Clifton, 2011). 



Ask the Experts 

 
The Survey Statistician  17 January 2026, Vol. 93, 13-25 

A second challenge is that theoretical guarantees do not always translate cleanly to real-world 
implementations. Floating-point arithmetic, numerical clipping, and implementation-level 
randomness can all introduce deviations from the idealized model. Even subtle issues in 
pseudorandom number generators can weaken privacy guarantees, as demonstrated in early 
attacks on DP implementations (Mironov, 2012). Robust software engineering is therefore essential. 
Although mature libraries such as Google’s Differential Privacy library (Google, 2019), OpenDP 
(OpenDP Project, 2021), and IBM’s diffprivlib (Holohan et al., 2019) mitigate many of these risks, 
ensuring trustworthy and reproducible implementations remains an active area of work. 

Finally, dependence within the data and adaptivity in the analysis process introduce additional 
complexities. Differential privacy is defined for datasets differing in one individual assuming 
independence between the units, but real datasets may exhibit strong correlations, for instance, 
between members of the same family, which can increase effective sensitivity and weaken protection 
(Kifer and Machanavajjhala, 2011). Adaptive analyses, where later queries depend on earlier 
outputs, also complicate privacy accounting. For example, model diagnostics such as residual 
checks or comparisons of fit statistics should be handled carefully, and obtaining them under DP will 
consume additional privacy budget (Dwork et al., 2015). 

4 DP for surveys 

The following discussions are excerpts from Drechsler and Bailie (2024) and we refer interested 
readers to this text for a more detailed discussion of DP in the survey context. When working with 
survey data, there are additional complexities which typically do not arise in other settings. Moreover, 
the implications of using DP in the context of surveys have received little attention in the DP literature 
until recently. Overall, there are (at least) five aspects that need to be considered when implementing 
DP in this context: (i) the multiple stages of the survey pipeline, (ii) limited privacy gains from complex 
sampling designs, (iii) challenges in computing the privacy guarantees of survey weighted estimates, 
and consequences of (iv) weighting adjustments and (v) imputations for missing data. We will 
discuss each of these aspects in the remainder of this section. 

 

Figure 1: The main steps of the survey data pipeline 

4.1 DP and the Survey Data Pipeline 

As illustrated in Figure 1, the production of survey data is a complex multistage process. There are 
two important considerations when integrating a DP mechanism into a data pipeline. Firstly, at what 
point in the pipeline should the DP mechanism start? And secondly, which of the earlier stages of 
the data pipeline should be considered invariant? In the DP literature, invariants generally refer to 
aspects of the input data that remain fixed over neighboring dataset D and D’. For example, for the 
Decennial Census 2020, the U.S. Census Bureau decided that several counts must be released 
unaltered and thus treated them as invariant in their application of DP. With survey pipelines, there 
are several possible options with respect to the starting point of the mechanism and the decision on 
which of the earlier stages should be treated as invariant. 
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In the option most seen in the DP literature, the data-release mechanism starts at the end of the 
pipeline and performs just the last step – computing the survey outputs from the processed data – 
and none of the previous steps are taken as invariant. However, a mechanism could conceivably 
start at any point of the survey pipeline and incorporate all the steps that follow. Furthermore, any of 
the steps before the mechanism starts could conceivably be taken as invariant. Overall, this leads 
to up to 15 possible scenarios that need to be considered. Figure 2 highlights ten of these scenarios 
for illustration (the remaining five options would all start at the responding sample level).  

 

Figure 2: Ten out of fifteen possible settings for a DP mechanism in the survey context (the remaining five settings would all start at the 
level of the processed data). The red rectangles indicate the starting point of the mechanism. 

A few general observations can be made regarding the advantages and disadvantages of the 
different scenarios (see Drechsler and Baile (2024) for a more detailed discussion): From a privacy 
perspective, it seems advantageous to start the DP mechanism as early as possible to benefit as 
much as possible from privacy amplification through subsampling (Balle et al., 2018), further 
discussed in Section 4.2 below. Note that the data production pipeline consists of three sampling 
steps: beyond the classical sampling step, nonresponse can be treated as another subsampling step 
and even the frame can be seen as a random sample from the target population, if we model the 
probability of inclusion in the frame as a random variable. However, this privacy amplification can be 
nullified if the attacker knows that the record they are attacking is in the sample, a scenario that 
statistical agencies often need to consider in practice and the additional privacy amplifications are 
either small or difficult to quantify (Bailie and Drechsler, 2024). On the other hand, any stage of the 
survey pipeline that should be part of the DP mechanism must first be fully “algorithmized” (that is, 
the process by which each of the stage's possible inputs is transformed into one of its outputs must 
be completely and programmatically specified). A survey pipeline often includes a number of 
complex, ill-defined and human-intensive tasks, such as building the frame, choosing a sampling 
design, coding and editing. Because these tasks all usually require a degree of human judgment, 
they would be difficult to algorithmize. 

Another downside of starting the DP mechanism earlier is the fact that it can complicate the 
computation of the cumulative privacy loss across multiple data-release mechanisms because DP's 
composition theorems are not applicable when there is dependence between the mechanisms' noise 
terms (which can happen, for example, when their sampling designs are dependent or when two 
noisy statistics are computed from the same sample) (Bailie and Drechsler, 2024). 

However, even if a data-release mechanism begins later in the survey pipeline so that some steps 
of the pipeline do not have to be incorporated in the mechanism, implementing DP still requires 
understanding those steps' effect on the mechanism's input data. For example, with hot deck 
imputation an individual survey respondent can contribute to multiple records in the post-imputation 
dataset. This complicates the appropriate definition of neighboring datasets: In the post-imputation 
dataset, changing a single record does not correspond to changing the data of one entity. In general, 
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the later the DP mechanism begins, the more difficult it is to determine an appropriate notion of 
neighbors since steps earlier in the pipeline may introduce dependencies between dataset records. 

These complexities demonstrate that there can be conflicting demands in deciding where a DP 
mechanism should start within the survey pipeline. (See Drechsler and Bailie (2024) for further 
aspects that need to be considered.) We now return to the question of which steps of the survey 
pipeline should DP take as invariant. DP assesses the privacy of a data-release mechanism by 
comparing the survey outputs' distribution under pairs of counterfactual input datasets. By taking 
some of the steps of the survey pipeline as invariant, DP's counterfactual comparisons are reduced 
to only those pairs of input datasets which share the same realization of the invariant steps. For 
example, suppose the steps in the survey pipeline which generate the population and the frame are 
taken as invariant and the data-release mechanism starts with the responding sample. Then DP only 
compares those responding samples (i.e., those counterfactual input datasets) which could have 
come from the same frame. Adding invariants will weaken the privacy guarantees provided by DP 
(Kifer et al., 2022, Abowd et al., 2022). In general, the later the stage of the pipeline that is kept 
invariant, the greater the reduction in privacy. However, invariants may be justifiable when the output 
of the invariant steps can be considered public knowledge (such as if the frame was sourced 
commercially rather than constructed from confidential information). Moreover, constraining some 
steps to be invariant has the advantage of reducing the sensitivity of survey weighted estimators and 
thereby decreasing the noise which must be added for privacy protection as discussed in Section 
4.3.  

4.2 DP with Complex Sampling Designs 

Statistical agencies have been aware for decades that sampling can be a simple and effective 
strategy to reduce disclosure risks simply because an attacker can no longer be sure whether a 
specific target record is included in the sample or not. This is the main reason why most statistical 
agencies only release samples from their censuses as public use micro datasets (they typically also 
apply additional measures to further increase the level of protection). This idea has been formalized 
in several papers in the context of DP (Kasiviswanathan et al., 2011, Wang et al., 2016, Bun et al., 
2015, Balle et al., 2018, Wang et al., 2019). The authors show that the level of privacy is amplified 
through sampling, i.e., the actual privacy guarantees are higher than those implied by the chosen 
privacy loss parameters when protecting the sample output. Specifically, for small sampling rates r 
and small privacy loss parameters 𝜀, applying certain simple sampling designs (simple random 
sampling with and without replacement, and Poisson sampling) before running an 𝜀	-DP mechanism 
reduces the privacy loss to approximately 𝑟𝜀	. However, most surveys conducted by statistical 
agencies use complex multistage sampling designs, potentially with different sampling strategies at 
the different stages. Bun et al. (2022) study the amplification effects for complex designs and find 
that amplification is small for most of the sampling designs used in practice. Their findings can be 
summarized as follows: 

• Cluster sampling using simple random sampling without replacement to draw the clusters 
offers negligible amplification in practice except for small 𝜀 and very small cluster sizes. 

• With minor adjustments, stratified sampling using proportional allocation can provide privacy 
amplification. For small 𝜀	, the amplification is still linear in the sampling rate up to a constant 
factor. 
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• Data dependent allocation functions such as Neyman allocation for stratified sampling will 
likely result in privacy degradation. (The effects will depend on the sensitivity of the allocation 
function.) 

• With PPS sampling at the individual level, the privacy amplification will linearly depend on 
the maximum probability of inclusion (for small 𝜀	). 

• Systematic sampling will only offer amplification if the ordering of the population is truly 
random. In all other cases, systematic sampling will suffer from the same effects as cluster 
sampling, leading to no amplification (assuming the ordering is known to the attacker). 

In practice this implies that for many multistage sampling designs, which typically start with (multiple 
stages of) stratified cluster sampling, amplification effects can generally only be expected from those 
stages at which individual units or households are selected (typically the last stage of selection). 

4.3 DP for Weighted Estimates 

As discussed in Section 3.1, the amount of noise that needs to be added to achieve a specific privacy 
loss 𝜀 directly depends on the sensitivity of the statistic of interest. From a utility perspective, this 
implies that more reliable (less noisy) DP outputs can be expected from statistics with low sensitivity.  

When analyzing survey data, it is generally important to take the sampling design into account since 
the probabilities of selection vary between the units included in the sample. To simplify this task for 
data users, statistical agencies typically provide survey weights. In practice, these survey weights 
will also account for nonresponse and other data deficiencies such as undercoverage. (We will 
address this extra layer of complexity in the next section.)  

Using survey weighted estimates raises the question: how (if at all) does the sensitivity of a statistic 
change when the survey design is taken into account? To illustrate the possible impacts, let us 
assume the analyst is interested in estimating the mean of some variable 𝑌 in the population using 
the sampled values 𝑦# ,  𝑖 = 1,… ,  𝑛, where 𝑛 denotes the sample size. If the probabilities of selection 
were equal for all units, the sample mean would be an unbiased estimate for the population mean 
and, as indicated in section 3.1, its sensitivity would be 𝑅/𝑛, with	𝑅 denoting the range of possible 
values for 𝑦#. 

When dealing with unequal probabilities of selection, a popular estimator for the population mean is 
the Horvitz-Thompson estimator (Horvitz and Thompson, 1952): µ$%&R = ∑𝑤#𝑦#/𝑁 where 𝑤# is the 
weight of unit 𝑖, for 𝑖 = 1,… ,  𝑛	and 𝑁 is the size of the population. Note that we assume for simplicity 
that 𝑁 is known and does not need to be protected and 𝑤# is the design weight, i.e., it only accounts 
for the sampling design. 

If we can treat the weights as fixed, the sensitivity of µ$%&R  is max(𝑤#) 𝑅/𝑁. Whether the maximum is 
over all units in the frame, over all units in the population, or over all possible counterfactual units, 
depends on which stages of the survey pipeline are treated as invariant as discussed in Subsection 
4.1. Note that for equal-probability designs all 𝑤# = 𝑁/𝑛	and thus the sensitivity of the Horvitz-
Thompson estimator is the same as for the unweighted estimator. If max(𝑤#) > 𝑁/𝑛, the Horvitz-
Thompson estimator will have larger sensitivity than the unweighted estimator. 

However, these discussions assume that the weights can be treated as fixed, that is, they do not 
change if a record changes in the database. For most sampling designs used in practice, such an 
assumption is unrealistic. For example, with sampling proportional to size (PPS), the 𝑖-th record's 
probability of inclusion is given by 𝜋# = (𝑛𝑥#)/(𝑁𝑥), where 𝑥# is the value for unit 𝑖 of the measure-
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of-size variable 𝑋 that is used to improve the efficiency of the sampling design, and 𝑥 = ∑ 𝑥#'
#() /𝑁 is 

the population mean of 𝑋. Changing the value of 𝑋	for a single record will change the probabilities 
of inclusion and thus the survey weights for all other records in the sampling frame. Therefore, the 
sensitivity will be larger compared to the setting with fixed weights as we no longer only need to 
consider the maximum possible change in a single record's value for 𝑌. We also need to consider 
the impact of the weight change for all the other records even if their values for 𝑌 don't change. 

A recently proposed strategy to mitigate this potentially substantial increase in sensitivity is to 
regularize the weights, as explored by Seeman et al. (2024). (An extreme version of this strategy 
would set all weights to be equal; this could be justifiable if the increase in the privacy noise due to 
the weights dwarfs the bias introduced by ignoring the sampling design.) Another possible strategy 
is to treat the frame or at least the design variables within the frame as invariant as discussed in 
Figure 2. Frame invariance assumes any two neighboring datasets must always originate from the 
same frame and so can only differ at the sample level (or later). However, treating the frame as 
invariant has two additional implications that need to be considered. First, fixing the frame implies 
that privacy amplification from sampling is no longer possible (we would need to have neighboring 
datasets at the frame level in order to achieve amplification). However, given the results of Bun et 
al. (2022), this amplification is likely small in practice and thus the positive effects of reducing the 
sensitivity will tend to outweigh the negative effects of losing the amplification effect. On the other 
hand, fixing the frame will restrict the possible counterfactual input datasets to those which are 
consistent with the realized frame. Because this restriction will fix the survey weights, it might 
introduce strong constraints on the possible neighboring datasets, depending on the sampling 
design. As a consequence, the actual privacy guarantees for a frame invariant setting could be 
significantly weaker than the guarantees under a non-frame-invariant setting even for the same 
privacy loss parameter. How problematic this reduction in privacy is in real settings is currently an 
open question for research. 

In contrast, if only the design variables are treated as fixed, the data-release mechanism could still 
start at the frame level, strengthening the privacy guarantees. 

4.4 DP and Weighting Adjustments 

In practice, two adjustment steps are commonly applied to the design weights to correct for unit 
nonresponse and other data deficiencies such as over- or undercoverage in the sampling frame: 
nonresponse adjustments and calibration. How these adjustment steps interfere with differential 
privacy has not been studied so far. However, both steps are data dependent, that is, they use 
information from the survey units for the adjustments. This implies that these steps cannot be ignored 
from a privacy perspective as the adjusted weights leak some personal information. Looking at the 
impacts on the sensitivity of the final statistic of interest (which uses the adjusted weights), similar 
problems as those discussed in the previous section will arise: changing one record in the database 
can potentially change the weight-adjustment factors for all other units in the survey. Thus, it seems 
imperative to already account for these adjustment steps during data pre-processing. Better results 
in terms of the privacy-accuracy trade-off might be achieved if the weight-adjustment steps were 
carried out in a differentially private way. More research is needed to better understand this trade-
off. For example, it seems beneficial to identify robust adjustment strategies as less noise would be 
required to satisfy DP for these strategies. 

In the particular case of post-stratification (which is a simple type of calibration), one such robust 
adjustment strategy has been proposed by Clifton et al. (2023). Another strategy would be to 
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regularize the nonresponse and calibration weight adjustments. (This would be similar to the survey 
weight regularization strategy of Seeman et al. (2024) discussed in the previous section.) 

4.5 DP and Imputation 

All survey data are plagued by item nonresponse as survey respondents are often unwilling or unable 
to respond to all survey questions especially if they request sensitive information. A common strategy 
to deal with this problem is to impute the missing values before analyzing the data to avoid biases 
that might arise when simply discarding incomplete records before the analysis. However, 
imputations are always data dependent as they typically build a model based on the observed data 
and use this model to impute the missing values. As a consequence, the implications of imputation 
on the DP guarantees need to be considered regardless of whether or not the imputation procedure 
is included inside the data-release mechanism. Some preliminary results for this problem are 
discussed in Das et al. (2022).  

Similar to the problem of weighting adjustments, there are two possible strategies to account for 
imputation under DP. The first strategy only considers the effects when analyzing the imputed data. 
The second strategy modifies the imputation routines to ensure that the imputations already satisfy 
DP. As Das et al. (2022) have shown, the first strategy implies that in the worst case the sensitivity 
increases linearly with the number of imputed observations. This substantial increase of the 
sensitivity arises because changing one record in the database can potentially impact all of the 
imputed values. Whether the worst case applies depends on the analysis of interest and on the 
selected imputation procedure. Still, for statistical agencies offering pre-imputed datasets for 
accredited researchers, this strategy is not an option since they cannot anticipate which analyses 
might be performed on the imputed data. 

The second strategy can break the dependence on the number of imputed records at least for certain 
imputation strategies. The key requirement for breaking the dependence is that the imputation model 
m can be written as 𝐷#*+

(#) ∼ 𝑚\𝐷./0
(#) , 𝜃̂_, where 𝐷#*+

(#)  and 𝐷./0
(#)  contain the imputed and observed 

variables for record 𝑖 and 𝜃̂ denotes the model parameters estimated on the complete data. The 
model implies that, given 𝜃, the imputed values of record 𝑖 only depend on the observed values of 
that record and not on any other record. If these requirements are met and the parameters 𝜃 of the 
imputation model are estimated using any suitable differentially private mechanism with privacy loss 
parameter 𝜀), then, given any 𝜀1 differentially private mechanism used for analyzing the data, the 
overall privacy loss is given by 𝜀) + 𝜀1 by the composition property 

We note that the conditional independence assumption of the imputation model holds for many 
imputation methods, for example, parametric imputation models based on linear regression. 
However, it does not hold for hot-deck imputation, an imputation method commonly applied at 
statistical agencies. 

5. Discussion 
Differential privacy provides a formal, elegant framework with strong theoretical guarantees and 
several appealing properties such as post-processing immunity, clean composition rules, and a clear 
interpretation of privacy loss. In simple settings, these guarantees are straightforward to compute 
and the required noise is easy to calibrate. However, real data-analysis workflows are rarely this tidy, 
and its application to survey data highlights just how complex differential privacy can become in 
practice. The presence of complex sampling designs, weighting adjustments, imputation steps, and 
data-dependent decisions means that calibrating privacy loss is rarely straightforward. Each of these 
operations can interact with DP in subtle ways, and determining how much noise is needed, or even 
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what the appropriate sensitivity should be, poses challenges that haven’t been fully addressed in the 
literature.  
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Abstract

Non-probability samples are increasingly used in applied research, raising concerns about non-ignorable

selection bias in estimates based on these samples that traditional diagnostics cannot adequately as-

sess. Conventional diagnostics and inferential approaches for these samples offer limited insight

because they ignore the link between selection mechanisms and outcomes. This paper reviews

variable-dependent measures for non-ignorable selection bias based on the proxy pattern–mixture

model (PPMM), with emphasis on the Standardized Measure of Unadjusted Bias (SMUB) for means

and the Measure of Unadjusted Bias for Proportions (MUBP). Both indices are grounded in the PPMM

framework, which uses auxiliary variables with reliable population benchmarks to construct a single

proxy and summarize departures from ignorability through a single sensitivity parameter. Evidence

from simulation studies shows that the SMUB and MUBP can accurately capture the direction and

magnitude of bias when auxiliary variables are at least moderately predictive of outcomes, outper-

forming traditional diagnostics. Empirical applications in health surveys, political polling, pandemic

surveillance, and administrative data confirm their practical value while emphasizing the need for

strong, harmonized auxiliary covariates. We conclude with guidance on implementation and a brief

discussion of ongoing research. Our aim is to motivate broader adoption of these indices as prac-

tical and interpretable diagnostics for assessing selection bias in applied survey research, aided by

accessible R software that facilitates their implementation in practice.

Keywords: selection bias, non-probability samples, proxy pattern–mixture model, sensitivity analysis.

1 Introduction

The cornerstone of survey inference has long rested on a fundamental assumption: that the mech-

anism by which units are selected into a sample does not depend on the values of the variables

being measured. This assumption of ignorable selection, formalized by Rubin (1976), provides the

theoretical justification for design-based inference from probability samples. However, the contem-

porary landscape of survey research presents mounting challenges to this ideal. Declining response

rates across all survey modes (Brick and Williams, 2013; Williams and Brick, 2018; de Leeuw, Hox,

and Luiten, 2018; Luiten, Hox, and de Leeuw, 2020; Daikeler, Bošnjak, and Lozar Manfreda, 2020;

Lundmark and Backström, 2025), escalating costs of maintaining probability samples (Presser and

McCulloch, 2011), and the proliferation of readily available non-probability data sources (Baker et al.,

2013; Mercer et al., 2017; Cornesse et al., 2020) have created an environment where ignorability can

no longer be taken for granted.

Non-probability samples, which lack a formal randomization mechanism, present particular chal-
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lenges for inference. Unlike probability samples where design-based methods can in principle ac-

count for known selection probabilities, non-probability samples require model-based approaches.

Elliott and Valliant (2017) outlined two broad approaches for making inferences under this setting:

quasi-randomization and superpopulation modeling. Both approaches critically depend on the as-

sumption of ignorable selection, which in practice is unlikely to hold precisely, yet existing adjustment

methods provide little guidance on the magnitude of bias that may result from its violation. This gap

motivates the development of sensitivity analysis tools that explicitly parameterize departures from

ignorability and quantify their impact on estimates of interest.

The methodological response to this challenge has centered on developing model-based approaches

that explicitly parameterize departures from ignorability. A particularly influential framework emerged

from the work of Andridge and Little, 2011, who introduced the proxy pattern-mixture model (PPMM)

as a principled method for sensitivity analysis in the presence of non-ignorable survey non-response.

The PPMM compresses auxiliary information observed for both respondents and nonrespondents into

a single proxy variable that is predictive of the outcome of interest. By modeling the joint distribution

of the proxy and the outcome under different assumptions about the missing data mechanism, the

PPMM provides a structured sensitivity analysis for non-response bias.

Building on the PPMM framework, Little et al. (2020) introduced the Standardized Measure of Un-

adjusted Bias (SMUB), a family of interpretable indices that quantify the degree of departure from

ignorable selection in estimated means. Boonstra et al. (2021) later demonstrated that the SMUB

correlates more strongly with true bias than traditional diagnostics. Extending this framework to bi-

nary outcomes, Andridge et al. (2019) developed the Measure of Unadjusted Bias for Proportions

(MUBP), which reformulates the PPMM within a latent variable setting. More recently, West et al.

(2021) generalized this framework to regression coefficients in both linear and probit models.

To compute the SMUB andMUBP, three ingredients are required: (1) microdata from a non-probability

sample containing the outcome Y (continuous for SMUB or binary for MUBP) and a set of auxiliary

variables Z that are predictive of Y ; (2) reliable population-level summaries of Z, including means

and, when available, variances and covariances, obtained from high-quality data sources such as

administrative registers, large probability surveys, or other external benchmarks; and (3) an assumed

sensitivity parameter φ that governs the degree of non-ignorability. In general terms, the estimation

proceeds as follows. A proxy variable X is first constructed for the outcome Y by regressing Y on

the auxiliary variables Z using the non-probability sample data, with linear regression used for SMUB

and probit regression for MUBP. This proxy represents the best available predictor of the outcome

based on the observed covariates, reducing a multidimensional set of auxiliaries to a single composite

predictor. Population-level summaries of Z are then used to compute the corresponding population

mean and variance of the proxy X. Finally, SMUB(φ) or MUBP(φ) can be obtained either by fixing

specific values for φ (commonly 0, 0.5, and 1) or, under a Bayesian framework, by assigning φ a

noninformative prior distribution that reflects the absence of prior knowledge about the degree of

non-ignorability.

The predictive strength of the auxiliary variables plays a central role in this framework. Weakly predic-

tive Z variables may yield highly uncertain bias estimates, making it difficult to assess the direction or

magnitude of potential selection bias, reducing the diagnostic value of the indices. Correlations above

approximately 0.3–0.4 between the outcome and the proxy are desirable (Andridge et al., 2019; Little

et al., 2020). As discussed in Section 3, both simulations and empirical results reinforce the impor-

tance of having a strongly predictive set of covariates to ensure reliable inference.

Empirical studies have demonstrated the versatility of these indices across diverse survey domains.
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West and Andridge (2023) applied theMUBP to pre-election polling data, showing improved alignment

with certified election results; Andridge (2024) used the MUBP to assess bias in COVID-19 vaccine

uptake estimates, finding results consistent with non-ignorable selection; Hammon and Zinn (2024)

validated the MUBP using population data from the German General Social Survey; and Schroeder

and West (2025) applied the MUBP to evaluate potential selection bias in the 2019 Health Survey

Mailer (HSM), an off-wave supplement to the longitudinal Health and Retirement Study (HRS). Us-

ing harmonized demographic and health covariates shared across waves, they found that MUBP

adjustments were small, indicating largely ignorable selection but highlighting the method’s value for

diagnosing bias in longitudinal survey contexts. Most recently, Gómez-Echeverry et al. (2025) applied

the SMUB framework to short-term economic indicators, highlighting the benefits of incorporating his-

torical auxiliary data to improve adjustment accuracy.

This article provides an overview of the theoretical foundations, empirical performance, and practical

implementation of the SMUB and MUBP indices. We begin by outlining the PPMM framework that

underlies both measures. We then synthesize evidence from simulation studies that systematically

vary proxy strength, selection mechanisms, and outcome distributions, together with validation exer-

cises and empirical applications spanning public health surveillance, demographic surveys, political

polling, and administrative data used for economic indicators. Finally, we summarize practical guid-

ance on proxy construction and sensitivity analysis, and discuss methodological extensions already

available as well as ongoing research aimed at refining these indices and broadening their applica-

bility. The overarching goal is to show that the SMUB and MUBP constitute accessible, interpretable,

and empirically validated tools for diagnosing selection bias, and to motivate their broader adoption in

contemporary survey research, where evaluating data quality under potential non-ignorable selection

has become increasingly critical.

2 Measures of selection bias

This section summarizes themethodological framework and key formulations introduced by Little et al.

(2020) and Andridge et al. (2019). The following exposition outlines the main components, assump-

tions, and analytical expressions underlying these measures. Readers interested in full derivations

and implementation details are referred to the original papers for comprehensive discussions.

2.1 Indices of Non-Ignorable Selection Bias for Means

Little et al. (2020) developed an index-based sensitivity analysis framework that explicitly quantifies

potential selection bias under varying assumptions about the degree of non-ignorability. Their ap-

proach embeds the PPMM into a tractable parametric framework that enables researchers to bound

the range of plausible bias values and assess the robustness of substantive conclusions to departures

from ignorable selection.

Suppose the non-probability sample provides data D = {(yi, zi) : i = 1, . . . , n}, where yi denotes the

continuous survey outcome for unit i and zi is a p-dimensional vector of auxiliary variables predictive of

yi and for which summary statistics are available for the population. Let Si ∈ {0, 1} indicate selection

into the non-probability sample, with Si = 1 for selected units and Si = 0 otherwise.

The first step constructs an auxiliary proxy for the unobserved outcome values among non-selected

units. Formally, we regress Y on Z using data from selected units (S = 1) to obtain the fitted linear

predictor X = Z>β̂ where β̂ denotes the least-squares coefficient vector. This proxy X represents

the best linear predictor of Y based on the available auxiliaries and serves as a surrogate for Y in the
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non-selected population. To facilitate model specification and interpretation, X is rescaled to match

the variance of Y within the non-probability sampleX∗ = X

√
s
(1)
Y Y

s
(1)
XX

where s
(1)
Y Y and s

(1)
XX denote sample

variances among selected units. For notational convenience, we denote the rescaled proxy from now

on as X, with the rescaling implicit.

The PPMM assumes that the joint distribution of (Y,X) follows a bivariate normal distribution condi-

tional on selection status S:

(Y,X) | S = j ∼ N2

((
µ
(j)
Y

µ
(j)
X

)
,

(
σ
(j)
Y Y σ

(j)
XY

σ
(j)
XY σ

(j)
XX

))
, j ∈ {0, 1}. (1)

Some parameters governing the distribution of (Y,X) among nonselected units (j = 0) are not iden-

tified from the observed data (µ
(0)
Y , σ

(0)
Y Y , σ

(0)
XY ). Identification is achieved by assuming that the prob-

ability of selection depends on (X,Y ) through a scalar index formed as a convex combination of the

two variables:

Pr(S = 1 | X,Y ) = g
(
(1− φ)X + φY

)
,

where g : R → (0, 1) is an unspecified monotonic function and φ ∈ [0, 1] is a scalar sensitivity param-

eter.

The parameter φ quantifies the degree of non-ignorability and admits an intuitive interpretation. When

φ = 0, selection depends only on the observed proxy X, corresponding to selection at random (SAR)

conditional onZ, which represents ignorable selection. When φ = 1, selection depends entirely on the

outcome Y , representing fully non-ignorable selection where the auxiliary variables provide no direct

information about the selection mechanism. For intermediate values 0 < φ < 1, selection depends

on both X and Y , with larger values indicating stronger dependence on the unobserved outcome.

The maximum likelihood estimator for the population mean of Y as a function of φ is given by:

µ̂Y (φ) = ȳ(1) +
φ+ (1− φ)ρ̂

(1)
XY

φρ̂
(1)
XY + (1− φ)

√√√√ s
(1)
Y Y

s
(1)
XX

(x̄(1) − X̄),

where ȳ(1) and x̄(1) denote sample means among selected units, X̄ is the known population mean of

X (computed from population-level summaries of Z and the estimated coefficients β̂), and ρ̂
(1)
XY is the

sample Pearson correlation between Y and X among selected units.

TheMeasure of Unadjusted Bias (MUB) is defined as the difference between the naive sample mean

and this model-based adjustment:

MUB(φ) = ȳ(1) − µ̂Y (φ).

Because MUB depends on the measurement scale of Y , hindering comparisons across outcomes,

Little et al. (2020) recommend standardizing by the sample standard deviation of Y , obtaining the

Standardized Measure of Unadjusted Bias (SMUB):

SMUB(φ) =
MUB(φ)√

s
(1)
Y Y

=
φ+ (1− φ)ρ̂

(1)
XY

φρ̂
(1)
XY + (1− φ)

· x̄
(1) − X̄√
s
(1)
XX

.

Critically, φ cannot be estimated from the observed data, as there is no information about the dis-

tribution of Y among non-selected units. The strategy adopted is therefore to conduct a sensitivity
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analysis, computing bias estimates across a range of plausible φ values to assess the robustness of

conclusions to departures from ignorability. Three particular values of φ provide intuitive benchmarks:

SMUB(0) = ρ̂
(1)
XY

x̄(1) − X̄√
s
(1)
XX

, SMUB(0.5) =
x̄(1) − X̄√

s
(1)
XX

, SMUB(1) =
1

ρ̂
(1)
XY

x̄(1) − X̄√
s
(1)
XX

.

To reflect sensitivity to the choice of φ, Little et al. (2020) recommend reporting the sensitivity interval

[SMUB(0),SMUB(1)] to bound the range of plausible bias values under the PPMM assumptions, with

SMUB(0.5) serving as a central point estimate when no prior information about φ is available. If

this interval excludes zero and is substantively meaningful in magnitude, it provides evidence that

selection bias may threaten the validity of conclusions drawn from the non-probability sample.

To isolate the component of bias attributable specifically to departures from ignorability (i.e., φ > 0),

Little et al. (2020) define the Standardized Measure of Adjusted Bias (SMAB) as:

SMAB(φ) = SMUB(φ)− SMUB(0) =
φ{1− (ρ̂

(1)
XY )

2}
φρ̂

(1)
XY + (1− φ)

· x̄
(1) − X̄√
s
(1)
XX

.

While SMUB quantifies the total bias in the unadjusted sample mean ȳ(1), SMAB captures the portion

of the overall bias in an unadjusted estimate that exists after adjustment for the known auxiliary vari-

ables (given a choice of φ), under an assumption that selection is only a function of X (or ignorable).

We note that SMUB(0),SMUB(0.5) and SMUB(1) can be computed without access to microdata for

population elements excluded from the non-probability sample. A key advantage of these indices is

that they require only the aggregate population mean of the proxy X, which in turn depends on the

population means of the auxiliary variables Z. However, these point estimates of bias do not account

for sampling variability in constructing the proxy X, that is, in estimating β̂ from the regression of Y

on Z, and may therefore understate total uncertainty. To address this limitation, Little et al. (2020)

proposed a fully Bayesian approach that yields posterior draws of SMUB(φ), allowing uncertainty to

be fully propagated and producing point estimates and credible intervals that can assess whether the

estimated bias differs meaningfully from zero or exceeds a substantively important threshold.

Specifically, under a fully Bayesian approach, prior distributions are placed on the regression co-

efficients β defining the proxy X, the pattern-specific parameters in Equation (1), and the sensitivity

parameter φ, which can either be fixed or assigned a prior distribution. A common default specification

assigns relatively noninformative priors to β and the pattern–mixture parameters and a Uniform(0, 1)

prior to φ, reflecting complete ignorance about the degree of non-ignorability. Markov chain Monte

Carlo methods then yield posterior draws of SMUB(φ) that fully propagate uncertainty, producing

credible intervals that can be used to assess whether estimated bias is meaningfully different from

zero or exceeds a substantively important threshold. This approach requires the sample mean and

variance of X for the non-sampled population, which depend on the sample mean and covariance

matrix of Z among non-sampled units. When only the means of Z are available, as is often the case, it

can be assumed that the population covariance matrix of Z is the same for sampled and non-sampled

units, allowing it to be estimated from the sampled cases.

2.2 Indices of Non-Ignorable Selection Bias for Proportions

The SMUB framework presented in Section 2.1 assumes normally distributed outcomes, limiting its

direct applicability to binary variables. To address this limitation, Andridge et al. (2019) extended the
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proxy pattern–mixture model to binary outcomes by introducing a latent variable formulation, building

on earlier developments by Andridge and Little (2020). This extension preserves the intuitive interpre-

tation of the sensitivity parameter φ while accommodating the discrete nature of proportions, yielding

the Measure of Unadjusted Bias for Proportions (MUBP).

Let Y be a binary variable taking values 0 or 1, representing, for instance, the presence or absence

of a particular characteristic in the target population. Following standard probit model conventions, Y

is assumed to arise from an underlying continuous latent variable U via the threshold mechanism

Y =

{
1 if U > 0,

0 if U ≤ 0.

The latent variable formulation facilitates the specification of a tractable joint model for Y and auxiliary

predictors, enabling the application of normal pattern-mixturemodeling techniques analogous to those

used for continuous outcomes.

As in the continuous case, let S ∈ {0, 1} denote selection into the non-probability sample, with Y

observed only when S = 1. The proxy X is constructed by regressing the binary outcome Y on

the auxiliaries Z using a probit model fitted to the non-probability sample. In this case, Z must be

available for all units in the non-probability sample, and either sufficient statistics (means, variances

and covariances) or microdata for Z must be available for the non-selected units. A probit regression

model is used for the binary indicator of interest because this model assumes that the observed

indicator arises from an underlying, unobserved latent variable that follows a normal distribution.

Following the same pattern-mixture framework used for continuous outcomes, the joint distribution of

the latent variable U and proxy X is assumed to follow a bivariate normal distribution conditional on

selection status:

(U,X | S = j) ∼ N2

(µ(j)
U

µ
(j)
X

)
,

 σ
(j)
uu ρ

(j)
ux

√
σ
(j)
uuσ

(j)
xx

ρ
(j)
ux

√
σ
(j)
uuσ

(j)
xx σ

(j)
xx

 , j ∈ {0, 1}.

Here µ
(j)
U and µ

(j)
X denote the means of the latent variable and proxy in selection pattern j, σ

(j)
uu and

σ
(j)
xx are their variances, and ρ

(j)
ux is their correlation. As in the continuous-outcome case, some param-

eters governing the distribution of (U,X) among non-selected units (j = 0) are not identified without

additional assumptions. To achieve identification, the same structural assumption is used in SMUB,

namely that selection depends on (U,X) through a scalar index, Pr(S = 1 | U,X) = g
(
(1−φ)X∗+φU

)
,

where X∗ = X

√
σ
(1)
uu

σ
(1)
xx

, g(·) is an unspecified monotonic function and φ ∈ [0, 1] is the sensitivity param-

eter.

We note that the effectiveness of the auxiliary proxyX in predicting the binary outcome Y is quantified

by the biserial correlation, which measures the association between a continuous variable (the proxy

X) and a binary variable (Y ). In the latent variable framework, this is equivalent to the Pearson

correlation between U and X among selected units, ρ
(1)
ux = Corr(U,X | S = 1) = Biserial Corr(Y,X |

S = 1).

As is customary with latent variables, σ
(1)
uu = 1, since the mean and variance cannot be separately

estimated. Under this model specification, the marginal probability that Y = 1 in the target population
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can be expressed by:

µY = Pr(Y = 1) = πΦ(µ
(1)
U ) + (1− π)Φ

(
µ
(0)
U (φ)

σ
(0)
uu (φ)

)
,

where π = Pr(S = 1) is the proportion of selected cases in the population, Φ(·) is the standard normal

cumulative distribution function, and (µ
(0)
U (φ), σ

(0)
uu (φ)) are the mean and variance of U among non-

selected units, which depend on the assumed value of φ. These unidentified parameters for a specific

choice of φ are given by:

µ
(0)
U (φ) = µ

(1)
U +

φ+ (1− φ)ρ
(1)
ux

φρ
(1)
ux + (1− φ)

·
µ
(0)
X − µ

(1)
X

σ
(1)
xx

, (2)

σ(0)
uu (φ) = 1 +

[
φ+ (1− φ)ρ

(1)
ux

φρ
(1)
ux + (1− φ)

]2
· σ

(0)
xx − σ

(1)
xx

σ
(1)
xx

. (3)

The difference of the proportion for selected cases from the overall proportion is therefore

µ(1)
y − µy = µ(1)

y −

πΦ(µ(1)
u ) + (1− π)Φ

 µ
(0)
u√
σ
(0)
uu

 .

For a given choice of φ, a Measure of Unadjusted Bias for Proportions, MUBP(φ), is then defined

as the difference between the proportion observed in the non-probability sample and the estimated

population proportion:

MUBP(φ) = µ̂(1)
y − µ̂y

= µ̂(1)
y − π̂Φ(µ̂(1)

u )− (1− π̂)

× Φ

µ̂(1)
u +

φ+ (1− φ)ρ̂
(1)
ux

φρ̂
(1)
ux + (1− φ)

µ̂
(0)
x − µ̂

(1)
x√

σ̂
(1)
xx

 /

√√√√1 +

{
φ+ (1− φ)ρ̂

(1)
ux

φρ̂
(1)
ux + (1− φ)

}2
σ̂
(0)
xx − σ̂

(1)
xx

σ̂
(1)
xx

 .

where µ̂
(1)
Y = ȳ(1) is the sample proportion among selected units, and µ̂Y (φ) is computed by replacing

the parameters by estimates into Equations (2) and (3). Estimation of MUBP(φ) requires computing

the sampling fraction π, which may be close to 0 for larger populations, the biserial correlation ρ
(1)
ux

between the latent variable U and the proxy X among selected units, and sufficient statistics for the

proxy variable X for both the selected and the non-selected portions of the target population. This

last requirement is stronger than that for the SMUB, which only requires the population mean of X,

not its variance. Maximum likelihood (ML) estimates of these sufficient statistics for the selected

cases can be computed using the observed data from the non-probability sample. Andridge et al.

(2019) estimate ρ
(1)
ux using the two-step approach of (Olsson, Drasgow, and Dorans, 1982), while the

remaining parameters are obtained via ML. They refer to the resulting estimates as ‘modified’ ML

(MML). To prevent overfitting in the construction of the proxy X and in the estimation of ρ
(1)
ux , they

recommend multifold cross-validation.
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As with SMUB, extreme and intermediate values of φ provide interpretable benchmarks for sensitiv-

ity analysis. When φ = 0 (ignorable selection), selection depends only on the observed proxy X.

When φ = 1 (fully non-ignorable selection), selection depends entirely on the latent outcome U , and

MUBP(1) provides an upper bound on potential bias under the model assumptions. The midpoint

MUBP(0.5) represents a compromise assumption of equal dependence on the proxy and latent out-

come. Andridge et al. (2019) recommend reporting the sensitivity interval [MUBP(0),MUBP(1)] to

bound the plausible range of bias values.

Finally, as with the SMUB, themaximum likelihood estimation of theMUBP treats the coefficients in the

probit model and therefore the proxy X as fixed, potentially understating total uncertainty in the bias

estimates. To address this limitation, Andridge et al. (2019) proposed a fully Bayesian implementation

that propagates uncertainty through all levels of estimation. Under this approach, prior distributions

are placed on the regression coefficients definingX, on the parameters of the pattern–mixture model,

and on the sensitivity parameter φ, which can either be fixed or assigned a prior distribution such as

Uniform(0, 1). The Gibbs sampler alternates between imputing the latent variable U from a truncated

normal distribution, updating the regression coefficients for the probit model, regenerating the proxy

X, and drawing the parameters of the pattern–mixture model. These steps yield posterior draws of

MUBP(φ) that fully incorporate parameter and model uncertainty.

3 Evidence from Simulations and Empirical Applications of SMUB and MUBP

The development of the SMUB andMUBP has been followed by a series of simulation studies and em-

pirical applications designed to evaluate how well these indices perform in realistic survey conditions.

These studies examined their ability to detect and quantify non-ignorable selection bias for continuous

and binary outcomes, proxy strengths, and selection mechanisms, providing a clear picture of their

practical strengths and limitations.

Andridge et al. (2019) conducted a simulation study comparing the MUB with the MUBP. The simula-

tion design generated a binary outcome from a latent variable framework, allowing direct comparison

of both approaches while varying the correlation between the proxy and the latent outcome and the

degree of non-ignorability. Results showed that the MUBP more accurately captured bias in propor-

tions, avoiding implausible estimates outside the [0,1] range that could arise under the linear-normal

MUB formulation. Its performance was strong when the proxy was at least moderately predictive,

producing well-calibrated sensitivity intervals. The ML-based intervals tend to be wider and to have

higher coverage for the normal model than the MML-based intervals for the probit model. Coverage

of the Bayesian intervals is higher than that of the MML-based intervals for both models.

The subsequent simulation work of Boonstra et al. (2021) offered a systematic evaluation of SMUB

and related diagnostics in settings with continuous outcomes. The authors simulated finite popula-

tions where the relationship between outcome, auxiliary variables, and selection could be controlled,

manipulating parameters such as the correlation between the outcome and its proxy, the overlap

between outcome and selection predictors, and the strength of non-ignorability. Across these condi-

tions, SMUB showed the strongest and most consistent correlation with the realized bias in estimated

means, outperforming traditional diagnostics. The SMAB index effectively captured the portion of

bias due to non-ignorability, remaining accurate when model assumptions were satisfied. However,

as noted by Boonstra et al. (2021), performance declined when the auxiliary variable was only weakly

correlated with the outcome, confirming that the usefulness of outcome-based diagnostics depends

critically on having a sufficiently informative proxy.
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Empirical applications further validated these insights. In the studies introducing these indices, Lit-

tle et al. (2020) and Andridge et al. (2019) applied them to data from the National Survey of Family

Growth (NSFG), treating smartphone owners as a non-probability sample. This design allowed for di-

rect comparison between sample-based estimates and population benchmarks. In Little et al. (2020),

the authors demonstrated that SMUB effectively identified survey variables most vulnerable to se-

lection bias, performing well when the proxy–outcome correlation exceeded roughly 0.4. When this

relationship was weak, they noted that any diagnostic based solely on auxiliary variables would likely

be uninformative. Building on this framework, Andridge et al. (2019) applied the MUBP, showing

that it produced narrower and more interpretable sensitivity intervals than its continuous counterpart

(MUB) for proportions. The MUBP accurately captured the true bias for most binary outcomes when

the proxy was at least moderately predictive of the latent outcome (Pearson correlation above about

0.3) and achieved improved coverage when uncertainty in the probit coefficients was incorporated

through Bayesian credible intervals.

Subsequent research has demonstrated the practical value of these indices in diverse real-world set-

tings. West and Andridge (2023) applied the MUBP to evaluate bias in pre-election polling for the

2020 U.S. presidential election. The main case study drew on the ABC/Washington Post polls con-

ducted by Abt Associates in September and October 2020, focusing on likely voters in key states

including Wisconsin, Michigan, and Pennsylvania. The estimand of interest was the proportion in-

tending to vote for Donald Trump. Concerns about non-ignorable selection arose from the possibility

that Trump supporters were systematically less likely to participate in pre-election polls. Population

benchmarks were drawn from three major sources: the November 2020 CPS Voter Supplement,

the 2020 ANES pre-election survey, and the AP/NORC VoteCast 2020 data. Each source offered

advantages and limitations: CPS lacked direct measures of ideology and party identification, ANES

had relatively small state samples, and VoteCast was not entirely probability-based. Covariates har-

monized across sources included sex, age, education, race/ethnicity, political ideology, and party

identification. Results showed that MUBP-adjusted estimates of Trump support were consistently

higher than those produced by standard weighting alone. In many cases, the adjusted estimates

narrowed the gap between poll results and the certified election outcomes. At the same time, the

authors emphasized the practical challenges of implementing the MUBP, particularly the difficulties

of aligning covariates across benchmark datasets.

Applications have also extended beyond political polling. Andridge (2024) investigated estimates of

COVID-19 vaccine uptake from the Census Household Pulse Survey (HPS) and the Delphi-Facebook

COVID-19 Trends and Impact Survey. Both surveys overestimated uptake relative to CDC bench-

marks—by 14 and 17 percentage points, respectively—despite their very large sample sizes. The

HPS was treated as a non-probability survey due to its extremely low response rate (6–7%). Auxil-

iary covariates included sex, age, education, race/ethnicity, and state, harmonized with the American

Community Survey. MUBP analysis indicated that the observed overestimation was consistent with

non-ignorable selection, especially if unvaccinated individuals were less likely to respond.

Validation studies have reinforced the empirical patterns and limitations observed in earlier appli-

cations. Hammon and Zinn (2024) conducted a validation study using the German General Social

Survey (GGSS) as a finite population. Ten binary outcomes, including unemployment, union mem-

bership, and religious affiliation, were analyzed by comparing the full GGSS population to an artificial

non-probability sample defined by internet use and political interest. They concluded that the MUBP

performs well in detecting selection bias in estimated proportions when the assumptions of the un-

derlying PPMM are satisfied. They emphasized that a moderate difference in the proxy distributions

between sampled and non-sampled cases is crucial for correctly indicating the true bias. In their anal-
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ysis, this condition was even more relevant than a very high correlation between X and Y , although

a strong correlation is an important condition to avoid ineffective and very wide intervals of potential

selection bias. The same study applied the MUBP to a large river-sampled online survey in Germany,

where the authors demonstrated the practical utility of the MUBP for assessing the robustness of

estimated proportions under different assumptions about the selection mechanism.

An evaluation of potential non-ignorable selection bias was conducted using the 2019 Health Sur-

vey Mailer (HSM), an off-wave supplement to the Health and Retirement Study (HRS) with an 83%

response rate. Despite this high participation, eligibility restrictions raised concerns about system-

atic exclusion. Using demographic and health covariates common to the HSM and the HRS core,

Schroeder and West (2025) estimated MUBP-adjusted proportions for ten binary health outcomes.

Weighted and MUBP-adjusted estimates were generally consistent, with overlapping confidence and

credible intervals for most outcomes. Larger MUBP shifts were observed only when auxiliary proxies

were strong (biserial correlations above 0.5), while weaker proxies yielded wider credible intervals

and smaller adjustments. Benchmark analyses treating common covariates as outcomes confirmed

that both methods moved estimates toward the population truth. The study also compared results

using the National Health Interview Survey (NHIS) as an alternative population source, finding lower

biserial correlations and wider credible intervals when fewer common covariates were available. Be-

yond these empirical findings, the authors emphasized broader implications for survey researchers:

MUBP can be especially valuable in panel studies that include informative covariates shared across

waves, where population-level information is easier to obtain and proxy correlations tend to be higher.

They also highlighted the importance of identifying strong auxiliary predictors to ensure efficiency and

interpretability of bias adjustments. Overall, the results suggested that selection bias in the HSM was

likely ignorable given the available covariates, and that standard weighting sufficed, while the MUBP

provided reassurance and diagnostic insight into potential non-ignorable selection bias.

While the HSM study examined a traditional survey application, subsequent research has adapted

these indices for use in administrative and short-term estimation contexts. Gómez-Echeverry et al.

(2025) applied the MUB to flash estimates constructed from gradually filling non-probability samples,

such as administrative data used for short-term economic indicators. The authors proposed three

practical implementations that differ in how the sensitivity parameter φ is handled: MUB(C.5) fixes

φ = 0.5, MUB(C) uses plausible values of φ to approximate the range of potential bias values that are

consistent with the observed data, and MUB(M) estimates φ using lagged and current information.

Simulation results showed that MUB(M) achieved the best overall performance, particularly when se-

lection bias was substantial, demonstrating that anchoring φ to historical data improves adjustment

accuracy. The study also found that the correlation between the target variable and the selection

mechanism was more influential than the specific distributional shape of the target variable in deter-

mining bias. A case study using turnover data from Statistics Netherlands confirmed these findings,

with MUB(M) producing the lowest estimation errors across several economic sectors.

Across simulation studies and empirical applications, several consistent patterns emerge regarding

the performance and practical utility of the SMUB and MUBP as diagnostics for non-ignorable se-

lection bias. When auxiliary variables are at least moderately predictive of the outcome, typically

with correlations above 0.3 to 0.4, these outcome-aware indices reliably capture both the direction

and magnitude of bias, outperforming traditional representativeness diagnostics that ignore outcome

distributions. Their performance declines predictably when proxies are weak, signaling insufficient

auxiliary information rather than masking uncertainty. The treatment of the sensitivity parameter φ

plays a key role: fixed values such as φ = 0.5 offer simple summaries but can be less accurate

than analyses spanning the full φ ∈ [0, 1] range, while approaches that estimate φ from historical or
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lagged data yield the most precise adjustments. Bayesian formulations, which propagate uncertainty

from both proxy construction and model estimation, tend to produce better-calibrated intervals than

maximum likelihood estimation. Applications across health, political, and administrative domains con-

firm that the SMUB and MUBP can uncover non-ignorable selection risks overlooked by conventional

diagnostics, provided that proxies are strong and covariates are harmonized across data sources.

4 Discussion

The goal of this paper was to review and synthesize recent developments in diagnostic measures

of selection bias for non-probability samples, focusing on the SMUB and the MUBP. Both indices

provide accessible and interpretable tools for quantifying the sensitivity of survey estimates to non-

ignorable selection. Their main strengths lie in their parsimony and practical feasibility. The use of a

single sensitivity parameter φ captures the continuum between ignorable and non-ignorable selection,

while the construction of a proxy variable summarizes the influence of multiple auxiliary covariates

into a single dimension, simplifying implementation. Moreover, these indices can be computed even

in the absence of population microdata, provided that sufficient population-level summary statistics

for the auxiliary variables are available. Compared to traditional approaches, the SMUB and MUBP

have been shown to detect non-ignorable bias in both simulations and empirical applications more

effectively.

Building on this foundation, selection of the auxiliary variables of Z should be guided by both predic-

tive power for the outcome of interest and availability of reliable population benchmarks. In the PPMM

framework, Z is used to construct the proxy X and to supply population summaries that anchor iden-

tification, so variables that are strongly related to Y and measured consistently across surveys are

preferred. These covariates must be predictive of Y but also collected in comparable form across data

sources to ensure valid application of the SMUB and MUBP. Weak correlations inflate the sensitivity

of results to φ and may produce wide, uninformative sensitivity intervals. Researchers should report

the estimated correlation to communicate the strength of the proxy.

Reliable population statistics are usually obtained from large probability surveys. However, due to

the increasing challenges faced by these methods, some government agencies are turning to admin-

istrative data sources to produce official statistics (Berzofsky et al., 2025), making them a promising

source of auxiliary information to implement PPMM-based indices. It is worth noting that adminis-

trative data also face issues related to quality and coverage, and because of their nonprobabilistic

nature, a non-ignorable missing data mechanism can cause systematic biases that standard adjust-

ment methods may not fully correct. Nonetheless, the PPMM-based measures discussed here could

also be applied to evaluate bias in administrative datasets and support their use in the production of

official statistics.

In some applications, the auxiliary variables Z needed to construct the proxy may not be directly

available in the non-probability sample. In such cases, these variables can be obtained by linking

the sample to external sources. Little et al. (2020) suggest that, when suitable auxiliary variables

are unavailable, data fusion techniques can be used to integrate variables with the required prop-

erties from another independent dataset. Linking to administrative register data can be particularly

advantageous, as these sources often provide rich and reliable information. However, when such

linking procedures are employed, uncertainty arising from potential mismatch errors should be prop-

erly accounted for. Recent work by Slawski et al. (2025) has developed a general framework for

valid post-linkage inference in the presence of mismatch error. Incorporating these ideas into the

estimation of the indices discussed in this paper represents a promising direction for future research.
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Once auxiliary variables are selected and population benchmarks are identified, estimation can pro-

ceed directly. Closed-form expressions for SMUB and SMAB permit straightforward maximum likeli-

hood (ML) estimation using sample statistics and external population summaries. Little et al. (2020)

and Andridge et al. (2019) provide accompanying R functions github.com/bradytwest/IndicesOfNISB)
that implement both ML and Bayesian estimation for these indices. A preliminary R package is also

available at github.com/randridge/ppmm. Together, these open-source tools facilitate replication of

published results, illustrate practical implementation of the indices, and, importantly, are designed to

lower the barrier to their application across a wide range of research domains.

The next step involves assessing how sensitive the conclusions are to different assumptions about

the selection process. Because the true selection mechanism is rarely known, sensitivity analysis

provides a transparent way to evaluate robustness. A practical approach is to report sensitivity in-

tervals, which bound the plausible range of bias under varying assumptions. The midpoint φ = 0.5

offers a convenient single-number summary corresponding to equal dependence on X and Y , and

has simple closed-form expressions in the continuous case. A Bayesian formulation further extends

this approach by propagating uncertainty across all model components.

The PPMM framework relies on the assumption that (Y,X) follows a bivariate normal distribution.

Gómez-Echeverry et al. (2025) reported that deviations of Y from normality exert a weaker influence

on the performance of the MUB than changes in the strength of the non-ignorable selection mecha-

nism or the predictive power of the proxy. Although the distributional shape plays a secondary role, it

can marginally affect estimator accuracy when the selection mechanism is strongly non-ignorable or

when the auxiliary variables are only moderately informative. Scenarios that combine current auxiliary

variables with lagged information on the target variable appear to offer some protection against depar-

tures from normality. Overall, results obtained under normality tend to perform better than those with

larger deviations. Further research examining the robustness of the SMUB and MUBP to their distri-

butional assumptions is needed; the gamma-based extension proposed by Andridge and Thompson

(2015) could provide additional insights.

Recent work has extended this framework beyond its original focus on means and proportions. West

et al. (2021) extended the approach to regression coefficients in both linear and probit models, while

ongoing research by Andridge and colleagues is adapting the method to ordinal and nominal out-

comes through versions of the MUBP based on ordinal and multinomial probit models. Complemen-

tary methodological developments have re-expressed the PPMM as a selection model (Yiadom and

Andridge, 2024) and extended the framework to subgroup estimation. Together, these efforts rein-

force the conceptual foundation of the indices and expand their applicability across a broader range

of survey estimation problems.

Ongoing research aims to refine the SMUB and MUBP by accounting for sampling uncertainty from

finite probability survey benchmarks. This refinement is especially relevant when benchmarks are

drawn from moderately sized reference samples rather than large-scale data sources, where sam-

pling error can materially affect the accuracy of the indices. Work in progress is also focused on

improving proxy construction using machine learning methods such as Bayesian additive regression

trees (BART), which can capture complex non-linear relationships between auxiliary variables and

outcomes, potentially yielding stronger proxies and tighter sensitivity intervals.

The original articulation of proxy pattern–mixture models emphasized that auxiliary covariates are

indispensable for evaluating bias, a principle that equally applies to traditional methods for inference

from non-probability samples. Valid estimation ultimately depends on the availability of high-quality

auxiliary information. While the SMUB and MUBP can be computed using summary-level rather than
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microdata, their effectiveness still hinges on the accuracy and relevance of the covariates used.

In general, best practices for drawing valid inferences from non-probability samples (or from probabil-

ity samples with low response rates) call for the identification of a large reference probability survey

targeting the same population. Such a reference data source supplements the non-probability sample

by providing auxiliary information on population characteristics that are essential for bias adjustment.

Both data sources must include a set of common, harmonized covariates measured in the same way

for individuals from the same target population. These shared covariates should be strong predictors

of the key variables observed only in the non-probability sample. In practice, this requires identifying

a large, representative probability survey such as the ACS, CPS, NHIS, or ANES that includes com-

parable measures, allocating sufficient time for harmonization when variables differ across surveys,

and verifying after data collection that the chosen covariates are indeed predictive of the outcomes of

interest. These steps are by nomeans trivial but remain indispensable, as methods for non-probability

inference, whether based on microdata modeling or on population-level sufficient statistics, all rely on

the consistency and predictive strength of harmonized covariates.

In this regard, we strongly support the argument made by Elliot (2022), who noted that the growing

reliance on non-probability samples creates an urgent need for well-supported probability surveys

to provide reliable benchmark information. Sustained investment in government-funded probability

surveys is critical not only to preserve their role as independent data sources but also to strengthen

their capacity to serve as analytical partners for non-probability survey inference, ensuring coverage

of key covariates across the many domains where inference from non-probability samples is needed.
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Abstract

Model-based approaches to inference are common in the presence of complex survey data. Although

statistical modeling is an often necessary approach for analyzing data, there is no firm consensus as

to how these analyses should handle sampling weights. Using a case study of international health

surveillance surveys, this paper examines the roles of weights in the generalized linearmodels (GLMs)

and generalized linear mixed-effect models (GLMMs). We considered two different ways of includ-

ing weights with model estimates: using weighted likelihood functions for model fitting and weighted

average values of individual predictions. We compared GLM and GLMM estimates as well as un-

weighted and weighted variants of these models. We found that including weights in the model fitting

processes does not substantially change the model parameter estimates and predictions. The dif-

ference between weighted and unweighted descriptive statistics is more pronounced than that of the

model parameter estimates. We recommend comparing the weighted and unweighted descriptive

summaries as a standard analysis routine in practice.

Keywords: multilevel modeling, complex sample survey, weights, diabetes prevalence.

1 Introduction

Most researchers in the social sciences and public health use sample survey data for finite popu-

lation inference and account for complex sample design features if they are related to the survey

outcome (Si, Lee, and Heeringa, 2024). When the sampling design features are informative, e.g.,

the selection leads to the sample distribution of the quantity of interest deviating from the underlying

population distribution, appropriate analysis methods are necessary to adjust for the sample discrep-

ancy. Despite this general recommendation, there have been historical debates on whether survey

weights are necessary when fitting statistical models. Survey weights often require special treatments

to meet researchers’ analytic goals and are sometimes considered to be a nuisance when they only

inflate the variance of an estimate without changing the point estimate itself. In addition to model

specification, the various ways handling weights can also be due to factors such as researchers’

familiarity with using survey weights, the quality of documentation on how weights are constructed,

and the availability of auxiliary information about the population. Using a case study of international

health surveillance surveys, this paper examines the roles of weights in the generalized linear models

(GLMs) and generalized linear mixed-effect models (GLMMs).

Motivated by the need of meeting the World Health Organization’s (WHO) recommended diabetes

targets (Gregg et al., 2023), we aim to estimate and compare diabetes prevalence between countries.

We use the WHO Stepwise Approach to Surveillance (STEPS) surveys (Riley et al., 2016), which are

cross-sectional probability sample surveys conducted in more than 100 countries and collect various

health risk indicators to provide population level estimates. Most STEPS surveys have implemented
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multistage stratified data collections. First, enumeration areas are selected as primary sampling units

(PSUs) and then households are selected as secondary sampling units. The final stage randomly

selects eligible individuals from each household. Following the design of the STEPS survey with

multistage stratified sampling, every individual i in the sample was assigned a survey weight wi. To

properly estimate the sampling variance, it is necessary to account for stratification, PSU clustering,

and weights in the analysis. Further, we are also interested in assessing whether the sample survey

design features affect the estimation of diabetes prevalence across multiple countries.

The paper structure is organized as follows. Section 1.1 describes the data and measures used in this

study in detail. Section 2 introduces the model-based inference approach. The results from different

methods in Section 3 are then compared. Section 4 summarizes the main takeaways from the study.

1.1 Data and Measures

We used a subset of the WHO’s STEPS data in this analysis, which were collected from 10 different

countries between 2015 and 2016. This dataset was processed, resulting in 26,752 individuals. We

define a case with diabetes as having any of the following: (1) a fasting plasma glucose of 7.0 mmol/L

or higher, (2) hemoglobin A1c (HbA1c) level of 6.5% or higher, or (3) self-reported use of glucose-

lowering medication or use of insulin or oral hypoglycemic drugs. This definition of diabetes is used

in the Global Monitoring Framework for Non Communicable Diseases (Gregg et al., 2023). Once

these cases are computed, a binary indicator variable for diabetes is then defined and used as the

dependent variable in the analysis. Eligible participants who have been assigned survey weights are

included. The person level covariates used in predicting our outcome are body mass index (BMI),

age, sex, and highest completed education level.

Table 1: Description of Each Country’s Sample and Sampling Weights

Country Sample Size Sum of Weights Mean SE

Algeria 6,393 25,888,236 4,049.47 1,316.80

Benin 5,073 2,441,103 481.20 1,686.59

Brunei 2,018 102,824 50.95 43.13

Ethiopia 9,800 34,097,395 3,479.33 3,707.59

Guyana 1,178 203,440 172.70 144.86

Iraq 4,071 14,942,707 3,670.53 3,569.90

Kiribati 2,156 57,561 26.70 59.80

Nauru 1,387 4,212 3.04 0.33

Solomon Is. 2,522 341,164 135.28 123.54

Vietnam 3,758 78,831,165 20,976.89 17,094.49

Table 1 includes further detailed information regarding each country sample. The ‘Sample Size’ col-

umn refers to the total number of eligible participants assigned a sampling weight and the ‘Sum of

Weights’ is the calculated total sum of the sampling weights. The ‘Mean’ column is the mean value

of the sampling weights and ‘SE’ column is the standard error of the weights.

There were missing values for some respondents’ BMI and education. The amount of item nonre-

sponse is less than 5% of the records. We assumed missing at random and used multiple imputation

to fill in missing item values with a proportional odds model accounting for the order of the BMI and

education categories. Along with these variables, other covariates used in multiple imputation were

the indicator variable for a diabetic case, age, and sex. We used one imputed dataset for simplicity,
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even though multiple completed datasets could have been pooled for analysis via combining rules.

Figure 1: Observed proportions of individuals with diabetes by age group and country.

Figure 1 displays how the observed proportions of individuals with diabetes change across age groups

for each country included in our analysis. The generally increasing trends are similar between coun-

tries but the changing rates over time are accentuated for Algeria, Brunei, Guyana, Iraq, Kiribati and

Nauru. Table 1 shows that the sample sizes across countries also varies largely. Further, the likely

cause for the spikes shown at specific age cohorts is due to small sample size for those ages.

2 Modeling Approach

We use the individual level data to model the probability of having diabetes in a logistic regression.

First, we define the outcome variable as:

yij =

{
1 if individual i in country j has the disease,

0 if individual i in country j does not have the disease,

for i = 1, . . . , nj and j = 1, . . . , J , where nj is the total number of individuals, and J is the total number

of countries. Our GLM model is specified as

log

{
Pr(yij = 1|X′

ij)

Pr(yij = 0|X′
ij)

}
= X′

ijβ, (1)

whereX′
ij denotes the person-level covariates, including BMI, age, sex, and education, and country

indicators.

The Survey Statistician 44 January 2026, Vol. 93, 42–51.



Early Career Survey Statistician

In the GLMM, we include country-level and PSU-level random intercepts to borrow information across

countries and clusters, stabilize estimates for small countries and account for the PSU clustering

effects with the following specification:

log

{
Pr(yij = 1|X′, uj , vk[i])

Pr(yij = 0|X′, uj , vk[i])

}
= X′β + uj + vk[i], (2)

whereX′ denotes the person-level covariates, uj ’s are the country-varying effects, and vk[i]’s are the

PSU-varying effects, where k[i] is the PSU index k that individual i is assigned to, uj
iid∼ N(0, σ2

u), vk
iid∼

N(0, σ2
v), with both random effects assumed to be independent, identically and normally distributed

with a mean of 0 and variance σ2
u and σ2

v , respectively. The intra-country correlation (ICC) is also

measured:

ρ =
σ2
u

σ2
u + σ2

v +
π2

3

.

Although we considered different interactions between the categorical variables and country level pre-

dictors, we did not include additional covariates because of model estimation problems. We consider

two different ways to account for weights in estimating the country-specific diabetes prevalence as

the proportion of people with the characteristics described in 1.1.

1) Using a weighted average of the estimated predicted probability p̂ij = Pr(yij = 1|X′
ij) of having

diabetes for individual i in country j based on Model (1) conditional on X′
ij . For Model (2) this is

expressed as Pr(yij = 1|X′, uj , vk[i]). The weighted average of the predicted probabilities is given

based on the Hájek estimator (Hájek, 1971). For country j, the weighted prevalence is given by

θ̂j =

∑
i∈sj wi ∗ p̂ij∑

i∈sj wi
, (3)

where sj is the sample of individuals in country j.

2) Including weights in the model fitting processes of either the GLM in (1) or the GLMM in (2). We use
the pseudo maximum likelihood (PML) estimation to obtain the parameter estimates that maximum
the weighted likelihood function, where each individual’s likelihood is powered by the corresponding
weight value (Skinner, 1989). The weighted GLM likelihood lWGLM (·) and weighted GLMM likelihood
lWGLMM (·) are as below.

lWGLM (y,X′, β, w) =

n∏
i=1

[(
exp(X′

ijβ)

1 + exp(X′
ijβ)

)yij
(

1

1 + exp(X′
ijβ)

)(1−yij)
]wi

(4)

lWGLMM (y,X′, β, u, v, w) =

n∏
i=1

[(
exp(X′β + uj + vk[i])

1 + exp(X′β + uj + vk[i])

)yij ( 1

1 + exp(X′β + uj + vk[i])

)(1−yij)
]wi

. (5)

We normalize the weights when fitting the GLMM. Rabe-Hesketh and Skrondal, 2006 show that the

weighted likelihood function requires weights at each level of the data hierarchy. Based on the STEPS

survey design, different countries independently conducted the surveys, and there was no random

selection of countries. To effectively pool estimates across countries, we scaled the person-level

weights using method 2 described in Pfeffermann et al., 1998. The weight adjustment scales the

weights wi of individuals in country j, for i ∈ sj , by adjusting the sum to be equal to the sample

size of each country nj . The adjustment factor aj for individuals in country j can be expressed as:

aj =
nj∑
i∈sj wi

, the product of which and the weight wi will be used in the pseudo maximum likelihood

(PML) estimation based on the GLMM. This scaling method has been described as performing better
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in simulations where the design is considered informative (Pfeffermann et al., 1998).

3 Model Inference

We fit GLM andGLMMmodels, both unweighted andweighted, to predict the diabetes prevalence with

age (30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65-69), BMI (<25, ≤25 & <30, and ≥30),
education (no education, primary school, high school [HS] & above), sex (male, and female), and

country indicators (Algeria, Benin, Brunei, Ethiopia, Guyana, Iraq, Kiribati, Nauru, Solomon Islands,

and Vietnam).

We account for stratification and clustering in the standard error estimation for both models. We

use analytic variance estimation via Taylor series linearization by default in the R survey package

(Lumley, 2024) and Stata (StataCorp, 2025), i.e., defining the complex survey design object including

strata codes, PSU codes, and sampling weights (for weighted estimates). To obtain country-specific

estimates, we apply the unconditional approach for variance estimation and takes the full complex

sample design into account when analyzing subpopulations (Heeringa, West, and Berglund, 2017).

When summarizing the model predictions, the complex survey design features (PSUs, strata and

weights) are accounted for to obtain design-based estimates using expression (3).

3.1 Model Estimation

Figure 2: Comparison of coefficient estimates and 95% confidence intervals for the true coefficients

between unweighted GLM 1 and weighted GLM 4.

First, we fit the unweighted GLM in (1) and weighted GLM in (4). The reference categories for each of

the predictors are those persons who are aged 30-34, male, have received no formal education, have

a BMI < 25 and reside in Algeria which is the first country in alphabetical order. The model coeffi-
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cient estimates together with the corersponding 95% confidence intervals for the true coefficients are

presented in Figure 2 . Including weights in model fitting tends to increase the variance of coefficient

estimation, resulting in wider confidence intervals as shown in Figure 2.

When comparing the coefficient point estimates of the weighted model versus the unweighted model,

the weights slightly change our interpretation of the coefficients associated with each country. For ex-

ample, across all countries, the weighted estimate’s 95% confidence interval for the effect of primary

school contain zero when its corresponding unweighted estimate does not. For all countries, the age

coefficient estimates in the weighted model are either lower or higher than those in the unweighted

model, changing without any apparent pattern. The opposite trend is the case for coefficients as-

sociated with education where the weights are reducing the magnitude for the effects of both age

categories. These subtle changes are due to the differences in the maximum likelihood estimates

when the weights are added in the GLM model fitting. The role of weights depends on the model

specification and its dependency on the sample design features. Therefore, fitting both unweighted

and weighted models is helpful when analyzing complex survey samples to gain more insight into

how the weights interact with the model fitting process.

Figure 3: Comparison of coefficient estimates and 95% confidence intervals between unweighted and

weighted generalized linear mixed-effect models.

Next we fit the unweighted GLMM in (2) and weighted GLMM in (5). The ICC measuring the intra-

country similarity is estimated to be 0.084 for the unweighted model and 0.094 in the weighted model.

Figure 3 compares the estimated model coefficients for the weighted and unweighted GLMMmodels.

In general, the model coefficients are similar between both models, although the weighted GLMM

model estimates have larger variances.

In sum, with either GLM or GLMM, including the weights in model fitting does not substantially change

the model parameter estimates.
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Table 2: Model predicted (Pred), weighted model predicted (Weighted pred), observed (Obs) and

weighted observed (Weighted Obs.) diabetes prevalence in 10 countries with standard error values

reported in parentheses.

Country Obs Pred Pred

GLM Weighted GLM GLMM Weighted GLMM

Algeria .166 (.007) .166 (.002) .163 (.002) .158 (.004) .154 (.004)

Benin .073 (.008) .073 (.001) .075 (.001) .066 (.003) .067 (.003)

Brunei .184 (.011) .184 (.003) .182 (.003) .175 (.006) .168 (.008)

Ethiopia .036 (.003) .036 (.001) .032 (.001) .032 (.001) .027 (.001)

Guyana .234 (.014) .234 (.004) .239 (.004) .219 (.005) .223 (.005)

Iraq .215 (.009) .215 (.002) .220 (.002) .204 (.004) .205 (.004)

Kiribati .208 (.013) .208 (.003) .213 (.003) .201 (.009) .201 (.008)

Nauru .233 (.015) .233 (.004) .232 (.004) .228 (.013) .227 (.013)

Solo. Is. .082 (.007) .082 (.001) .086 (.001) .076 (.004) .078 (.006)

Vietnam .053 (.004) .053 (.001) .050 (.001) .047 (.001) .044 (.001)

Country Weighted Obs. Weighted pred Weighted pred

GLM Weighted GLM GLMM Weighted GLMM

Algeria .153 (.007) .156 (.002) .153 (.002) .147 (.004) .144 (.004)

Benin .069 (.011) .067 (.003) .069 (.003) .062 (.005) .063 (.007)

Brunei .164 (.014) .164 (.003) .164 (.003) .159 (.006) .154 (.008)

Ethiopia .030 (.003) .035 (.001) .030 (.001) .029 (.001) .026 (.001)

Guyana .220 (.017) .215 (.005) .220 (.005) .201 (.005) .204 (.007)

Iraq .217 (.011) .212 (.003) .217 (.003) .204 (.005) .205 (.005)

Kiribati .211 (.014) .207 (.007) .211 (.007) .199 (.007) .206 (.011)

Nauru .235 (.015) .236 (.005) .235 (.005) .231 (.013) .230 (.013)

Solo. Is. .079 (.010) .076 (.001) .079 (.001) .071 (.004) .073 (.006)

Vietnam .046 (.004) .049 (.001) .046 (.001) .043 (.001) .040 (.001)

3.2 Model Prediction

Using both the weighted and unweighted variants of the GLM and GLMM described above, we predict

the response probability for each individual and estimate prevalence by country. The top table in Table

2 compares the observed prevalence as the simple proportion of diabetic cases divided by the total

sample size with the predictions from the GLM in (1), weighted GLM in (4), GLMM in (2), and weighted

GLMM in (5). The bottom table in Table 2 applies weights to the individual probabilities based on (3)

and presents the weighted observation using expression (3) and prediction values. Based on Table 2,

model-based predictions have lower standard errors than the observed prevalence of each country.

We have omitted the model-based error in predicting the probabilities, but the prediction variability is

smaller than the sampling error. The country-level prevalence values calculated as the average of

individual predictions from the GLM are the same as the observed summaries, which is as expected

because the GLMmodel includes the fixed effects of countries. Nevertheless, the GLMM includes the

random effects of countries, and partial pooling across countries yields predicted summaries different

from the observed values. Comparing GLM and GLMM before and after weighting, we see that using

weighted likelihood estimation does not substantially change the predicted values or standard errors.

The predictions based on GLMM have more variability than those based on GLM, probably due to the

inclusion of random effects.
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Applying weights to the individual probabilities based on (3) does change the point estimates across

countries and increases the standard errors. This is true for both observed and predicted values

from all models. The weighted predictive averages based on the weighted GLM are the same as

the weighted observed summaries but the standard errors are lower. The reason for the weighted

predictive averages being the same is because the weights have been normalized to equal the sum

of the sample size within each country. Overall, this shows that using a weighted average of the pre-

dicted probabilities generates larger influences than including weights in the model fitting processes.

Weights are more influential for descriptive summaries than model estimates, which is consistent with

the literature findings, e.g., Si, Lee, and Heeringa, 2024.

4 Conclusion

In this study, we used a case study with international health surveys to assess the role of survey

weights in model inference and prevalence estimation. We considered two different ways of includ-

ing weights with model estimates: using weighted likelihood functions for model fitting and weighted

average values of individual predictions. We compared GLM and GLMM estimates as well as un-

weighted and weighted variants of these models. We found that including weights in the model fitting

processes does not substantially change the estimated model coefficients and predictions. The dif-

ference between weighted and unweighted prevalence summaries is more pronounced than that of

the model parameter estimates. We recommend comparing the weighted and unweighted descriptive

summaries as a standard analysis routine in practice.

Finally, our empirical comparisons cannot be validated without knowing the gold-standard or true

values. When comparing these diabetes estimates to those published in other sources, there may be

some cases where the unweighted estimates are closer to estimates found by experts in these fields,

while other cases have weighted estimates with closer comparisons. This dilemma demonstrates the

need to work with experts in the topic of analysis who can properly evaluate survey estimates beyond

the statistical component. As pointed out above, we only use one set of predicted probabilities for the

point estimates and omitted the prediction error due to model fitting. The model-based error is smaller

than the sampling error. Future work would be needed to develop practical methods that account for

both modeling and sampling error, such as using Monte Carlo simulation.

5 Data and Software

This paper uses data from the Algeria 2016 (Ministry of Health (Algeria), Population and Hospital

Reform, and World Health Organization (WHO), 2017), Benin 2015 (Ministry of Health (Benin), and

World Health Organization (WHO), 2015), Brunei Darussalam 2015-2016 (Ministry of Health (Brunei),

andWorld Health Organization (WHO), 2016), Ethiopia 2015 Ethiopia Public Health Institute, Federal

Ministry of Health (Ethiopia) and World Health Organization (WHO), 2016, Guyana

2016 (Pan American Health Organization (PAHO), Ministry of Public Health of Guyana, and the

Bureau of Statistics (Guyana), 2019), Iraq 2015 (Ministry of Health (Iraq), Ministry of Planning (Iraq),

World Health Organization (WHO), 2015), Kiribati 2015-2016 (Ministry of Health andMedical Services

(Kiribati), World Health Organization (WHO), 2015), Nauru 2015 (Ministry of Health (Nauru), World

Health Organization (WHO), 2016), Solomon Islands 2015 (Ministry of Health (Solomon Islands),

World Health Organization (WHO), 2020), and Viet Nam 2015 (Ministry of Health (Vietnam), World

Health Organization (WHO), 2016) STEPS surveys. These surveys were implemented by the agen-
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cies listed in each citation along with support by the World Health Organization. These datasets are

available upon request from the https://extranet.who.int/ncdsmicrodata/index.php/homeWHO NCD

Microdata Repository.

The svyglm function in the https://cran.r-project.org/package=surveysurvey package for R software

was used to fit GLMs (Lumley, 2010). The https://www.stata.com/manuals/memelogit.pdfmelogit

function within Stata software was used to fit the GLMMs.

The https://cran.r-project.org/package=micemice package of R software was used for multiple impu-

tation (Van Buuren and Groothuis-Oudshoorn, 2011).
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Abstract

Small area estimation (SAE) provides reliable inference for domains with limited survey sample data

by borrowing strength across areas throughmodeling. The typical area-level model assumes normally

distributed random effects, an assumption that may not hold in practice. This paper empirically exam-

ines the performance of residual maximum likelihood (REML) and adjusted REML estimators under

general area-level models with non-normal random effects. Using simulations with heavy-tailed and

asymmetric distributions, we evaluate point estimation and prediction interval performance. REML

remains reasonably robust in estimating the variance component and supporting reliable predictions,

but zero boundary estimates can degrade interval performance when the number of domains is small.

Adjusted REML reduces boundary issues and yields more reliable interval coverage while maintaining

competitive estimation accuracy. These results highlight adjusted likelihood methods as a practical

and robust option even when the normality assumption is uncertain.

Keywords: data linkage, survey statistics, uncertainty quantification.

1 Introduction

In survey sampling, researchers often aim to estimate population parameters such as totals, means,

or proportions based on data from a representative sample. In many practical settings, however,

it is also of interest to estimate similar characteristics for specific subpopulations or domains (e.g.,

regions, demographic groups, or institutions). Large-scale surveys are typically designed to yield

reliable estimates for large domains, but for smaller domains, the sample sizes may be too small or

even zero, to produce direct estimates with acceptable precision. This situation gives rise to the small

area problem.

To address this challenge without increasing sample sizes, small area estimation (SAE) techniques

have been developed to “borrow strength” across related areas. Model-based SAE methods achieve

this by linking data from different areas through statistical models that include area-specific random

effects and auxiliary information. These approaches enable more precise and reliable estimation of

small area parameters.

Suppose that the population of interest, U , is partitioned intom areas ( or subpopulations), denoted by

U1, · · · , Um and that we are interested in estimating the corresponding area means {θi, i = 1, · · · ,m}.
Let si denote the sample drawn from area Ui. When the sample size ni is small, we may encounter

the small area issue. A widely used framework in SAE is the two-level area-level model, which for

area i = 1, · · · ,m, can be expressed as:

Level 1: (Sampling model): ŷi|θi
ind∼ N (θi, Di);

Level 2: (Linking model): θi
ind∼ G(x′

iβ,A, φ).
(1)
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The Level 1 model represents the sampling distribution of the direct estimator ŷi, which may be a

weighted or unweighted estimate for area i. For example, ŷi could be the sample mean based on ni

observations from area i with sampling variance Di = σ2/ni, where σ2 is known or reliably estimated

from all areas (Fay and Herriot, 1979; Otto and Bell, 1995; Hawala and Lahiri, 2018). The Level 2

model links the true small area means θi to a vector of known auxiliary variables xi = (xi1, · · · , xip)′,
often obtained from administrative records, census data, or other external sources. We assume

that the Level 2 distribution G is a fully parametric distribution, not necessarily normal, with mean

E(θi) = x′
iβ, variance Var(θi) = A ≥ 0, and any additional parameters φ. The coefficient vector

β ∈ Rp and the variance component A are unknown and must be estimated from the data.

The classical area-level model proposed by Fay and Herriot (1979) assumes normality at both levels.

The normality assumption at Level 1 may not be considered as restrictive as the normality of θi, due

to the central limit theorem’s effect on direct estimator ŷi (Rao and Molina, 2015; Jiang and Torabi,

2022). To relax this assumption, recent studies have explored non-normal alternatives for the Level

2 distribution G (Chen, Hirose, and Lahiri, 2024). For instance, Bell and Huang (2006) used a t-

distribution to mitigate the influence of outliers; Fabrizi and Trivisano (2010) proposed exponential

power and skewed exponential power distributions to handle heavy-tailed or asymmetric effects; and

Jiang and Torabi (2022) employed a skewed normal distribution.

The above two-level model can equivalently be expressed as the linear mixed model:

ŷi = θi + ei = x′
iβ + ui + ei, i = 1, · · · ,m, (2)

where random effects ui’s and sampling errors ei’s are independent with ui
i.i.d∼ G(0, A, φ) and ei

ind∼
N (0, Di). The small area parameter of interest is θi = x′

iβ + ui, i = 1, · · · ,m. When A is known, the

best linear unbiased predictor (BLUP) of θi that minimize the mean squared prediction error (MSPE)

among all linear unbiased predictors, is given by

θ̃i = (1−Bi)ŷi +Bix′
iβ̃, (3)

where Bi = Di/(A + Di) is the shrinkage factor, β̃ = β̃(A) is the standard weighted least squares

estimator of β. The BLUP effectively shrinks the direct estimator yi toward the regression synthetic

estimator x′
iβ̃, with the degree of shrinkage determined by Bi. In this paper, we assume A > 0.

In practice, since A is unknown, it must be estimated from the data, leading to the empirical BLUP

(EBLUP):

θ̂i = (1− B̂i)yi + B̂ix′
iβ̂, (4)

where B̂i = Di/(Â+Di) and β̂ = β̃(Â).

When G is normal, several methods have been proposed to estimate A, including the Fay-Herriot

method-of-moments (FH) estimator (Fay andHerriot, 1979), the Prasad-Rao simplemethod-of-moments

(PR) estimator (Prasad and Rao, 1990), the maximum likelihood (ML) estimators and the residual

maximum likelihood (REML) estimators (Datta and Lahiri, 2000). When the number of areas m is

small, standard variance estimation methods, particularly the PR estimator, often produce boundary

estimate A = 0, leading to B̂i = 1 for all i, even when some of the true Bi are not close to 1 (Li

and Lahiri, 2010; Chen, Hirose, and Lahiri, 2024). This causes an overshrinkage problem in EBLUP,

since now the EBLUP of θi reduces to the regression synthetic estimator. Moreover, with Â = 0,

it also causes the problem of degenerate distribution and prevents the use of parametric bootstrap

methods for uncertainty quantification, such as estimating MSPE or constructing prediction intervals.
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To address this issue under normal random effects, several adjusted likelihood methods have been

developed to guarantee positive estimates of A (Li, 2007; Yoshimori and Lahiri, 2014; Hirose and

Lahiri, 2018). These methods solve the two problems above simultaneously in SAE applications. In

addition, they show that the biases of the adjusted ML and REML estimators are of order O(m−1)

(Li and Lahiri, 2010), and those of the parametric bootstrap MSPE being o(m−1) (Hirose and Lahiri,

2018). However, the performance of these adjusted estimators when the random effects are non-

normal remains largely unexplored.

In this study, we investigate methods for estimating variance components under a general area-level

model that allows for possibly non-normal random effects. Laird and Ware, 1982 and Cressie, 1990,

among others, have favored the REML method over the ML method for variance component estima-

tion in complex small area models. This preference was later supported by Datta and Lahiri (2000), in

which they showed that the REML estimator has a lower order of bias than the ML estimator. There-

fore, in this paper, we focus on the REML approach. Following Jiang (1996), we define the REML

estimator of variance components as the solution to the REML equations, which we introduce in the

next section. Although Jiang (1996) theoretically showed that REML estimates are consistent under

certain identifiability and information conditions, their empirical performance under non-normal ran-

dom effects has not been well studied in SAE. We therefore (i) empirically evaluate the performance

of REML estimators under various non-normal settings, and (ii) extend the adjusted REML methods

of Li and Lahiri (2010) to the general area-level model, assessing their performance through Monte

Carlo simulations.

The remainder of this paper is organized as follows. Section 2 provides the list of notations and regu-

larity conditions. Section 3 reviews the estimation methods for variance components, including REML

and adjusted REML estimators. Section 4 presents Monte Carlo simulation results comparing differ-

ent estimators under various model settings. Section 5 concludes with a summary and discussion.

2 A list of notations and regularity conditions

We introduce the following notations that will be used throughout the paper:

y = (ŷ1, · · · , ŷm)′, a m× 1 column vector of direct estimates;

X ′ = (x1, · · · , xm), a p×m known matrix of rank p;

Σ = diag(A+D1, · · · , A+Dm), a m×m diagonal matrix;

β̃ = (X ′Σ−1X)−1X ′Σ−1y, weighted least square estimator of β with known A;

P = Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1.

We assume the following regularity conditions throughout the paper:

r.1 rank(X) = p is fixed;

r.2 supi≥1 hii = O(m−1), where hii = x′
i(X

′X)−1xi;

r.3 0 < infi≥1Di ≤ supi≥1Di < ∞.
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3 REML and adjusted REML estimators

The REML approach introduced by Patterson and Thompson (1971), eliminates dependence on nui-

sance parameters by basing inference on linear transformations of the data that remove the fixed

effects. Under normality at both levels, the restricted likelihood function is given by:

LRE(A) = c|X ′Σ−1X|−
1
2 |Σ|−

1
2 exp

(
−1

2
y′Py

)
(5)

where c is a constant independent ofA. Let lRE(A) denote the corresponding restricted log-likelihood.

The REML estimator ÂRE satisfies:

∂lRE(A)

∂A
=

1

2

[
y′P2y − tr(P)

]
= 0

(6)

In general (without assuming normality), the REML estimate ÂRE is defined as solution of (6).

Following Li and Lahiri (2010), we also consider the same adjusted restricted likelihood under the

general area-level model:

Ladj(A) = A× LRE(A). (7)

The adjusted maximum likelihood estimator Âadj is obtained by maximizing Ladj(A) or its logarithmic

form, ladj(A).

Since LRE(A) is a continuous positive function of A and limA→∞A × LRE(A) = 0 for m > p + 2 , it

follows from Lemma 2.1 of Li (2007) that the maximizer Âadj is strictly positive.

Specifically, because LRE(A) > 0 for all A, we have A× LRE(A) ≤ 0 for A ≤ 0 and A× LRE(A) > 0

for A > 0. Moreover, since A× LRE(A) → 0 as A → ∞, there exists some A0 > 0 such that

A0 × LRE(A0) = max
A

{A× LRE},

which ensures that the maximizer A0 is positive.

3.1 Parametric bootstrap prediction intervals

A traditional prediction interval for θi is of the form θ̂i±zα/2
√mspe, where zα/2 is the 100(1−α/2)th stan-

dard normal percentile and mspe is an estimate of the mean squared prediction error of θ̂i. However,
such intervals have coverage errors of order O(m−1), which may be inadequate for small area ap-

plications. Chatterjee, Lahiri, and Li, 2008 proposed a parametric bootstrap method that constructs

intervals from the bootstrap distribution approximation of σ̂−1
1 (θi − θ̂i) under a normal linear mixed

model, where σ̂2
1 = Di(1− B̂i). This method achieves improved coverage error of order O(m−3/2).

Chen, Hirose, and Lahiri (2024) extended this method to the general area-level model (1) with non-

normal level-2 distributions, and interestingly found that the bootstrap intervals can exhibit overcov-

erage under certain conditions. Their simulations also showed that there was high percentage of

zero estimates in ÂPR estimator which affects the performance of associated bootstrap intervals. The

result is consistent with the findings in Li and Lahiri, 2010.

In this paper, we assess the performance of the similar parametric bootstrap procedures under non-
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normal models using the REML and adjusted REML estimators of A. Specifically, let

ŷ∗i = x′
iβ̂ + u∗i + e∗i

where u∗i
iid∼ G(0, Â, φ̂) and e∗i

ind∼ N(0, Di) for i = 1, · · · ,m. Denote by β̂∗, Â∗, θ̂∗i , and σ̂∗
1 the quantities

computed from bootstrap samples y∗ = {ŷ∗i , i = 1, · · · ,m}, and let θ∗i = x′
iβ̂ + u∗i . The bootstrap

distribution of σ̂∗−1
1 (θ∗i − θ̂∗i ) is then used to approximate the distribution of σ̂

−1
1 (θi − θ̂i). For a given

significance level α, let ql and qu denote the α/2 and 1 − α/2 quantiles of the bootstrap distribution,

respectively. The parametric bootstrap prediction interval for θi is then given by (θ̂i + qlσ̂1, θ̂i + quσ̂1).

4 Monte Carlo Simulations

To empirically evaluate the performance of various variance estimators and their associated prediction

intervals in small m settings, we consider m = 10 and m = 15. Following Li and Lahiri, 2010, we use

an unbalanced pattern for the sampling variances (Di), consisting of five groups of small areas with

common Di values within each group. Specifically, we set Di ∈ {4.0, 0.6, 0.5, 0.4, 0.2} and fix A = 1.

Without loss of generality, we take x′
iβ = 0. To reflect practical conditions, we still estimate the mean

even when it is theoretically zero. Since areas within each group are exchangeable, we summarize

results by group means in the tables.

We consider two non-normal Level 2 distributions in the area-level model (1): (i) a t-distribution with

5 degrees of freedom (symmetric case), and (ii) a shifted exponential (SE) distribution (asymmetric

case). For each distributional scenario, we generate N = 1, 000 independent datasets {yi, i =

1, . . . ,m} and use 1,000 bootstrap samples to construct the parametric bootstrap prediction intervals.

We examine three estimators of A: the PR estimator ÂPR which does not rely on distributional as-

sumptions, the REML estimator ÂRE and the adjusted REML estimator ÂAR. We use both bias and

mean squared error to compare different estimators. Let Â(j) be the estimate for the jth simulation

run. We compute the following Monte Carlo measures:

Bias(Â) =
1

N

N∑
j=1

(Â(j) −A), RMSE(Â) =

√√√√ 1

N

N∑
j=1

(Â(j) −A)2.

Table 1 shows the percentages of zero estimates in Â and Â∗. For m = 10, the PR estimator yields

the highest rate of zero estimates in both Â and Â∗. Under the shifted exponential distribution, REML

also result in a zero estimate in Â although the percentage of 0 is relatively low (about 0.1%). All

methods can produce zero estimates in Â∗, and the adjusted REML estimator exhibits the lowest

percentage in all cases. As m increases to 15, the chance of zero estimate decreases across all

methods.

Table 2 summarizes the small-sample performance of the three variance estimators in terms of bias

and RMSE. Both PR and REML generally show smaller bias than adjusted REML. Overall, REML

achieves the best performance in terms of both bias and RMSE under both distributions. The per-

formance of adjusted REML estimator improves as m increases in terms of both bias and RMSE.

In SAE applications, prediction is often the primary objective. To investigate prediction accuracy of

EBLUP with different plug-in variance estimates, we approximate the true MSPE through Monte Carlo
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Table 1: Percentages of zero estimates in Â and Â∗ for different estimation methods.

m ÂPR ÂRE ÂAR Â∗
PR Â∗

RE Â∗
AR

t {ui}
10 21.900 0 0 33.411 0.015 <0.001

15 11.700 0 0 25.120 0.001 0

Shifted exponential {ui}
10 26.200 0.100 0 36.673 0.022 0.001

15 16.100 0 0 27.714 0.001 <0.001

Table 2: Comparison of different estimators of A for m = 10 and m = 15 with true value of A = 1.

Monte Carlo Bias Monte Carlo RMSE

m PR RE AR PR RE AR

t {ui}
10 0.035 -0.015 0.720 1.225 0.901 1.409

15 0.074 0.011 0.437 1.031 0.762 1.002

Shifted exponential {ui}
10 0.053 -0.043 0.690 1.418 1.119 1.653

15 0.086 0.014 0.443 1.148 0.917 1.173

simulations. Let θ
(j)
i and θ̂

(j)
i be simulated true value and the EBLUP for area i in the jth simulation

respectively, i = 1, · · · ,m; j = 1, · · · , N . We also compute the Monte Carlo mean squared prediction

error of θ̂i:

MSPE(θ̂i) =
1

N

N∑
j=1

(θ̂
(j)
i − θ

(j)
i )2.

Figure (1) shows the simulated MSPE results. When m = 10, θ̂i(ÂRE) tends to have the smallest

MSPE when the sampling variance is large (Di = 4), and θ̂i(ÂRE) and θ̂i(ÂAR) outperform θ̂i(ÂPR)

in the remaining groups. When m = 15, θ̂i(ÂRE) and θ̂i(ÂAR) perform similarly across all groups and

better than θ̂i(ÂPR).

For interval estimation, we compare two traditional intervals of the form θ̂i ± zα/2
√mspe based on

ÂPR and ÂRE, and three parametric bootstrap intervals based on ÂPR, ÂRE, and ÂAR. Derivations of

mspe(θ̂i) using ÂPR and ÂRE appear in Prasad and Rao (1990) and Datta and Lahiri (2000), respec-

tively.

Tables 3 and 4 present the empirical coverage probabilities and average lengths for nominal 95%

intervals. When m = 10, the parametric bootstrap method using ÂAR (PB-AR) performs the best

in terms of the coverage probabilities and the average lengths. The PR-based traditional interval

(PR) and PB-PR show severe undercoverage across all groups. The traditional REML interval also

undercovers, especially for group 1. PB-RE achieves good coverage but yields substantially longer

intervals than PB-AR. This may be because the REML method sometimes produces zero estimates.

Since the estimate Â∗ appears in the denominator of the term σ̂∗−1
1 (θ∗i − θ̂∗i ) used in our parametric

bootstrap method, this quantity becomes undefined whenever Â∗
RE = 0. To address this issue, we

replaced those zero estimates with 0.01. In such cases, the resulting values can be extremely large,

which may in turn lead to overly wide prediction intervals. As m increases, all methods improve,

although PR, RE, and PB-PR still exhibit undercoverage. Overall, PB-AR provides competitive cov-
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Figure 1: Simulated mean squared prediction error of θ̂i(Â).
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erage probabilities and interval lengths, showing only slight undercoverage for Group 1 under the

shifted exponential distribution.

Table 3: Average Monte Carlo coverage and average length of different intervals for m = 10 with

nominal coverage = 95% under t-distribution and shifted exponential distribution.
PR RE PB-PR PB-RE PB-AR

t {ui}
G1 84.10 ( 12.78 ) 88.70 ( 3.52 ) 83.90 ( 11.18 ) 96.25 ( 9.12 ) 95.10 ( 4.26 )

G2 85.65 ( 11.22 ) 93.90 ( 2.53 ) 85.65 ( 6.74 ) 96.75 ( 5.39 ) 95.15 ( 2.56 )

G3 85.65 ( 11.22 ) 93.90 ( 2.53 ) 85.65 ( 6.74 ) 96.75 ( 5.39 ) 95.15 ( 2.56 )

G4 86.00 ( 10.76 ) 94.60 ( 2.24 ) 86.10 ( 5.69 ) 96.70 ( 4.42 ) 94.65 ( 2.19 )

G5 86.25 ( 9.65 ) 96.30 ( 1.77 ) 86.60 ( 3.97 ) 97.25 ( 2.94 ) 94.70 ( 1.63 )

Shifted exponential {ui}
G1 84.20 ( 12.06 ) 87.85 ( 3.31 ) 84.10 ( 10.41 ) 94.55 ( 9.52 ) 94.85 ( 4.18 )

G2 83.85 ( 10.52 ) 93.70 ( 2.44 ) 83.90 ( 6.19 ) 95.50 ( 5.41 ) 94.80 ( 2.48 )

G3 83.85 ( 10.52 ) 93.70 ( 2.44 ) 83.90 ( 6.19 ) 95.50 ( 5.41 ) 94.80 ( 2.48 )

G4 84.30 ( 10.14 ) 95.45 ( 2.20 ) 84.75 ( 5.26 ) 95.95 ( 4.42 ) 95.00 ( 2.14 )

G5 87.05 ( 9.08 ) 96.80 ( 1.80 ) 87.35 ( 3.69 ) 96.00 ( 3.02 ) 94.70 ( 1.61 )

Table 4: Average Monte Carlo coverage and average length of different intervals for m = 15 with

nominal coverage = 95% under t-distribution and shifted exponential distribution.
PR RE PB-PR PB-RE PB-AR

t {ui}
G1 90.40 ( 10.76 ) 90.60 ( 3.52 ) 90.13 ( 9.52 ) 97.97 ( 6.46 ) 95.00 ( 4.07 )

G2 90.67 ( 9.82 ) 93.50 ( 2.46 ) 90.70 ( 6.02 ) 97.60 ( 3.98 ) 95.17 ( 2.50 )

G3 89.93 ( 9.74 ) 93.87 ( 2.33 ) 90.00 ( 5.65 ) 97.30 ( 3.69 ) 94.80 ( 2.34 )

G4 90.37 ( 9.61 ) 93.73 ( 2.17 ) 90.20 ( 5.18 ) 97.13 ( 3.34 ) 94.43 ( 2.15 )

G5 91.10 ( 8.99 ) 95.27 ( 1.68 ) 91.17 ( 3.75 ) 97.57 ( 2.35 ) 94.67 ( 1.62 )

Shifted exponential {ui}
G1 87.73 ( 10.63 ) 89.23 ( 3.40 ) 87.73 ( 9.36 ) 95.83 ( 7.14 ) 93.73 ( 4.09 )

G2 89.13 ( 9.68 ) 93.60 ( 2.40 ) 89.20 ( 5.85 ) 96.50 ( 4.24 ) 94.97 ( 2.45 )

G3 88.07 ( 9.56 ) 93.63 ( 2.28 ) 88.10 ( 5.47 ) 96.27 ( 3.94 ) 94.40 ( 2.29 )

G4 89.03 ( 9.44 ) 94.03 ( 2.13 ) 88.67 ( 5.02 ) 95.97 ( 3.56 ) 94.60 ( 2.11 )

G5 88.83 ( 8.85 ) 95.60 ( 1.69 ) 88.97 ( 3.64 ) 96.10 ( 2.51 ) 94.37 ( 1.60 )

5 Discussion

This study provides empirical evidence on variance component estimation in general area-level mod-

els that allow non-normal random effects. The results indicate that the REML estimator can remain

reasonably robust to deviations from normality, even when the number of areas is relatively small (for

example,m = 10). Under both heavy-tailed and asymmetric random effect distributions, according to

our simulation results, the bias of the REML estimator is similar to the PR estimator and its RMSE is

smaller than both PR and adjusted REML estimators. Moreover, associated EBLUP based on REML

estimate tends to perform well in prediction accuracy.

The simulation results also show that the effectiveness of parametric bootstrap prediction intervals

depends heavily on the variance component estimator. When zero estimates are frequent, particularly

when using the PR variance estimator, bootstrap intervals become unreliable due to the induced

degeneracy. In contrast, the adjusted REML estimator reduces boundary estimates and supports
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stable bootstrap inference, leading to improved coverage across all simulation settings considered.

This indicates that parametric bootstrap intervals based on adjusted REML estimates could be an

effective alternative, when m is small.

There are promising directions for future work. For example, a deeper theoretical investigation of ad-

justed REML under non-normal random effects, including refined bias corrections and accurate MSPE

estimation of EBLUP with adjust REML variance estimate, would strengthen its methodological foun-

dations. Overall, the findings highlight that positive and stable estimation of variance components is

essential for reliable small area prediction and inference. Adjusted likelihood methods offer a practi-

cal and robust alternative in applications where the normality assumption for random effects may not

hold.
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Small area estimation (SAE) has become increasingly important in both research and practical appli-

cations. A small area refers either to a geographic area or to a subpopulation for which direct esti-

mates are unreliable because of limited domain-sample sizes. SAE addresses this issue by borrowing

strength - that is, by using auxiliary information through statistical modeling to improve estimation ac-

curacy. However, this improvement involves a trade-off, which forms the central theme of the book.

The authors address a crucial gap between classical SAE models and the growing demand for reli-

able estimation in the presence of model misspecification, outliers, and complex data structures.

Intended for researchers and graduate students in statistics, data science, and related fields, the book

also offers practical guidance for practitioners, including those working in government and public sec-

tor organizations.

The book comprises seven well-structured chapters that progress logically from fundamental concepts

to cutting-edge developments. Each chapter reinforces its theoretical discussions with illustrative

examples, simulation experiments, or case studies based on real data.

Chapter 1 ‘Small Area Estimation: A Brief Overview’ presents the motivation and fundamental ideas

behind SAE. It outlines key estimation strategies, including direct and indirect estimation methods

such as the Fay-Herriot model and the nested-error regression (NER)model, and provides an overview

of available software packages.

Chapter 2 ‘SAE Methods Built on Weaker Assumptions’ examines how SAE methods and mean

squared prediction error (MSPE) estimation can be developed with fewer or less restrictive statis-

tical assumptions, making them more robust to model misspecification. It introduces techniques such

as the robust empirical Bayes estimator, the regression average, non-Gaussian mixed models and

heteroscedastic NER models. The chapter also includes simulation studies and practical examples,

such as grape production and income data.

Chapter 3 ‘Outlier Robustness’ explores methods that make SAE robust to outliers. Robust tech-

niques like the robust EBLUP, M-quantile regression, and density power divergence, which reduce

outlier influence while keeping efficiency, are introduced. Detecting and adjusting for outliers to im-

prove prediction accuracy are also covered.

Chapter 4 ‘Observed Best Prediction’ introduces a method designed to make SAE more robust to

model misspecification. Unlike traditional EBLUP, observed best prediction (OBP) estimates model

parameters by minimizing the observed mean squared prediction error, giving more weight to areas

with high sampling variance leading to predictions that remain reliable even when the assumed model

is partly wrong. Moreover, the observed best selective predictor (OBSP), which combines variable se-
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lection and parameter estimation, and the compromised best predictor (CBP), which can be described

as a weighted average of the EBLUP and the OBP, are explored.

Chapter 5 ‘More Flexible Models’ addresses advanced SAE methods that use semi-parametric, non-

parametric, and functional models to reduce dependence on parametric assumptions. These models

employ tools like splines, kernel functions, and functional mixed-effects models to capture complex,

nonlinear relationships between variables. By allowing model flexibility, they improve robustness

against model misspecification and perform better even for time-series data.

Chapter 6 ‘Model Selection and Diagnostics’ discusses how to choose and validate models in SAE. It

reviews classical and modern selection tools such as information criteria, fence methods, and shrink-

age selection. The chapter also explains diagnostic techniques like (robust) goodness-of-fit tests and

the tailoring method to detect violations of the model assumptions.

Chapter 7 ‘Other Topics’ discusses several additional topics connected to robust SAE. It covers bench-

marking, Bayesian, and machine learning methods (like mixed-effects random forests, neural net-

works, and gradient boosting), as well as approaches for handling missing data and classified mixed

model prediction. The chapter concludes by discussing new challenges - such as Big Data, data

quality, and privacy protection (differential privacy) - and calls for future SAE methods that remain

robust in modern data environments.

The book is an impressive and timely contribution to the literature on SAE, skillfully combining a deep

theoretical framework, modern methodological advances, and practical insights for real-world appli-

cations. A notable strength of the book lies in its integration of theory and applications. The authors

devote substantial attention to real-world examples, including data on income and poverty, agricul-

tural yields, and health indicators. Although the book is mainly aimed at researchers and graduate

students, this hands-on approach is particularly valuable for practitioners, helping them understand

and adopt robust SAE methods with greater ease.

©The author. 2026. Published by International Association of Survey Statisticians. This

is anOpen Access article distributed under the terms of the Creative Commons Attribution

Licence, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.
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Abstract

The review presents the main features of the R2BEAT R package (Fasulo et al., 2023), which is

designed for optimal sample allocation. The package integrates the Bethel (1989) algorithm, which

extends optimal allocation (Tschprow, 1923; Neyman, 1934) to the multi-domain and multi-purpose

case, and it also implements the extension proposed by Falorsi et al. (1998) for handling complex

sampling designs. The package streamlines the entire sample design workflow, from sample optimi-

sation to selection of sampling units.

Keywords: sampling, stratification, two-stage, design effect.

1 Introduction

Sample surveys conducted by National Statistical Institutes (NSIs) and other organisations often pur-

sue multi-domain and multi-purpose objectives. Consequently, they are required to produce ac-

curate estimates for multiple parameters and across various domains, both geographical and non-

geographical.

Since surveys are subject to budgetary and logistical constraints, their design must be carefully

planned to ensure high-quality estimates for the parameters of interest. Within this framework, sev-

eral crucial decisions must be made, including determining the sample size, defining the stratification

scheme, and allocating sampling units across strata and stages.

The proposed package, R2BEAT (standing for R “to” Bethel Extended Allocation for Two-stage), has

been developed within this context (Barcaroli et al., 2023). It integrates the Bethel (1989) algorithm,

which extends optimal allocation (Tschprow, 1923; Neyman, 1934) to the multi-domain and multi-

purpose case, and it also implements the extension proposed by Falorsi et al. (1998) for handling

complex sampling designs. Therefore, it fills an existing gap in the range of statistical software dedi-

cated to sample size allocation, providing an advanced and flexible tool for the R community.

The paper is organised as follows. Section 2 describes the structure of the package and the case

study used to illustrate its functionality. Section 3 explains the workflow for stratified sampling design

- very common in economic surveys - while Section 4 focuses on two-stage sampling design with

stratification of the primary stage units - widely used in household surveys. Finally, Section 5 provides

conclusions.

For additional details and overview of further functions, readers may refer to the companion paper by

Barcaroli et al. (2023). The workflow presented is based on the most recent functions available on
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the GitHub page of the package which are expected to be included in the forthcoming official release

of the package.

2 Preliminarities

2.1 Structure of the package

TheR2BEAT package provides a comprehensive set of functions for designing and selecting samples

through optimal allocation, both for stratified and two-stagewith stratification of the primary stage units.

The appropriate sampling design to apply in a specific situation depends on the information available

in the sampling frame, for example, for implementing stratification or an unequal-inclusion-probability

sampling design. In addition, to perform optimal allocation, information on the target variable(s) or at

least on a suitable proxy is required. Such information may be obtained from a sampling frame, such

as a register, or from a sample survey, either a concurrent survey or a previous wave of the same

survey, and can be used to guide the allocation of the sampling units.

R2BEAT is able to manage both the scenarios and the typical workflow for designing and selecting a

sample involves three main steps: (1) preparing the input data, (2) defining the sampling design and

computing the optimal allocation, and (3) selecting the final sample units.

To install the latest stable version of R2BEAT fromCRAN, use the command install.packages("R2BEAT")
within the R environment. The most recent development version is available on GitHub and can be

installed by executing devtools::install_github("barcaroli/R2BEAT_2.0").

2.2 Case study

In this paper, we develop the workflow under a stratified sampling design and a two-stage sampling

design with stratification of the primary sampling units1. In both cases, a sampling frame covering the

entire population of interest is required, whereas information on the target variable(s) is obtained from

a previously conducted sample survey. The case in which such information is available directly on

the sampling frame differs slightly from this setting, and readers are referred to Barcaroli et al. (2023).

The sampling frame considered in this paper, pop.RData, refers to a population of 2,258,507 individ-
uals and contains the following variables:

'data.frame': 2258507 obs. of 13 variables:
$ id_ind : int 1 2 3 4 5 6 7 8 9 10 ...
$ id_hh : Factor w/ 963018 levels "H1","H10","H100",..: 1 1 1 2 3 3 3 3 ...
$ municipality : num 1 1 1 1 1 1 1 1 1 1 ...
$ province : Factor w/ 6 levels "north_1","north_2",..: 1 1 1 1 1 1 1 1 1 1 ...
$ region : Factor w/ 3 levels "north","center",..: 1 1 1 1 1 1 1 1 1 1 ...
$ sex : int 1 2 1 2 1 1 2 2 1 1 ...
$ cl_age : Factor w/ 8 levels "(0,14]","(14,24]",..: 3 7 8 5 4 6 6 4 4 1 ...
$ active : num 1 1 0 1 1 1 1 1 1 0 ...
$ unemployed : num 0 0 0 0 0 0 0 0 0 0 ...
$ inactive : num 0 0 1 0 0 0 0 0 0 1 ...
$ income_hh : num 30488 30488 30488 21756 29871 ...

1To reproduce the analyses presented in these examples, all datasets are available for download at

https://github.com/barcaroli/R2BEAT_datahttps://github.com/barcaroli/R2BEAT_data.
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In particular, it contains

• id_ind: individual identifier,
• id_hh: household identifier to which the individual belongs,
• municipality: municipality identifier in which the individual lives,
• province: province (NUTS3) identifier in which the individual lives,
• region: region (NUTS2) identifier in which the individual lives;

demographic information:

• sex: sex of the individual,
• cl_age: age class of the individual in ten-year intervals;

information on target variables:

• active: binary indicator for occupational status “active”,
• inactive: binary indicator for occupational status “inactive”,
• unemployed: binary indicator for occupational status “unemployed”,
• income_hh: income.

Furthermore, for the present purpose, sampling data from a previous survey are also considered,

sample.RData, comprising a two-stage (municipalities and individuals) sample of 9,421 units drawn

from Pop.RData. This dataset includes the same variables described above and, in addition, the

following variables useful for the present purpose:

• weight: the sampling weights assigned to each sampling unit,
• stratum_2: the strata used for stratifying the municipalities,
• SR: binary indicator for the Self-Representative (SR) municipalities. It is equal to 1 for the munic-
ipalities that are included certainly in the sample (inclusion probability equal to 1), 0 otherwise.

3 Stratified sampling design

Stratification of the sample is very common and highly effective. When one or more variables corre-

lated with the survey’s target variables are available in the sampling frame, it is possible to partition

the sampling units into strata and select an independent sample from each of them in order to obtain

more efficient estimates.

Defining the proper number of sampling units to be collected in each stratum is an allocation problem.

The optimal allocation (Tschprow, 1923; Neyman, 1934) assigns a larger portion of the sample to

strata with greater population size and, in particular, to those characterised by higher variability of

the target variable. In such strata, a greater sample size is required to achieve the desired level of

efficiency of the estimates.

The allocation problem in the multivariate andmulti-domain case can be formulated as an optimisation

problem (Bethel, 1989), where the objective is to minimise the cost of the survey, usually expressed

in terms of sample size, subject to a set of precision constraints on the estimates.

3.1 Step 1: Input preparation

From this premise, it follows straightforwardly that the inputs required to perform optimal allocation

are strata information and a set of precision constraints for the estimates of the target variables.
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The strata information can be obtained using the function prepareInputToAllocation_beat.1st.
The parameters to be specified in the function are:

• frame: the sampling frame containing necessarily the identifier of the units, strata and domain

variables and optionally the target variable(s).

• sample (optional): sample survey data, containing necessarily the strata and domains variables,
the target variable(s) and the sampling weights. In this way, statistical summaries of the target

variables will be estimated on the sample. Strata and domains variables must be consistent

with those defined for samp_frame dataframe. Default is NULL, meaning that just sampling

frame data are used,

• ID: name of the identifier of the units in the sampling frame.
• stratum: either name of the variable in samp_frame, which is taken as the stratum, or the name
of the variables which have to be concatenated to obtain the stratum. In the latter case, the

variables used to build the stratum are retained.

• domain: name of the variable(s) identifying the domain(s) for which estimates of the target vari-
ables must be disseminated. Domain(s) must be aggregation of the strata.

• target: names of the variable(s) in the sampling frame identifying the target variable(s) leading
the planning of the survey.

• weight (optional): the sampling weights, whether the target variable(s) is (are) available only

on sample data. The default is NULL, meaning that the target variables are available in the

sampling frame and, therefore, the statistical summaries are computed on it.

Suppose that the sample is to be stratified by province, while the estimates of mean income and

the incidence of unemployed individuals are to be controlled at the regional level. The parameter in

prepareInputToAllocation_beat.1st can be set as follows:

input1 <- prepareInputToAllocation_beat.1st(frame=pop,
sample=samp,
ID="id_ind",
stratum=c("province"),
domain="region",
target=c("income_hh","unemployed"),
weights="d")

The function returns three objects:

1. file_strata: a dataframe of strata in which the population size, the mean (M1, M2, …) and the

standard deviation of the target variables in the population (S1, S2, …) is provided. Furthermore,

one column is specified for each domain. The global domain is included by default and is named

DOM1. Two additional columns are filled automatically in: CENS, an identifier whether the stratum
must be censused or not (the default is equal to 0 for all of them) and COST indicating the cost

of the each interview in the stratum (the default is equal to 1 for all of them).

'data.frame': 6 obs. of 11 variables:
$ STRATUM : Factor w/ 6 levels "north_1","north_2",..: 3 4 1 2 5 6
$ province: Factor w/ 6 levels "north_1","north_2",..: 3 4 1 2 5 6
$ DOM1 : Factor w/ 1 level "Total": 1 1 1 1 1 1
$ DOM2 : Factor w/ 3 levels "north","center",..: 2 2 1 1 3 3
$ N : num 591517 205173 462420 482122 336608 ...
$ M1 : num 21673 21054 27930 24332 16923 ...
$ M2 : num 0.1032 0.1547 0.0212 0.0316 0.2922 ...
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$ S1 : num 19618 16565 26151 19252 14686 ...
$ S2 : num 0.304 0.362 0.144 0.175 0.455 ...
$ CENS : num 0 0 0 0 0 0
$ COST : num 1 1 1 1 1 1

2. var_list: a vector of target variables as they appear in file_strata (i.e. M1, M2, …or S1, S2,
…).

3. ID_stratum: a dataframe reporting the stratum to which each unit in the samp_frame belongs.

Then, the precision constraints in terms of coefficient of variation (CV) for each target variable in each

domain have to be planned. Assume that the maximum acceptable coefficients of variation are 2% at

the national level and 5% at the regional level for the mean of income, while 5% at the national level

and 7% at the regional level for the incidence of unemployment. Then:

cv1 <- data.frame(DOM=c("DOM1", "DOM2"),
CV1=c(0.02, 0.05),
CV2=c(0.05, 0.07))

cv1
DOM CV1 CV2

1 DOM1 0.02 0.05
2 DOM2 0.05 0.07

3.2 Step 2: Optimal allocation

The optimal allocation is then computed using the beat.1st function and the inputs file_strata and
cv1 previously described:

alloc1 <- beat.1st(file_strata=input1$file_strata,
errors=cv1)

The final sample size of the optimal resulting allocation satisfying the precision constraints is 9,688.

The object alloc1 is a list of seven output objects:

1. n: a vector containing the optimal allocation for each stratum. Its total, sum(alloc1$n), is equal
to 9,688.

2. file_strata: the input dataset file_strata with an additional column, n, indicating the optimal
allocation.

3. alloc: a dataframe specifying for each stratum the optimal allocation (OPT), the proportional

allocation (PROP), and the uniform allocation (UNIF).
4. sensitivity: a dataframewith the precision constraints (PlannedCV), the expectedCV (ExpectedCV),

i.e. the CV that are expected to be obtained the optimal allocation), and the sensitivity (Sensitivity
10%) for each variable and each domain category. Sensitivity provides a suggestion about the

expected variation in sample size if the planned errors change by 10%.

5. ExpectedCV: a dataframe with the maximum of the expected coefficients of variation (Actual
CV), for each variable in each domain.

6. PlannedCV: a dataframe with the maximum coefficients of variation admissible for each domain

and for each variable. It is the input errors dataframe, provided by the user.

7. param_alloc: a vector summarising all the parameters used for performing the optimal alloca-

tion.

In general, a reduction in the CV corresponds to a higher required level of precision, which in turn
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requires a larger sample size, and vice versa.

3.3 Step 3: Selection of sampling units

Given the allocation, the sample can be selected using the function strata from the R package sam-

pling (Tillé andMatei, 2023). For proper implementation, prior to sample selection, it is recommended

that both the sampling frame and the allocation dataframe are ordered by stratum:

library(sampling)
alloc1$file_strata <- alloc1$file_strata[order(alloc1$file_strata$STRATUM),]
pop <- merge(pop,input1$ID_stratum,by="id_ind")
pop <- pop[order(pop$STRATUM),]
s <- strata(data=pop,

stratanames="STRATUM",
size=alloc1$file_strata$n,
method="srswor")

sample_str <- getdata(data=pop, m=s)

Finally, sample_str is the sample of size 9,688, stratified by province, which will yield estimates of

mean income and the incidence of unemployment consistent with the planned precision constraints

defined in cv1.

4 Two-stage sample design with stratification of the primary stage units

Sampling units may be organised in clusters; for example, individuals within households, workers

within enterprises, or households within enumeration areas or municipalities.

For logistical and economic reasons, it may be useful to exploit this clustering. The typical case is

household surveys. In these surveys, municipalities (Primary Stage Units, PSUs) are usually strati-

fied. Then, within each stratum, a sample of municipalities is selected, typically with probability pro-

portional to size, and within the selected municipalities a sample of households (Secondary Stage

Units, SSUs) is drawn.

This sampling design is more convenient because it reduces the management complexity and there-

fore costs. However, this advantage comes at the expense of a reduction in the efficiency of the

sample design, which must be taken into account when planning the sample.

In this context, the allocation problem is more complex, since the both PSUs and SSUs must be

allocated. A solution can be obtained by following Falorsi et al. (1998). They propose iterating the

Bethel algorithm, adjusting the design effect2 at each iteration. Convergence is usually achieved

within 5–6 iterations.

4.1 Step 1: Input preparation

The function prepareInputToAllocation2 behaves similarly to the function described in Section 3.1

and likewise generates all the input objects required for the optimal allocation.

However, since this sample design is more complex, it needs more parameters:

2It denotes how much the sampling variance under the adopted sampling design is inflated with respect to SRS, on

equal sample size. The design effect for SRS is equal to 1, whereas for clustered sampling designs it is greater than 1.
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• frame: the sampling frame containing necessarily the identifier of the units, strata and domain

variables and optionally the target variable(s).

• RGdes: the sampling data containing necessarily the strata and domains variables, the target

variable(s) and the sampling weights. It must be a design object created with the R package

ReGenesees3.

• RGcal (optional): the sampling data containing necessarily the strata and domains variables, the
target variable(s) and the sampling calibrated weights. It must be a calibration object created

with the R package ReGenesees4. If NULL (default), it is set equal to the design object, RGdes.
• id_PSU: name of the identifier of the PSU.
• id_SSU: name of the identifier of the SSU.
• stratum: name of the variable in the sampling frame which is taken as the stratum. In contrast
to the function used for the stratified sampling design, in the current version, this function does

not perform variable concatenation. Therefore, it is recommended to prepare the concatenated

variables beforehand.

• target: names of the variable(s) in the sampling frame identifying the target variable(s) leading
the planning of the survey.

• deff_level: name of the variable(s) identifying the domain level at which compute the design

effect. Although this information is applied in the algorithm at the stratum level, it is advisable

to aggregate it to a higher hierarchical level to obtain more stable design effect estimates. The

resulting design effect value is then applied to all strata belonging to the corresponding higher-

level domains.

• domain: name of the variable(s) identifying the domain(s) for which estimates of the target vari-
ables must be disseminated. Domain(s) must be aggregation of the strata.

• delta: the average size of SSUs in terms of elementary units in each stratum. If SSUs match

the survey units, delta must be equal to 1 in all the strata. Otherwise, it should be set equal to

the average size of SSUs in terms of elementary units in the stratum.

• minimum: minimum number of SSUs to be interviewed in each selected PSU.

Suppose that the sample is to be a two-stage, municipalities and individuals, in which the municipali-

ties are stratified by province, while the estimates of mean income and the incidence of unemployed

individuals are to be controlled at the regional level and have been previously investigated in another

sample survey. Furthermore, the design effect will be computed at the regional level.

A propedeutic step, before preparing the inputs for the optimal allocation, is to create the design object

useful for computing the design effects and the estimator effects. The package ReGenesees is used

for the present purpose also in the prepareInputToAllocation2 function.

Since samp is a two-stage (municipalities, municipality, and individuals, id_ind) sample with strati-
fication of the municipalities (stratum_2), the design object, RGdes, is defined as follows:

library(ReGenesees)
samp$stratum_2 <- as.factor(samp$stratum_2)
RGdes <- e.svydesign(data=samp,

ids=~municipality+id_ind,
strata=~stratum_2,
weights=~weight,
self.rep.str=~SR,

3For all the details see Zardetto (2015) and Zardetto (2023).
4See above.
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check.data=TRUE)

Then, the parameter in prepareInputToAllocation2 can be set as follows:

input2 <- prepareInputToAllocation2(frame=pop,
RGdes=RGdes,
id_PSU="municipality",
id_SSU="id_ind",
stratum="province",
target=c("income_hh", "unemployed"),
deff_level="region",
domain="region",
delta=1,
minimum=120)

The function returns six dataframes:

1. strata: a dataframe with the same structure as the output provided by the function
prepareInputToAllocation_beat.1st described in Section 3.1.

2. deff: a dataframe of strata with the design effect for each variable (DEFF1, DEFF2, …) and the

average size of the SSUs in the PSUs (b_nar).
3. effst: a dataframe with the estimator effect for each variable in each stratum5. When RGcal is

NULL the estimator effect is equal to 1 for all the variables in each stratum.

4. rho: a dataframe with the intraclass correlation coefficient6 for each variable in each stratum

and for municipalities included for sure in the sample (Self-Representative). The correlation

coefficient for larger municipalities (i.e. included certainly in the sample, since their selection

probability is equal to 1) is equal to 1 by default.

5. psu_file: a dataframe of PSUs with the related stratum and their size (PSU_MOS) .
6. des_file: a dataframe of strata with the size, delta and minimum7.

All of these objects, except deff (included for documentation purposes only), serve as inputs for the

optimal allocation step.

Then, as before, the precision constraints in terms of coefficient of variation (CV) for each target

variable in each domain have to be planned. Assume, in this case, that the maximum acceptable

coefficients of variation is 2% at the national level and 5% at the regional level for the mean of income,

while 5% at the national level and 7% at the regional level for the incidence of unemployment. Then:

cv2 <- data.frame(DOM=c("DOM1", "DOM2"),
CV1=c(0.02, 0.05),
CV2=c(0.05, 0.07))

5The estimator effect measures how much the sampling variance under the chosen estimator is inflated or deflated

relative to the Horvitz–Thompson estimator (Horvitz and Thompson, 1952), under the same sample design. By definition,

the Horvitz–Thompson estimator has an estimator effect equal to 1, while for instance a calibrated estimator (Deville and

Särndal, 1992) typically yields values lower than 1.
6The correlation coefficient captures the degree of similarity among units within clusters. Positive values indicate strong

within-cluster similarity, leading to higher design effects and poorer CVs. In contrast, negative values reflect greater within-

cluster heterogeneity.
7By modifying this dataframe, it is possible to set different minimum values according to the strata.
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cv2
DOM CV1 CV2

1 DOM1 0.02 0.05
2 DOM2 0.05 0.07

4.2 Step 2: Optimal allocation

The optimal allocation is then computed using the beat.2st function and the inputs previously de-

scribed:

alloc2 <- beat.2st(file_strata=input2$file_strata,
errors=cv2,
des_file=input2$des_file,
psu_file=input2$psu_file,
rho=input2$rho,
effst=input2$effst)

iterations PSU_SR PSU NSR PSU Total SSU
1 0 0 0 0 9688
2 1 17 42 59 12677
3 2 19 76 95 11962
4 3 20 68 88 11944

The final sample size of the optimal resulting allocation satisfying the precision constraints comprises

88 PSUs, 20 Self-Representative (PSU_SR) and 68 Non-Self-Representative (PSU_NSR), and 11,944

SSUs.

The object alloc2 is a list of eight output objects:

1. iteractions: a dataframe that, for each iteration, provides a summary of the number of PSUs

(PSU_Total), distinguishing between Self-Representative (PSU_SR) andNon-Self-Representative
(PSU_NSR) units, as well as the number of SSUs (SSU). This output is also printed to the screen.

2. file_strata: a dataframe equal to the input dataframe file_strata with additional columns:

DEFT1, DEFT2, …reporting the square root of the design effect for each variable within each

stratum, and n, specifying the optimal allocation.
3. alloc: a dataframe with optimal (ALLOC), proportional (PROP), equal (EQUAL) sample size

allocation.

4. planned: a dataframe with the precision constraints (Planned CV) for each variable in each

domain.

5. expected: a dataframe with the expected CVs with the given optimal allocation (Expected CV)
for each variable in each domain.

6. sensitivity: a dataframe with a summary of the sensitivity at 10% for each domain and each

variable.

7. deft_c: a dataframe with the design effect for each variable in each domain in each iteration.

Note that DEFT1_0, DEFT2_0, …is always equal to 1 if deft_start is NULL. Otherwise is equal to
deft_start. While DEFT1, DEFT2, …are the square root of the final design effect related to the

given allocation reported also in file_strata.
8. param_alloc: a vector with a resume of all the parameter given for the allocation.

As before, a reduction in the CV corresponds to a higher required level of precision, which in turn re-
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quires a larger sample size, and vice versa. Moreover, for a fixed sample size, reducing the minimum

number of units per PSU decreases the CV, since the sample is spread across more PSUs and the

design effect decreases. Conversely, increasing the minimum leads to higher CVs.

4.3 Step 3: Selection of sampling units

The PSUs are then selected using:

sample_1st <- select_PSU(alloc=alloc2, type="OPT", pps=TRUE)

The selected PSUs are stored in the sample_PSU element of the output list. Using these, the final

sample of secondary units can be selected:

PSU_sampled <- sample_1st$sample_PSU
sample_2st <- select_SSU(df = pop,

PSU_code ="municipality",
SSU_code ="id_ind",
PSU_sampled=PSU_sampled)

Finally, sample_2st is the two-stage sample of size 13,090, with themunicipalities stratified by province,
which will yield estimates of mean income and the incidence of unemployment consistent with the

planned precision constraints defined in cv2.

A slight discrepancy may arise between the number of SSUs determined during allocation and those

obtained after PSU selection. This occurs because the PSU selection process enforces the minimum

number of SSUs (here, 120) per selected PSU, which may result in an increase in the total number

of SSUs.

The two samples, sample_str and sample_2st, achieve the same level of precision, in terms of CVs,
for the estimates of average income and unemployment incidence at both national and regional level.

However, in the two-stage design the sampling units are clustered, which reduces the efficiency of

the sample. As a result, a larger sample size, 13,090 instead of 9,688, is required to satisfy the same

precision constraints.

5 Concluding remarks

R2BEAT stands out for its comprehensive approach to statistical data production, covering all stages

from design to sample selection. It is especially flexible and adaptable, offering optimal allocation

for both stratified and two-stage with stratification of the primary stage units sampling designs. This

makes it valuable for various organisations, including national statistical institutes (NSIs), private re-

search firms, research institutes and universities.

R2BEAT leverages auxiliary variables, improving sample design and allocation by making use of

additional data from registers or previous surveys. Its user-friendly output allows for easy analysis and

validation of the allocations and sample used in the survey. As the package stems from an ongoing

development effort, it is continuously updated and maintained to guarantee maximum consistency

and efficiency in the implementation of the methodology for sample design and selection.
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Argentina 
Reporting: Verónica Beritich 

INDEC hosted officials from the United Nations System in Argentina 
On September 11th, the authorities of INDEC, together with the authorities of the Ministry of Foreign 
Affairs, International Trade and Worship of Argentina, took part in a meeting with representatives of 
14 organizations of the United Nations System in Argentina. The purpose of this meeting was to 
strengthen data production in the country. The institutional work plan was presented, highlighting the 
use of official statistics to promote economic, social, and environmental development, and inviting 
international agencies to work in coordination with INDEC on projects involving the National 
Statistical System. 

The use of administrative records is one of the structural pillars of the projects shared in this meeting, 
and INDEC’s obligation is to harness all that potential to produce better data. Other key pillars 
highlighted by INDEC’s authorities included the crucial support of the United Nations agencies in 
Argentina in breaking down the natural barriers that exist within the State, and the need to work in a 
coordinated manner to provide information that meets the growing demand and thus deliver timely, 
high-quality statistics for decision-making. 

The working session was divided into two parts. At the beginning, representatives of each multilateral 
organization briefly described the projects they are promoting, which are primarily based on 
information produced by INDEC. Afterwards, the main current lines of work of the Institute were 
presented: 

• Strengthening the statistical structure through projects that include the continuous updating 
of population projections and the implementation of the new Master Urban Household 
Sample of the Argentine Republic (MMUVRA). 

• Expanding the conceptual frameworks for the production of new economic, social, and 
environmental statistics and incorporating the integrated governance system. 

• Developing an integrated system of administrative records for statistical use, based on 
statistical records of population, housing, and economic units. 

• Applying technological innovation in statistical operations and in the harmonization of 
administrative records. 

• Strengthening institutions by coordinating activities between national State agencies that 
provide information and produce statistics and international organizations in the field. 

General information can be found at https://www.indec.gob.ar. 

For further information, please contact https://www.indec.gob.ar/indec/web/Institucional-Indec-
Contacto. 
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Australia 
Reporting: Paul Schubert 

Enhancing household survey frames when you don’t have a population register 
National Statistical Offices (NSOs) across the globe have an urgent need to address increasing 
collection costs, caused by the increased difficulty in making contact with households and securing 
their cooperation, while maintaining data quality. The biggest threat to data quality that all NSOs are 
working to safeguard against is nonresponse bias given the increasing trends of survey 
nonresponse. 

Unlike Scandinavian countries (for example), Australia does not have a population register; frame 
information to assess and help adjust for nonresponse biases in household surveys has been very 
limited. 

The goal of the Australian Bureau of Statistics’ (ABS) Data Improved Frames From the Address 
Register (DIFFAR) project is to address these challenges head-on by delivering improved survey 
frames for household surveys. The improvement comes from augmenting existing survey frames - 
a full population list of addresses eligible for selection - with categorical auxiliary information derived 
from the Person Level Integrated Data Asset (PLIDA) that can support more efficient and targeted 
survey designs, operations and processes (for more about PLIDA, see: Person Level Integrated 
Data Asset (PLIDA) | Australian Bureau of Statistics.) 

The key methodological innovation of the DIFFAR project is the use of a random forest model, a 
machine learning approach, to predict the probability that an address has certain characteristics 
based on its reported PLIDA data – for example, whether a low-income household resides at the 
address or a child is present at the address. These predicted probabilities are then used to group 
addresses into decile categories which can be used to: 

• ensure representation of key subpopulations in the sample design and selection 

• track response during data collection operations to prioritise groups for follow-up 

• improve estimation results through this use of auxiliary information. 

It is important to note that this method protects the privacy of personal information from PLIDA by 
not using it directly to categorise addresses. 

While with DIFFAR the ABS is still in the early days of introducing more and better use of auxiliary 
information in our survey processes, it has already enabled us to reduce biases in survey estimates, 
and improve efficiency of sample designs by up to 20%.  It has also identified subpopulations that 
are under-represented in response so far during enumeration, allowing data collection staff to 
prioritise these subpopulations in follow-up, and delivering a more representative final sample.  The 
use of DIFFAR information in estimation has provided new insights into subpopulations that are 
currently under-represented in weighted estimates, and is providing the information required to 
remove the resulting nonresponse bias from estimates. 

For further information, please contact Bruce Fraser. 

 

 

 

 

 

https://www.abs.gov.au/about/data-services/data-integration/integrated-data/person-level-integrated-data-asset-plida
https://www.abs.gov.au/about/data-services/data-integration/integrated-data/person-level-integrated-data-asset-plida
mailto:bruce.fraser@abs.gov.au?subject=Country%20Report%20on%20DIFFAR
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Brazil 
Reporting: Andrea Diniz da Silva 
Learning Paths: Professional Training and Statistical Literacy 
The Brazilian Institute of Geography and Statistics has created a set of Learning Paths for various 
audiences: professionals from the public and private sectors, academics, policy makers, and other 
professionals interested in the topics offered. The courses will be offered free of charge, remotely, 
with synchronous and asynchronous activities. To ensure regional reach, spots are reserved for 
each region of Brazil. Spots are also distributed equally between men and women. This aims to 
ensure nationwide reach and a diverse range of trainees. Participants are expected to disseminate 
the knowledge, references, and materials provided in each course. 

There are six Learning Paths: Current Situation Analysis and Public Communication; Improving 
Municipal Planning: Regulations and Indicators; Data Science, Big Data, and Artificial Intelligence; 
Demographic Census and Municipal Planning; Statistics, Territory, and Public Policies; and the 
National System of Statistics and Geography. The courses in these Paths are mostly taught by IBGE 
staff, but also include guest professors. 

All Paths focus on statistics, their production, use, and understanding, thus fulfilling a dual role: 
professional training and statistical literacy. 

 

Canada 
Reporting: Darren Gray 
Statistics Canada’s generalized systems are migrating to R and Python 
Statistics Canada’s generalized systems have supported our statistical production infrastructure for 
many years, providing efficient, vetted, and reusable solutions that can be deployed across multiple 
programs. These systems are used throughout the Integrated Business Statistics Program (IBSP), 
numerous economic and social surveys, and in our Census program. They are also shared 
internationally at no cost, supporting methodological consistency and cooperation among National 
Statistical Organizations (NSOs). 

Statistics Canada is modernizing its broader statistical systems through a progressive shift toward 
open-source technologies such as R and Python. These languages offer extensive statistical, 
analytical, and machine-learning capabilities for better scalability and performance, and they align 
with the technical skill sets of new statisticians, analysts, data scientists, and programmers joining 
the agency. This modernization strengthens our ability to work within global statistical and data-
science communities. 

As part of this broader initiative, we are migrating our SAS-based generalized systems to R and 
Python. For some of the systems, this includes not just a change in programming language but new 
functions, features, and overall enhancements. The modernization is already well underway: Banff 
and G-Series were released publicly in early 2025, and additional systems are on the way. In addition 
to using R and Python, we also plan on making the source code publicly available on our GitHub 
account to improve transparency, enhance code quality, and encourage collaboration. The table 
below summarizes the migration plan and targeted release dates for our SAS-based generalized 
systems: 

https://www.statcan.gc.ca/en/dai/btd/ibsp
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Current system 
(SAS-based) Functionality New system (Language)  Release date 

Banff Editing and 
imputation 

Banff & Banff Processor 
(Python) January 2025  

G-Series Time series 
adjustment G-Series (R) January 2025 

G-Sam Probabilistic 
sampling Jasper (R) 

October 2025 (internal); 
preparing for public 
dissemination 

G-Confid Disclosure control G-Confid (Python) March 2026 (planned) 

G-Link Record linkage G-Link (Python) March 2026 (planned) 

G-Est Weighting and 
estimation Yoho (R) June 2026 (planned) 

 

Releasing these systems publicly will strengthen collaboration, reduce duplication of effort across 
agencies, and promote international methodological consistency. For questions or further 
information, please feel free to reach out to Darren Gray at darren.gray@statcan.gc.ca. 

 

Released systems: 

Statistics Canada (2025). Banff. Python package version 3.1.3,  

https://github.com/StatCan/gensol-banff.  

Statistics Canada (2025). Banff Processor. Python package version 2.0.3, 
https://github.com/StatCan/gensol-banff-processor. 

Statistics Canada (2025). G-Series. R package version 3.0.2,  

https://github.com/StatCan/gensol-gseries.  

 

Croatia 
Reporting: Ksenija Dumičić 

New Developments in the 2024 EU SILC Survey Methodology in Croatia 
In 2025, Državni zavod za statistiku (DZS) released the 2024 wave of EU-SILC, based on an updated 
sampling design and updated data-collection practices. The 2024 sample was drawn as a random 
sample of private-household dwellings, using the 2021 Population, Households and Dwellings 
Census as the sampling frame. From 13,049 randomly selected households, 9,410 completed 
interviews were obtained, yielding a household-level response rate of 77.53 % (DZS, 2025a; DZS, 
2025b). The survey retains its panel-design structure: selected households remain in the sample for 
a four-year rotation, enabling both cross-sectional and longitudinal analyses of income, poverty, 
material deprivation, and other living conditions indicators. Data collection was carried out primarily 
via computer-assisted personal interviewing (CAPI), supplemented by telephone interviewing (CATI) 
when necessary, by authorised and certified DZS interviewers (DZS, 2025b). Importantly, the 2024 
wave introduced a methodological innovation by integrating administrative data sources for 

mailto:darren.gray@statcan.gc.ca
https://github.com/StatCan/gensol-banff
https://github.com/StatCan/gensol-banff-processor
https://github.com/StatCan/gensol-gseries
https://podaci.dzs.hr/2025/en/97252
https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787
https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787
https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787
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income variables, such as wages, pensions, and social transfers, alongside traditional household 
interviews. This hybrid approach strengthens data accuracy, reduces respondent burden, and marks 
a break in the time series compared with previous years when income was collected solely via 
interviewing (DZS, 2025a). The updated sampling frame based on the 2021 Census ensures up-to-
date population coverage; weighting procedures account for unequal selection probabilities, unit 
non-response, and post-stratification to known population totals at national and regional (HR-NUTS 
2) levels. These enhancements considerably improve the representativeness, reliability, and 
European comparability of Croatian EU-SILC data, aligning the survey with best practices in 
longitudinal income and living conditions measurement across EU member states. 

References 
DZS (2025a) Indicators of Poverty and Social Exclusion, 2024 (EU-SILC Survey). First Release, 
ZUDP-2025-1-1. Zagreb: DZS. Available at: https://podaci.dzs.hr/2025/en/97252 

DZS (2025b) Income and Living Conditions Survey – survey documentation and methodological 
notes. Zagreb: DZS. Available at: https://dzs.gov.hr/in-focus/survey-researches/income-and-living-
conditions-survey/1787 

 

France 
Reporting: Philippe Brion 
Audience Measurement in France 
Audience measurement aims to understand and quantify the number of people exposed to media 
content, whether on a television channel, radio station, website, or any other medium. 

Behind this generic term "measurement" lie, beyond technical aspects, concepts and approaches 
that can be quite different. There are two main types of audience measurement. On one hand, there 
are declarative measurements, based on sample surveys, generally involving large samples. Press 
and radio audience measurements mainly rely on this type of method. On the other hand, there are 
automatic measurements, which require the installation of a technical measurement system and are 
based on panel tracking. Television and internet measurements have been built on this type of 
method. 

Many factors contribute to making audience measurement increasingly complex. First, media are 
evolving, and their usage is becoming more and more fragmented. Accurately measuring the 
audience of the multitude of available content would require significantly increasing sample sizes. 
However, the digitalisation of media now offers other data sources: return path data from operator 
boxes or from publishers’ websites and applications. This has led to the emergence of hybrid 
measurements, resulting from the combined use of these return path data for a precise estimate of 
the number of visitors/viewers, together with panel data to provide socio-demographic profiles. 

Moreover, historically, audience measurements have been constructed in silos: one measurement 
per medium. However, media are no longer managed in silos, and their content circulates from one 
channel to another, creating the need for a global cross-media measurement, particularly for 
advertising campaign measurement. This is why statistical fusion approaches have multiplied, 
allowing different studies to be brought together by associating respondents based on their similarity 
across a number of criteria, prioritised according to their explanatory power on the variables of 
interest, here the audiences. For example, a respondent in the television audience measurement is 
associated with the radio audience of a “twin” to estimate duplication between the two media. These 
approaches are becoming more sophisticated today to more broadly take into account media and 
available data, whether from sample surveys or exhaustive sources. The aim is to create virtual 
populations on which advertising contacts are distributed according to probabilistic models. 

https://podaci.dzs.hr/2025/en/97252
https://podaci.dzs.hr/2025/en/97252
https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787
https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787
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In France, television, radio, and internet audience measurements are carried out by Médiamétrie. 
More recently, this institute has launched audience measurement for SVOD platforms. 

More information :  
https://static-
webmail.mediametrie.com/Livre+blanc+Hybride+et+IA/EN/Mediametrie+White+Paper+Hybrid+and+AI.pdf 

Contact : Aurélie Vanheuverzwyn (avanheuverzwyn@mediametrie.fr) 

 

Hong Kong Special Administrative Region, China 
Reporting: Ronald Chan 
Applications of Large Language Models in Statistical Work 

The Census and Statistics Department (C&SD) of Hong Kong, China is actively exploring the 
applications of Large Language Models (LLMs) to streamline and enhance statistical operations. 
This initiative supports C&SD's digital transformation strategy to modernise workflows, improve 
service quality and optimise resource allocation. 

Key LLM applications include: 

Ø Program development: Automating code generation for statistical programming (Python and 
SAS), assisting with debugging, and improving documentation efficiency. 

Ø Data processing: Extracting and analysing information from unstructured text data, including 
open-ended survey responses, sales receipts and corporate announcements. 

Ø Insights generation: Supporting data validation and review by identifying potential trends, 
anomalies and patterns in statistical datasets. 

Ø User services: Developing intelligent chatbots to handle public inquiries and enhance internal 
knowledge management. 

C&SD is implementing these LLM applications through a carefully planned, phased approach, 
focusing on enhancing cost-effectiveness of internal processes in the initial phase.  To ensure 
responsible implementation, C&SD will establish robust safeguards, including expert validation of 
LLM outputs to prevent potential errors and biases.  Additionally, computing capabilities are being 
enhanced to securely handle internal data while providing sufficient power to run LLMs effectively. 

For more information, please contact Ronald Chan (rchchan@censtatd.gov.hk). 

 

Lithuania 
Reporting: Danutė Krapavickaitė 
Baltic-Nordic-Ukrainian (BNU) network workshop on survey statistics 
The 28th event of the BNU network was organized in Vilnius on August 25-29, 2025. 51 statisticians 
participated onsite and online from the network countries and from France, Great Britain, the 
Netherlands and Switzerland. The main topic was “Addressing nonresponse in survey statistics”, 
other topics were also included. 

The keynote speakers gave the talks relevant to the practitioners and theoreticians in survey 
statistics. The lecture of Alina Matei was entitled “Spatially balanced sampling and its applications in 
official statistics”. It stimulates to introduce sample coordination system in the case of enterprise 
surveys and to create the sampling designs for agriculture and social surveys. The lecture of 

https://static-webmail.mediametrie.com/Livre+blanc+Hybride+et+IA/EN/Mediametrie+White+Paper+Hybrid+and+AI.pdf
https://static-webmail.mediametrie.com/Livre+blanc+Hybride+et+IA/EN/Mediametrie+White+Paper+Hybrid+and+AI.pdf
mailto:rchchan@censtatd.gov.hk
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Guillaume Chauvet “Bootstrap methods in survey sampling with focus on the rescaling bootstrap” 
will find applications in the future activities of the network. It is useful in social surveys when the 
survey population is large. The lecture of Jacek Wesolowski “Rotation sampling schemes and 
Chebyshev polynomials” showed a view of pure mathematics to survey sampling. We were honoured 
by participation of Professor Carl-Erik Särndal with the talk “The nonresponse dilemma: some 
thoughts on its origin, impact and future role in survey statistics”. It was a pleasure to have among 
us the founders of the network Imbi Traat and Jānis Lapinš. 

Representatives from the network countries gave invited lectures. Other participants gave the 
contributed presentations, which were discussed by the discussants, appointed in advance. Topics 
relevant to official statistics, application of machine learning in survey statistics, adjustment for 
nonresponse were popular. The round table discussions were going on the following urgent topics: 
“Teaching of survey sampling”; “Modern methods in survey sampling: machine learning, AI, SAE, 
nonprobability samples”; “Dealing with non-sampling errors and accuracy estimation”. 

Many young statisticians took part in the workshop. It was their first workshop, in which they 
presented results of their research. We expect that this event will stimulate their positive attitude to 
the further development of the statistical science and participation in it.  

The workshop was sponsored by Vilnius Gediminas Technical University, State Data Agency, 
Nordplus, Lithuanian Statistical Society, Lithuanian Mathematical Society and International 
Association of Survey Statisticians. On behalf of the participants of the workshop, we express sincere 
thanks for support which has made the event interesting and pleasant. 

You may visit the workshop home page: 

https://wiki.helsinki.fi/xwiki/bin/view/BNU/Events/Workshop%20on%20Survey%20Statistics%202025/ 

 

The Netherlands 
Reporting: Lianne Tessers-Ippel 
Smartphone-first questionnaire design at Statistics Netherlands (CBS) 
As smartphones have become the primary device for online survey participation in household 
surveys, Statistics Netherlands (CBS) developed a smartphone-first redesign of its web 
questionnaires and evaluated this in a large-scale field experiment. The experiment examined six 
factors: a revised login process, a smartphone-first designed questionnaire layout, alternative grid 
formats (including carousel and accordion designs), the inclusion of smileys and icons, a speech-to-
text encouragement for open questions, and questionnaire length. The questionnaire redesign also 
aligned with the CBS corporate design system and accessibility requirements. 

The results revealed few significant differences across indicators of response behaviour, data 
quality, and respondent satisfaction. This indicates that the smartphone-first design can be 
introduced without jeopardising comparability over time or introducing measurement bias. The new 
design will   be gradually implemented in production surveys to ensure a user-friendly experience 
that is consistent across devices.  

A detailed report on the experiment by Deirdre Giesen, Maaike Kompier and Jan van den Brakel is 
available at “Experiment smartphone-first questionnaire layout” (https://www.cbs.nl/en-
gb/background/2025/42/experiment-smartphone-first-questionnaire-layout). 

For more information please contact Deirdre Giesen at d.giesen@cbs.nl.  

 

 

https://www.cbs.nl/en-gb/background/2025/42/experiment-smartphone-first-questionnaire-layout
https://www.cbs.nl/en-gb/background/2025/42/experiment-smartphone-first-questionnaire-layout
mailto:d.giesen@cbs.nl
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Poland 
Reporting: Tomasz Żądło 
The 5th Polish Statistics Congress took place from July 1 to 3, 2025, in Warsaw. It was organized 
by Statistics Poland and the Polish Statistical Association. The event covered topics such as 
mathematical statistics, survey sampling and small area estimation, population, social, economic, 
regional, and spatial statistics, data analysis and classification, AI methods, big data and data 
science, Polish statistics in the international context, history of Polish statistics, communication and 
education, public statistics and data management systems, as well as data integration and 
harmonization in official statistics.  

The program included two keynote speeches by: 

• Professor Partha Lahiri (University of Maryland, College Park) on "Poverty Mapping”  

• Professor Ronald Lee (University of California, Berkeley) on “How low fertility and shrinking 
populations will impact our economies”. 

A panel discussion titled “From data to decisions - for social and economic development" was also 
held, along with 28 sessions and a poster session.  

The survey sampling and small-area estimation session organized by Janusz Wywiał, Mirosław 
Szreder, and Tomasz Żądło contained four presentations: 

• invited presentation: “Item Count Techniques under Some Assumption Violations” by 
Barbara Kowalczyk and Robert Wieczorkowski, 

• invited presentation: “Comparing Institutional Performance” by Nicholas Longford, 

• “On the Maximum Likelihood Estimation of Population and Domain Means” by Janusz 
Wywiał, 

• “On Complex Estimators Under the Pathak Sampling Scheme” by Krzysztof Szymoniak- 
Książek. 

Program of the conference: https://kongres2025.stat.gov.pl/en/Program 

Abstracts and presentations: https://kongres2025.stat.gov.pl/en/Ksiega_abstraktow 

Video recordings: https://kongres2025.stat.gov.pl/en/Transmisja 

10th Edition of the Statistical Olympiad 
The Statistical Olympiad is organized by Statistics Poland and the Polish Statistical Association and 
is addressed to high school students. Its goal is to promote statistical knowledge and develop skills 
in socio-economic data analysis through a three-stage competition that selects finalists and 
laureates. The 10th edition is co-financed by the Ministry of Education and Science, and its first stage 
took place in November 2025. 

The Statistical Olympiad has three consecutive stages designed to gradually evaluate and enhance 
students' statistical reasoning and data analysis skills. The first stage, the school level, is organized 
by each participating school and involves an online test that assesses basic knowledge and problem-
solving skills in statistics. Schools register their contestants in the Olympiad IT system and appoint 
a School Committee to oversee the round. The Central Committee then provides the School 
Committees with the results achieved by the participants.  

The regional stage is conducted simultaneously across the country’s 16 regions (voivodeships) 
under supervised conditions and features a longer, more challenging online exam that includes 
applied and interpretive problems. Successful participants from the school stage compete at this 

https://kongres2025.stat.gov.pl/en/Program
https://kongres2025.stat.gov.pl/en/Ksiega_abstraktow
https://kongres2025.stat.gov.pl/en/Transmisja
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level for spots that qualify them for the central stage, and rankings are based on test scores with 
clearly defined tie-breaking rules. 

The central stage is held in two parts: an initial central-round online test that filters the top 
participants, followed by a final written examination for a limited number of contestants who work on 
more complex, open-ended problems requiring deeper analysis, interpretation of socio-economic 
data, and clear written justification of methods and conclusions. The final ranking and the list of 
laureates are based on the combined results from both parts of the central stage. 

Winners and finalists of the Statistics Olympiad can gain admission to many prestigious universities 
in Poland without needing to go through the regular admissions process. In the ninth edition of the 
competition, the three finalists received gift cards valued at PLN 6,000, PLN 5,000, and PLN 4,000. 

 

United States 
Reporting: Andreea L. Erciulescu 
Principles and Practices for a Federal Statistical Agency 
The Committee on National Statistics (CNSTAT) of the National Academies of Sciences, 
Engineering, and Medicine, identified 5 principles and 10 practices for federal agencies and units to 
adopt when conducting their activities involving collection, compilation, processing, or analysis of 
information for statistical purposes. These principles and practices, along with the 16 U.S. federally 
recognized statistical agencies and units, are provided in the eighth edition of the report titled 
Principles and Practices for a Federal Statistical Agency and available at the following link: Principles 
and Practices for a Federal Statistical Agency - 8th Edition | The National Academies Press. 

The 5 principles are as follows:  

1) relevance to policy issues and society 

2) credibility among data users and stakeholders 

3) trust among the public and data subjects 

4) independence from political and other undue external influence 

5) continual improvement and innovation 

The 10 practices are as follows: 

1) a clearly defined and well-accepted mission 

2) necessary authority and procedures to protect independence 

3) commitment to quality and professional standards of practice 

4) professional advancement of staff 

5) an active research program 

6) strong internal and external evaluation processes for an agency’s statistical programs 

7) coordination and collaboration with other agencies 

8) respect for data subjects and data holders and protections of their data 

9) dissemination of statistical products that meet users’ needs 

10) openness about sources and limitations of the data provided 

https://nap.nationalacademies.org/resource/27934/interactive/?utm_source=All+DBASSE+Newsletters&utm_campaign=b7e9ddc7ee-cnstat-value-of-statistics-p-and-p-8thed&utm_medium=email&utm_term=0_-6750a6e2b1-275402464
https://nap.nationalacademies.org/resource/27934/interactive/?utm_source=All+DBASSE+Newsletters&utm_campaign=b7e9ddc7ee-cnstat-value-of-statistics-p-and-p-8thed&utm_medium=email&utm_term=0_-6750a6e2b1-275402464
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The 16 federally recognized statistical agencies and units are as follows: 

• Bureau of Economic Analysis (U.S. Department of Commerce) 

• Bureau of Justice Statistics (U.S. Department of Justice) 

• Bureau of Labor Statistics (U.S. Department of Labor) 

• Bureau of Transportation Statistics (U.S. Department of Transportation) 

• Census Bureau (U.S. Department of Commerce) 

• Economic Research Service (U.S. Department of Agriculture) 

• Energy Information Administration (U.S. Department of Energy) 

• National Agricultural Statistics Service (U.S. Department of Agriculture) 

• National Center for Education Statistics (U.S. Department of Education) 

• National Center for Health Statistics (U.S. Department of Health and Human Services) 

• National Center for Science and Engineering Statistics (National Science Foundation) 

• Office of Research, Evaluation, and Statistics (Social Security Administration) 

• Statistics of Income Division (U.S. Department of the Treasury) 

• Center for Behavioral Health Statistics and Quality (Substance Abuse and Mental Health 
Services Administration; U.S. Department of Health and Human Services) 

• Microeconomic Surveys Unit (U.S. Federal Reserve Board) 

• National Animal Health Monitoring System (Animal and Plant Health Inspection Service, U.S. 
Department of Agriculture) 

 

Uruguay 
Reporting: Marcelo Bisogno, Juan Pablo Ferreira and Juan José Goyeneche 
Weighting the 2023 Uruguay Census: Correcting Omission Through Doubly Robust 
Estimators 
The 2023 Population, Household, and Housing Census of Uruguay applied a mixed methodology 
that combined the traditional census operation (CAWI + CAPI) with the inclusion of individuals 
identified through administrative registers. This integration improved population coverage and 
reduced net undercount by incorporating individuals who were not effectively enumerated but 
showed “signals of life” in systems such as education, health, or social security. This approach 
contributed to adjusting aggregate population totals and the age–sex structure. 

The inclusion of individuals from administrative registers particularly improved coverage at higher 
geographic levels, such as departments. However, this strategy presents limitations when more 
granular territorial information is required. Geographic allocation based on administrative registers 
tends to concentrate individuals in urban areas, where administrative activity is more complete, 
potentially leading to underestimation of the population in rural areas or smaller communities. 
Moreover, administrative registers cannot replace the census operation, as they do not contain key 
census variables such as housing conditions, household equipment, household structure and 
composition, or socioeconomic characteristics. For this reason, individuals “incorporated through 
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registers” improve coverage but do not constitute complete observations for producing many census 
indicators. 

Despite the strategy implemented, overall omission reached 10.3%, meaning that one in ten 
individuals was not enumerated. This omission was differential, with higher incidence in lower 
socioeconomic areas and regions with more difficult access. Consequently, the enumerated 
population does not represent a random selection of the total population but rather a subset with 
patterns of self-selection associated with social and territorial characteristics. 

To produce valid estimates for census variables not available in administrative registers, it was 
necessary to construct weights that corrected differential omission. Households that were effectively 
enumerated were treated as a non-probability sample, and a doubly robust estimation approach was 
applied, combining a model for the propensity to be enumerated with a superpopulation model for 
each variable of interest. Under this framework, estimates can be unbiased if at least one of the 
models is correctly specified. 

The propensity to be enumerated was estimated under the assumption that the response mechanism 
is Missing At Random (MAR), along with the construction of nonresponse classes at the level of 
groups or enumeration areas, assuming that the propensity (i.e., voluntarism) is homogeneous within 
each nonresponse class. Finally, a post-stratification estimator (a specific case of the linear 
regression estimator) was applied so that the estimates match the simple age–sex structure of the 
population. The resulting weights correct differential omission, reduce bias, and yield reliable 
indicators at the global level and for different domains of estimation. 

For more information: mbisogno@ine.gub.uy , jferreir@ine.gub.uy , jgoyeneche@ine.gub.uy 

mailto:mbisogno@ine.gub.uy
mailto:jferreir@ine.gub.uy
mailto:jgoyeneche@ine.gub.uy
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Events on survey statistics and related areas 
2026 Survey Costs Workshop 
Date: 9-10 February 2026 

Location: Maryland, USA 

Webpage: https://aapor.org/aapor-2026-survey-costs-workshop/ 
 
20th IAOS Conference 
Date: 12-14 May 2026 

Location: Vilnius, Lithuania 

Webpage: https://www.isi-next.org/conferences/iaos-2026/ 

 
14th International Francophone Conference on Surveys  
Date: 19-22 May 2026 

Location: Vannes, France 

Webpage: https://sondages2026.sciencesconf.org/ 
 
5th ISI Regional Statistics Conference 
Date: 3-5 June 2026 

Location: Valleta, Malta 

Webpage: https://www.isi-next.org/conferences/isi-rsc-malta-2026/ 
 
The Seventh International Workshop on Business Data Collection Methodology 
 
Date: 8-10 June 2026 

Location: Heerlen, the Netherlands 

Webpage: https://2026bdcmw.wordpress.com/ 
 
The Small Area Estimation Conference 2026  
Date: 15-19 June 2026  

Location: Bucharest, Romania 

Webpage: https://sae2026.faa.ro/ 
 
BNU Workshop on survey statistics 2026 
Date: 24-28 August 2026 

Location: Riga, Latvia 

Webpage: 

https://wiki.helsinki.fi/xwiki/bin/view/BNU/Events/Workshop%20on%20Survey%20Statistics%202026/ 

https://sae2026.faa.ro/
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Journal of Survey Statistics and Methodology 
 

Volume 13, Issue 4, September 2025 
https://academic.oup.com/jssam/issue  

 
Survey Methodology 

An Experimental Comparison of Modular and Non-Modular Approaches for Administering Surveys 
via Smartphone Apps 
Christopher Antoun, Brady T. West, Xin (Rosalynn) Yang, Syed Junaid M. A. Zaidi and Jennifer 
Sinibaldi 
 
Question form Matters: Examining Trust in Government Through Open and Closed Survey Items 
Jana Bernhard-Harrer and Katharina Pfaff 
 
Is Consent to Further Panel Participation Selective? The Case of a Self-Administered Family Panel 
Survey Announcing Organizational Change 
Almut Schumann and Claudia Schmiedeberg 
 
 
Survey Statistics 
 
Synthesizing Surveys with Multiple Units of Observation: An Application to the Longitudinal Aging 
Study in India 
Joshua Snoke, Erik Meijer, Drystan Phillips, Jenny Wilkens and Jinkook Lee 
 
Bayesian Tree Models for Survey Sample Data 
Daniell Toth, Scott H. Holan and Diya Bhaduri 
 

 

Journal of Official Statistics 
Volume 41, Issue 4, December 2025 
https://journals.sagepub.com/toc/jofa/41/4  

 
Articles 
 
The Poverty Free Life Expectancy in Europe  
Gianni Betti, Federico Crescenzi and Andrea Nigri 
 
Official Statistics and Government Decision Making: A Bibliometric and Thematic Analysis of 
Policy-Related Academic Research 
Ana Božič Verbič 
 
Why are Measures of Aggregate Hours Worked by the Unincorporated Self-Employed So Volatile? 
Cindy Michelle Cunningham and Sabrina Wulff Pabilonia 
 
Decomposing Residential Resale House Prices into Structure and Land Components 
Erwin Diewert and Ning Huang 
 

https://academic.oup.com/jssam/issue
https://journals.sagepub.com/toc/jofa/41/4
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Connected and Uncooperative: The Effects of Homogenous and Exclusive Social Networks on 
Survey Response Rates and Nonresponse Bias 
Jonathan Eggleston and Chase Sawyer 
 
STAHL: Seasonal, Trend, and Holiday Decomposition with Loess  
Vincent Haller, Sebastien Daniel and Benoit Bellone 
 
Age-Period Modeling of Mortality Gaps: The Cases of Cancer and Circulatory Diseases 
Giacomo Lanfiuti Baldi, Andrea Nigri and Han Lin Shang 
 
Higher-Level Aggregation Using Long-Term Links in the Swedish CPI  
Olivia Ståhl 
 
When Cleaning Data Introduces Bias: A Critical Examination of Post-Hoc Methods in Detecting 
Insufficient Effort Responding 
Melissa Dan Wang, Leifeng Xiao and Xuan Zang 
 
Research Note 
Which Nordic Countries Are the Most and Least Urban? The Muddling World of Urbanity Statistics 
Marianne Tønnessen 
 
Book Review 
Review of “Register-Based Statistics – Registers and the National Statistical System’’ 
Paul A. Smith 
 
Volume 41, Issue 3, September 2025 
https://journals.sagepub.com/toc/jofa/41/3  

 

Foreword 

Celebrating JOS Forty Years: Future Research Needs in the New Era of Official Statistics 
Lilli Japec, Henri Luomaranta-Helmivuo, Li-Chun Zhang, Suad Elezovic and Yingfu Xie 
 

JOS40 

First Forty Years of Journal of Official Statistics 
Risto Lehtonen 
 
Challenges in a Federal Statistical Agency Ecosystem: The U.S. Census Bureau Robert L. Santos 
GDP and Beyond: Dilemmas and Heresies  
Steve MacFeely 
 
Future Pathways Embracing Multisource Statistics and Novel Data Sources at National Statistical 
Offices 
Anders Holmberg 
 
Some Dimensions of Statistical Ethics and Scientific Integrity That Warrant Exploration Through 
Empirical Studies of Stakeholder Information Needs 
John L. Eltinge 
 
 

https://journals.sagepub.com/toc/jofa/41/3
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Input Privacy Enhancing Technologies for Statistical Production: Motivations and Challenges 
Fabio Ricciato 
 
Statistical Disclosure Control: Moving Forward 
Josep Domingo-Ferrer, David Sánchez and Krishnamurty Muralidhar 
 
Competence, Training, and Collaboration of Universities with National Statistical Offices 
Danny Pfeffermann 
 
Where Have the Respondents Gone? Did We Lose Them or Failed to Win Them? And Is It Too 
Late? 
Barry Schouten 
 
The Future of Interviewer-Administered Surveys  
Kristen Olson 
 
Future Research Considerations for Mixed-Mode Surveys  
Leah Melani Christian 
 
Modernizing Data Collection 
Frauke Kreuter 
 
Census Transformation and the Future of Population Statistics  
James J. Brown and James Chipperfield 
 
Calibration Weighting for Analyzing Non-Probability Samples  
Jae Kwang Kim 
 
Blending Administrative and Nonprobability Survey Data to Enhance National and Subnational 
Estimates 
Dan Liao and Paul P. Biemer 
 
Future Challenges in Sampling and Estimation  
Guillaume Chauvet 
 
The Unknown Future of Statistical Data Editing: Some Imputations  
Sander Scholtus 
 
Machine Learning Methods for Estimation in Official Statistics  
M. Giovanna Ranalli 
 
Small Area Estimation in the Era of Machine Learning and Alternative Data Sources: Opportunities, 
Challenges, and Outlook 
Nikos Tzavidis 
 
Some Challenges and Research Needs for the Analysis of Integrated Data  
Raymond L. Chambers 
Challenges and Opportunities for Analytic and Causal Inference with Official Statistics 
F. Jay Breidt, Robert Ashmead and Susan M. Paddock 
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Enhancing Microsimulation by Open Data  
Ralf Thomas Münnich 
 
Challenges and Future Directions for International and Cross-Cultural Comparability 
Julie de Jong 
 
 

Survey Research Methods 
Volume 19, No.4, 2025 
https://ojs.ub.uni-konstanz.de/srm/  

 
Articles 
 
Using Large Language Models for Coding German Open-Ended Survey Responses on Survey 
Motivation 
Leah von der Heyde, Anna-Carolina Haensch, Bernd Weiß, Jessica Daikeler 
 
A Matter of Perspective? Differences Between Adolescent–Parent and Parent–Teacher Pairs in 
Responses to the Strengths and Difficulties Questionnaire Using a Scottish National Cohort Study 
Madison Bunker, Valeria Skafida, Emma Davidson 
 
The Effects of Study Duration on Nonresponse and Measurement Quality in a Smartphone 
App-Based Travel Diary 
Danielle Remmerswaal, Peter Lugtig, Barry Schouten, Bella Struminskaya 
 
Invitation Messages for Business Surveys: A Multi-Armed Bandit Experiment 
Johannes J. Gaul, Florian Keusch, Davud Rostam-Afschar, Thomas Simon 
 
Effects of Replacing Telephone with Web, Mail, and Mixed-Mode Data Collection in an 
Establishment Follow-Up Survey 
Benjamin Küfner, Joseph W. Sakshaug, Stefan Zins, Claudia Globisch 
 
The Effect of Targeted Incentives on Response Rates and Representativeness: Evidence From the 
Next Steps Age 32 Survey 
Alessandra Gaia, Matt Brown, Tugba Adali, Stella Fleetwood, Christy Lai 
 
Retrieving True Preference under Authoritarianism 
Jongyoon Baik, Xiaoxiao Shen 
 
Measuring Gender and Sex in Surveys: Lessons Learned from 50 Years of Cross-National Survey 
Data and Nonresponse Patterns 
Ilona Wysmulek 
 
 
 
 
 
 
 

https://ojs.ub.uni-konstanz.de/srm/
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Volume 19, No.3, 2025 
Special Issue: Survey Climate and Trust in Scientific Surveys 
https://ojs.ub.uni-konstanz.de/srm/issue/view/243 

 
Editorial 
 
Survey Climate and Trust in Scientific Surveys: Introduction to the Special Issue 
Henning Silber, Bettina Langfeldt, Bella Struminskaya, Michael Traugott 
 
Articles 
 
Predicting Survey Nonresponse with Registry Data in Sweden between 1993 and 2023: Cohort 
Replacement or a Deteriorating Survey Climate? 
Sebastian Lundmark, Kim Backström 
 
Effects of Survey Design Features on Response Rates: A Meta-Analytical Approach Using the 
Example of Crime Surveys 
Jonas Klingwort, Vera Toepoel 
 
Survey Attitude as Indicator for Survey Climate and as Predictor of Nonresponse and Attrition in a 
Probability-Based Online Panel 
Benjamin Rosche, Hugo Bons, Joop Hox, Edith De Leeuw 
 
Trust, Concerns and Attitudes: Examples for Respondent (Non-)Cooperation in SHARE 
Imke Herold, Michael Bergmann, Arne Bethmann 
 
Trust in Survey Results: A Cross-Country Replication Experiment 
Adam Stefkovics, Zoltán Kmetty 
 
Public Confidence in Official Statistics in the UK: Characteristics of Respondents and Changes 
Over Time 
Olga Maslovskaya, Annamaria Bianchi 
 
Using Experimental Vignettes to Study How Survey Methods and Findings Affect the Public’s 
Evaluation of Public Opinion Polls: Considering a Dual-Process Approach 
Allyson L. Holbrook, Paul J. Lavrakas, Timothy P. Johnson, Andrew Crosby, Polina Polskaia, 
Xiaoheng Wang, Xiaoyan Hu, Evgenia Kapousouz, Young Ik Cho, Henning Silber 
 
 
Volume 19, No.2, 2025 
https://ojs.ub.uni-konstanz.de/srm/issue/view/244  

 

Articles 

Quality of Expenditure Data Collected With a Mobile Receipt Scanning App in a Probability 
Household Panel 
Alexander Wenz, Annette Jäckle, Jonathan Burton, Mick P. Couper, Brendan Read 
 
Pre-Trained Nonresponse Prediction in Panel Surveys with Machine Learning 
John Collins, Christoph Kern 

https://ojs.ub.uni-konstanz.de/srm/issue/view/243
https://ojs.ub.uni-konstanz.de/srm/issue/view/244


In Other Journals 
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Surely Shorter Is Better? A Questionnaire Length Experiment in a Self-Completion Survey 
Tim Hanson, Eva Aizpurua, Rory Fitzgerald, Marta Vukovic 
 
Internet Coverage Bias in Web Surveys in Europe 
Alessandra Gaia, Emanuela Sala, Chiara Respi 
 
The Impact of Scale Direction on Data Quality 
Ting Yan, Alexandru Cernat, Florian Keusch 
 

Response Burden and Response Quality in Web Probing: An Experiment on the Effects of Probe 
Placement and Format 
Patricia Hadler 
 
Effects of Mode and Transitioning to a Mixed-Mode (Web/Phone) Design on Categorical Survey 
Estimates: Do Question Characteristics Matter? 
Mengyao Hu, Vicki Freedman, Justin Kamens 
 
Effects of Changing the Incentive Strategy on Panel Performance: Experimental Evidence From a 
Probability-Based Online Panel of Refugees 
Jean-Philippe Décieux, Sabine Zinn, Andreas Ette 
 

Other Journals  
• Statistical Journal of the IAOS 

https://content.iospress.com/journals/statistical-journal-of-the-iaos/ 

• International Statistical Review 
https://onlinelibrary.wiley.com/journal/17515823 

• Transactions on Data Privacy 
http://www.tdp.cat/ 

• Journal of the Royal Statistical Society, Series A (Statistics in Society) 
https://rss.onlinelibrary.wiley.com/journal/1467985x 

• Journal of the American Statistical Association 
https://amstat.tandfonline.com/uasa20 

• Statistics in Transition – New Series  
https://sit.stat.gov.pl

https://content.iospress.com/journals/statistical-journal-of-the-iaos/
https://onlinelibrary.wiley.com/journal/17515823
http://www.tdp.cat/
https://rss.onlinelibrary.wiley.com/journal/1467985x
https://amstat.tandfonline.com/uasa20
https://sit.stat.gov.pl/
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Welcome New Members! 
 

We are very pleased to welcome the following new IASS members: 

Title First name Surname Country 
Mrs. Clyde E. Charre de Trabuchi Argentina 

Mr. Tony Labillois Canada 

Ms. Anita Harmina Croatia 

Dr. Yannick Lemel France 

Dr. Christophe Lefranc France 

Dr. Jan Pablo Burgard Germany 

Dr. Faisal Awartani Israel 

Mr. Leonard Warren Cook New Zealand 

Mr. Bjorn K. Getz Wold Norway 

Mrs. Awa Thiongane Senegal 

Dr. Willie Lahari Solomon Islands 

Dr. Hyoung Il Lee South Korea 

Professor Beat Hulliger Switzerland 

Dr. Philippe Eichenberger Switzerland 

Professor H. Öztas Ayhan Turkey 

Professor Peter J. Lynn United Kingdom 

Dr. Tarek Al Baghal United Kingdom 

Mr. Gary Bennett United Kingdom 

Professor Martin R. Frankel United States 

Professor Roderick J Little United States 

Dr. Daniel Kasprzyk United States 

Mr. Edward J. Spar United States 

Dr. Keith Rust United States 

Dr. J. Michael Brick United States 

Dr. David Alan Marker United States 

Ms. Francesca Perucci United States 

Professor Juan Pablo Ferreira Neira Uruguay 

Mr. Oliver J. M Chinganya Zambia 
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IASS Executive Committee Members 

Executive officers (2025 – 2027) 
President: Partha Lahiri (USA) plahiri@umd.edu 

President-elect: Ralf Münnich 
(Germany) 

muennich@uni-trier.de 

Vice-Presidents:   

Scientific Secretary   Katherine Jenny 
Thompson (USA) 

jennythompson731967@gmail.com 

VP Finance and IASS conferences support  Partha Lahiri (USA) 
Ralf Münnich 
(Germany) 

plahiri@umd.edu 

muennich@uni-trier.de 

Liaising with ISI EC and ISI PO plus 
administrative matters 

Ralf Münnich 
(Germany)   

muennich@uni-trier.de 

Chair of the 2025 Cochran-Hansen Prize 
Committee 

Chair of the 2024 Hukum Chandra Prize 
Committee  

IASS representative on the ISI Awards 
Committee 

Robert Clark 
(Australia) 
 

robert.clark@anu.edu.au  

 

IASS representatives on the World Statistics 
Congress Scientific Programme 
Committee 

IASS representative on the World Statistics 
Congress short course committee 

Ralf Münnich 
(Germany)   

muennich@uni-trier.de 

IASS representative on the ISI publications 
committee 

Partha Lahiri (USA) plahiri@umd.edu 

IASS Webinars 2025-2027    
Volunteer for supporting training and 

Webinar activities within ISI Statistical 
Capacity Development Committee         

Haoyi Chen (China)  
 

 

IASS representative on the Regional 
Statistics Conference 2026 

IASS Social Media 

Gaia Bertarelli  
(Italy) 

gaia.bertarelli@unive.it 

Ex Officio Member: Conchita Kleijweg  
(The Netherlands) 

c.kleijweg@isi-web.org 

 
IASS LinkedIn Account: 
https://nl.linkedin.com/company/international-association-of-survey-statisticians-iass 

IASS Facebook Account:  https://www.facebook.com/iass.isi/ 

IASS X Account: https://x.com/iass_isi/ 

IASS Webmasters: Ujjayini Das (ujstat@umd.edu) and Sabrina Zhan (SabrinaZhang@westat.com) 

mailto:jennythompson731967@gmail.com
mailto:plahiri@umd.edu
mailto:muennich@uni-trier.de
mailto:muennich@uni-trier.de
mailto:muennich@uni-trier.de
mailto:plahiri@umd.edu
mailto:gaia.bertarelli@unive.it
https://x.com/iass_isi/
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IASS Institutional Members 
 

International organisations: 

• Eurostat (European Statistical Office) – Unit 01: External & Inter., Luxembourg 

 

National statistical offices: 

• Australian Bureau of Statistics, Australia 

• Instituto Brasileno de Geografia y Estatística (IBGE), Brazil 

• Statistics Canada, Canada 

• Statistics Denmark, Denmark 

• Statistics Finland, Finland 

• Statistisches Bundesamt (Destatis), Germany 

• International Rel. & Statistical Coordination, Israel 

• Istituto nazionale di statistica (ISTAT), Italy 

• Statistics Korea (KOSTAT), Republic of Korea 

• Direcção dos Serviços de Estatística e Census (DSEC), Macao, SAR China 

• Statistics Mauritius, Mauritius 

• Statistics New Zealand, New Zealand 

• Statistics Norway, Norway 

• Instituto Nacional de Estatística (INE), Portugal 

• Statistics Sweden, Sweden 

• Office for National Statistics Service (ONS), United Kingdom 

• National Agricultural Statistics Service (NASS), United States 

• National Center of Health Statistics, United States 

 

Universities: 

• Department of Mathematics and Statistics, University of Ottawa, Canada 

• Univ. of Tuscany, Dept. Economics & Management, Italy 

 

Other statistical organizations: 

• Institut Public de Sondage d'Opinion Secteur (Ipsos), Italy 

• WESTAT Inc., United States 

 


