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1) Background

I Surveys continue to be an important data collection source for
government agencies and other organizations

I Survey weights need to be used in estimation to account for the
sampling design

I These weights also adjust for:
I unknown eligibility (non-contact, locating errors)
I nonresponse

I Modeling (implicit or explicit) is required for these adjustments, so it
is crucial to do this in a theoretically valid, transparent and
reproducible manner
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Weighting @ Westat

1. Identify base weights (inverse of inclusion probabilities, known)

2. Create unknown eligibility adjustment weights, using cell-based
model

3. Create nonresponse adjustment weights, using cell-based model

4. Calibrate weights to control totals

5. Create replicate weights for variance estimation based on (1) and
repeating (2)-(4) for each replicate
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Response homogeneity group (RHG) model

I RHG model:
I Population is partitioned into groups in which the propensity to

respond is constant
I The groups are defined in terms of variables known for all sampled

units, treated as fixed
I Response propensity within each group is not known

I Alternative model:
I Assume known parametric model for propensity function (with same

covariates as above)
I Model provides response propensity for each sampled unit
→ In practice, estimated propensities are binned by quantiles, effectively

resulting in cell-based model

5



Determining the groups

I In many situations, there are (too) many possible covariates, so it is
necessary to determine groups based on the data

⇒ Use recursive partitioning method to fit a classification tree (Breiman
et al, 1984) predicting response status

I In survey context, exchangeability (iid) assumptions of classification
tree methods do not apply

I Goal: develop a modification of an existing classification tree
method that accounts for the design-based setting
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2) Recursive partitioning

I Recursive partitioning: define successive splits of the data into
subsets, based on a selection criterion to chose the splits, until the
stopping criteria are met
I Selection criterion: split node which results in largest decrease in

estimated mean squared error, entropy, . . .
I Stopping criteria: no eligible splits, number of nodes, depth of tree,

minimum size of node, pure nodes, etc
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CHAID example

CensusRegion

Midwest, South Northeast, West

NumberChildren

0, 1, 2, 3 4, 5+, N/A

BuidingType

Mobile, 
 2 Apt,..., N/A

SF detached, 
 SF attached

n = 820,829
84.6 %

n = 2,620,234
95.3 %

BuidingType

Mobile, 
 2 Apt,..., N/A

SF detached, 
 SF attached

n = 180,544
66.8 %

n = 400,641
81.8 %

BuidingType

Mobile, 
 2 Apt,..., N/A

SF detached, 
 SF attached

NumberChildren

0, 1, 2, 3 4, 5+, N/A

n = 697,379
42.6 %

n = 107,853
21.6 %

NumberChildren

0, 1, 2, 3 4, 5+, N/A

n = 1,605,766
73.1 %

n = 247,223
37.8 %
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CHAID

I Chi-square Automatic Interaction Detection (Kass, 1980): method
for recursive partitioning that decides on splitting based a χ2 tests
(or F , for continuous variables)
I Selection criterion in CHAID: p-value

I Popular in marketing applications, especially market segmentation
and prediction

I Typical implementation of CHAID selection step:

1. Choose best possible split for each categorical variable
2. Select which variable to split on among the splits identified in (1)
→ Only consider splits with p-value smaller than predetermined cutoff,

otherwise do not split
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CHAID advantages/disadvantages

+ Flexible and easy to implement: can be applied to categorical,
ordinal, continuous data

+ Local decision criterion: decision on splitting does not depend on
other splits

+ Can use p-values as tuning parameters, which are easy to interpret

– Tends to select too many splits on variables with many categories

– Does not actually estimate an overall model, making it difficult to
evaluate statistically

– Does not accommodate the survey design

I We developed sCHAID (survey CHAID) to address the last issue
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3) Survey design and estimation
I Finite population U = {1, . . . ,N}, sample s of size n selected

according to sampling design p(s) with inclusion probabilities
πi = Pr(i ∈ s), πij = Pr(i , j ∈ s)

I If full sample observed, Horvitz-Thompson estimator

t̂π =
∑
s

yi
πi

is unbiased for population total ty =
∑

U yi
I Define the response indicator Ri , i ∈ U

Ri =

{
1 if i would respond to the survey if selected
0 otherwise

The Ri are independent with E(Ri ) = pi
I If the pi known, estimator with nonresponse

t̂π,p =
∑
s

yk
πi

Ri

pi

remains unbiased for population total ty
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Survey estimation under RHG model
I Under the RHG model, the population is partitioned into groups

U∗g , g = 1, . . . ,G of size N∗g , with P∗g the (constant, unknown)
propensity to respond in group g

pi = P∗g for i ∈ U∗g

I Sample s partitioned into s∗g , g = 1, . . . ,G

I Naive RHG estimator

T̂RHG =
G∑

g=1

∑
s∗g

1
πi∑

s∗g

1
πi

Ri

P∗g

∑
s∗g

yi
πi

Ri

P∗g
=

G∑
g=1

∑
s∗g

yi
πi

Ri

P̂∗g

with

P̂g∗ =

∑
s∗g

Ri

πi∑
s∗g

1
πi

is asymptotically unbiased and does not require knowledge of the P∗g
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RHG tree structure

I The U∗g are defined as the intersections of categorical and/or ordinal
variables Xk , k = 1, . . . ,K , which can take Lk different values
I For simplicity, Lk = L and categories are labeled (1, . . . , L) for all k
I G = K × L

I When G is large relative to n, the naive RHG estimator is unstable
I Number of respondents in some s∗g can become small or even zero
I Too many cells leads to increased weight variation and estimator

variance

I We want to reduce the number of cells to a more manageable
number by collapsing cells with the same (or similar) response
propensities
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Defining splits

I For each variable Xk , we can divide the population into L
non-overlapping “population slices” containing all units i with
Xik = l for l = 1, . . . , L

I To define a binary split for Xk , we consider combinations of these
slices into

Ukl = {i ∈ U : Xik ≤ l} and Uc
kl = {i ∈ U : Xik > l} (ordinal)

Ukl = {i ∈ U : Xik = l} and Uc
kl = {i ∈ U : Xik 6= l} (categorical)

I We write Akl ,Aklc for the set of indices g such that⋃
g∈Akl

U∗g = Ukl and
⋃

g∈Aklc

U∗g = Uc
kl

with sizes Nkl =
∑

g∈Akl
N∗g , Nklc =

∑
g∈Aklc

N∗g
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Response propensities on splits

I Group propensities Pkl (and Pklc )

Pkl =

∑
i∈Ukl

pi

Nkl
=

∑
g∈Akl

N∗gP
∗
g∑

g∈Akl
N∗g

I Estimated by

P̂kl =

∑
i∈skl Ri/πi

Nkl
=

∑
g∈Akl

N∗g P̂
∗
g∑

g∈Akl
N∗g

with

P̂g∗ =

∑
s∗g

Ri

πi∑
s∗g

1
πi
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sCHAID splitting criterion
I To decide whether to split the dataset at Xk = l , we perform a

statistical test of the form

H0 : Pkl = Pklc

Ha : Pkl 6= Pklc

I Survey-weighted χ2 test statistic

Ŵkl = n
(P̂kl − P̂klc )2

V̂kl

with p-value

q̂kl = Pr(χ2
1 > Ŵkl)

I The same test statistic is computed for other covariates, and the one
with the smallest p-value is selected for splitting the dataset

I What is V̂kl , and what is distribution of Ŵkl?
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Response propensity tree

I A CHAID tree fitted to a sample s consists of an ordered sequence
of Rs splits, denoted T̂s

I Each of the splits is defined by two sets of indices (Akl ,Aklc ) among
the eligible groups

I We would like T̂s to converge to a non-random split sequence TU
that depends on the population and the sample design, but not on
the realized sample
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4) Theoretical results

I P̂kl and P̂klc are of the form

P̂kl =

∑
g∈Akl

N∗g P̂
∗
g∑

g∈Akl
N∗g

I We can obtain variance estimator V̂kl and properties of Ŵkl based
on those of the vector of Horvitz-Thompson estimators P̂∗g ,
g = 1, . . . ,G
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Asymptotic framework

I Design-based asymptotic framework:
I Sequence of finite populations UN with N →∞
I Associated sequence of sampling designs pN(s) with n→∞
I Asymptotic design normality of Horvitz-Thompson estimators
I Regularity conditions on πi , πij , such that Var(P̂∗

g ) = O(1/n)

I RHG model generating response indicators Ri in population
I In each group U∗

g , the Ri are iid Bernoulli(P∗
g )

I The number of groups G is fixed

I We will consider properties of the estimators under the combined
design-model distribution
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Asymptotic distribution of the group propensity estimators

I Under stated assumptions, the vector of estimators

P̂
∗

= (P̂∗1 , . . . , P̂
∗
G )T has the following asymptotic distribution

√
n
(
P̂
∗
− P∗

)
⇒ N (0,V ∗)

with V ∗ = V ∗1 + V ∗2 , where V ∗1 is a matrix with elements

[V ∗1 ]gg ′ =
n

N∗gN
∗
g ′

∑
U∗g

∑
U∗

g′

(πij − πiπj)
pi
πi

pj
πj

and

V ∗2 = diag

 n

N∗2g

∑
U∗g

1

πi
P∗g (1− P∗g )


I Variance terms can be consistently estimated based on sample
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Asymptotic distribution of the test statistic

I Vkl = nVar(P̂kl − P̂klc ) is complicated linear combination of terms in

V ∗, estimated by V̂kl based on V̂
∗

I Under the stated assumptions, the test statistic for the split on
variable Xk at category l ,

Ŵkl = n
(P̂kl − P̂klc )2

V̂kl

has an asymptotic non-central χ2
1 distribution, with non-centrality

parameter equal to

λkl = n
(Pkl − Pklc )2

Vkl
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Convergence of the sample-based tree

I For simplicity, consider a simple sCHAID procedure that performs R
splits and stops

I Suppose that we are choosing splits by selecting the smallest
p-values among K possible splits at each step

I With probability going to 1, the smallest p-value corresponds to the
split with the largest value for

λkl = n
(Pkl − Pklc )2

Vkl

among those considered at each step

I With probability going to 1, the sample-based tree T̂s converges to a
population tree TU , with sequence of splits defined at each step by

(Akl ,Aklc ) = argk,l max
(
(Pkl − Pklc )2/Vkl

)
I Interpretation?
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5) sCHAID implementation

I Modified version of existing R-package CHAID1

I Requires survey R-package and creates an object of class constparty

I Uses p-values of second-order (Satterthwaite) Rao-Scott adjusted χ2

tests (Rao and Scott, 1987)

I At a given step,
I For each variable, choose best binary split by merging most similar

categories
I Continuous variables: create ordinal variable using deciles
I Ordinal variables: collapse adjacent categories with largest p-value
I Nominal variables: collapse any two categories with largest p-value

I Split using best binary split (with the smallest p-value) among binary
splits with p-value < α

I Stop if the node is pure, no splits have p-value < α, or any other
user-specified stopping criterion is satisfied

1https://rdrr.io/rforge/CHAID/man/chaid.html
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Illustration

I Simulation on real data: 2017-2021 American Community Survey
Public Use Microdata Sample (ACS PUMS)2

I 6,680,469 household-level records

I Treat ACS PUMS as sampling frame, draw 1,000 stratified
unequal-probability two-stage samples of households (HHs)
I Strata: 9 census divisions
I PSU: Public Use Microdata Areas (PUMAs), simple random sample

of 10
I Elements: HHs in selected PUMA, simple random sample of 100

2https://www.census.gov/programs-surveys/acs/microdata/access.html
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Sampling design

Census Division
#

PUMAs

#
sampled
PUMAs

Average #
HHs per
PUMA

# sampled
HHs per
PUMA

New England 109 10 2,946 100
Middle Atlantic 310 10 2,790 100
East North Central 339 10 3,026 100
West North Centra 159 10 3,008 100
South Atlantic 455 10 2,950 100
East South Central 138 10 2,984 100
West South Central 294 10 2,599 100
Mountain 180 10 2,791 100
Pacific 367 10 2,642 100
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Response mechanism
I The response status Ri ∼ Bernoulli(pi ) was generated for each

household i with

log

(
pi

1− pi

)
= β0 +

6∑
k=1

Lk−1∑
l=1

βkXik,l

with covariates
I census region indicators (Northeast, Midwest, South, West)
I building type (one-family house detached home or not)
I tenure status (owned or not)
I presence of children in the household (yes/no)
I health insurance coverage status (yes/no)
I property value (quintiles)

I The parameters were obtained by fitting a logistic model for early
response, with 1 if the ACS response mode was web or mail and 0 if
the response mode was telephone or in-person

I Average response rate was 74.5%
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Response propensity modeling

I As potential covariates for constructing trees, the same variables
were provided, plus:
I telephone services status (yes/no)
I family type (married, not married, non-family)
I number of persons in family (1, 2, 3, 4, 5+)
I access to internet (yes/no)

I Methods considered
I CHAID (unweighted, no design information)
I sCHAID
I rpms (R implementation of Toth and Eltinge (2011))

27



Results

Algorithm

Proportion of trees
containing all correct

covariates

Proportion of trees
containing incorrect

covariates
CHAID 0.99 0.11
sCHAID 0.99 0.06
rpms 0.95 0.07
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Results (2)

Estimate the mean household income, using cells determined by selected
trees and RHG estimator

Algorithm Relative bias (%)
Relative root mean
squared error (%)

CHAID 0.20 0.68
sCHAID 0.21 0.52
rpms 0.33 0.59
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6) Conclusions

I Classification trees are useful approach to create response propensity
adjustment cells, a crucial part of survey weighting

I We propose sCHAID as a design-based recursive partitioning method

I Method can easily be extended to other survey applications outside
the nonresponse adjustment context

Contact: JeanOpsomer@westat.com
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