# Sampling for Business Surveys at Statistics Canada

M.A. Hidiroglou October 29, 2025

#### **Outline**

- 1. Business Register
- 2. Sample size determination and allocation
- 3. Sampling from the Business Register
- 4. Removal of dead units
- 5. Concluding Remarks

- Some History
- **1970s:** Initial creation
  - Early challenges: incomplete coverage and fragmented data
- Redesigns
  - 1984-1988: Business Survey Redesign Project → integrated administrative data, modular system. First survey to use it Monthly Retail and Wholesale trade Surveys
  - **1997:** Integration of Business Number (BN) → improved linkage and data quality
  - **Late 1990s:** Unified Enterprise Survey (UES) → unified annual surveys under one framework
  - 2010: Integrated Business Statistics Program (IBSP) → standardized and efficient survey operations

#### **Membership**

- Sampling frame for economic surveys and includes corporations, non-profits, and government entities.
- A business is part of the BR if it remits payroll deductions, earns over \$30,000 annually, or files a corporate tax return.
- BR built from payroll, GST, and income tax data, all linked by the **Business Number (BN)** to ensure consistency and avoid duplication.

#### **Classification and Updates**

Each unit is classified by:

- Industry → NAICS (North American Industry Classification System)
- Geography → Provincial and regional codes

#### Continuous updates:

- Business births and deaths
- Structural changes in complex enterprises
- Revisions from administrative data and surveys

#### **Sampling**

- Sampling from the **Business Register** (**BR**) involves defining the target universe using its hierarchy of statistical units (enterprise, company, establishment, location) and then selecting a sampling unit at the same or a more detailed level.
- The choice of sampling unit impacts data collection, estimation, survey logistics, and linkage with administrative data.

| <b>Statistical Unit</b> | Definition                                       | Example                                      |
|-------------------------|--------------------------------------------------|----------------------------------------------|
| Enterprise              | Legal entity with consolidated financial data    | Quarterly Survey of Financial Statements     |
| Company                 | Measures operating profit and capital employed   | Energy Research and Development Expenditures |
| Establishment           | Single production unit with homogeneous activity | Business Payrolls Survey                     |
| Location                | Specific physical site                           | Job Vacancy and Wage Survey                  |

Stratify Business population by

- Geography, industry
- Size within geography and industry

**Parameter of interest:** For each primary stratum gi estimate totals means  $\overline{Y}_{gi}$  or totals  $Y_{gi}$ 

Require auxiliary variable X

**Stratification** implemented in two stages by specifying primary and secondary strata

**Primary strata** *gi*: geography (*g*) by industry (*i*)

• Some complex businesses included with certainty

**Secondary strata** h: size groups within gi

- Take-all stratum (TA): Largest units sampled with certainty
- Take-some strata (TS): Smaller units sampled using simple random sampling
- Take-none stratum (TN): Smallest units are not sampled

Primary strata: Two scenarios for allocating units

- c-scenario: Choose the overall level of precision level c
- *n*-scenario: Choose total sample size *n* for given budget

**Secondary strata:** For each scenario, and each primary stratum

- Choose allocation procedure: Neyman, *X*-proportional
- Compute size boundaries and sample sizes

#### Primary strata: c-scenario

- Specify global coefficient of variation c
- Denote as gi primary stratum, g=1,...,G and i=1,...,I
- Associated total :  $X_{gi}$
- Marginal totals:  $X_{g.} = \sum_{i=1}^{I} X_{gi}$ ,  $X_{.i} = \sum_{g=1}^{G} X_{gi}$ ,
- Overall total:  $X_{..} = \sum_{g=1}^{G} \sum_{i=1}^{I} X_{gi}$

#### Primary strata: c-scenario

Compute marginal CVS

• Geography: 
$$c_{g.} = c \frac{X_{..}}{\sqrt{\sum_{g=1}^{G} X_{g.}^2}}$$
,  $g = 1, ..., G$ 

- Industry:  $c_{.i} = c \frac{X_{..}}{\sqrt{\sum_{i=1}^{I} X_{.i}^2}}, i = 1, ..., I$
- Set initial cv for gi-th primary stratum to  $c_{gi}^{(0)} = 0.5(c_{g.} + c_{.i})$

#### Primary strata: c-scenario

• Iterate: r=1,...,R

$$c_{gi}^{(r)} = c_{gi}^{(r-1)} \begin{cases} \frac{(c_{.i}X_{.i})}{\sqrt{\sum_{i=1}^{I} c_{gi}^{(r-1)} X_{gi}^{2}}} & \text{, if } r \text{ is odd} \\ \frac{(c_{g.}X_{g.})}{\sqrt{\sum_{g=1}^{G} c_{gi}^{(r-1)} X_{gi}^{2}}}, & \text{if } r \text{ is even} \end{cases}$$

- Convergence after R=5 iterations
- Final coefficients of variation :  $c_{gi}^{(f)}$

#### Secondary strata: c-scenario

- Stratify each primary stratum into secondary strata
- Minimize primary sample size  $n_{gi}$  given
  - Coefficient of variation for gi-th primary stratum:  $c_{gi}^{(f)}$
  - Allocation scheme of  $n_{gi}$  units to secondary strata: X-proportional, Neyman allocation
    - Obtain boundaries and associated secondary stratum sizes

**R** program: Rivest and Baillargeon (2022)

Primary strata: *n-scenario* 

**Bankier's (1988) method**. Overall sample size *n* optimally allocated to primary strata

• Given  $\sum_{g=1}^{G} \sum_{i=1}^{I} n_{gi} = n$ , minimize

$$F = \sum_{q=1}^{G} \sum_{i=1}^{I} \left( X_{gi}^{q} \text{CV}(\hat{Y}_{gi}) \right)^{2}, 0 \le q \le 1$$

- y: variable of interest
- *x*: auxiliary variable

Primary strata: *n-scenario* 

**Sample size** for  $gi^{th}$  primary stratum

$$n_{gi} = n \frac{\frac{S_{gi}(y)X_{gi}^q}{\overline{Y}_{gi}}}{\sum_{g=1}^G \sum_{i=1}^I \frac{S_{gi}(y)X_{gi}^q}{\overline{Y}_{gi}}}, 0 \le q \le 1$$

 $S_{gi}(y)$ : standard deviation of the y's

 $\bar{Y}_{gi}$ : population mean of the y's

 $X_{gi}$ : population total of the x's

Primary strata: *n-scenario* 

$$S_{gi}(y)/\bar{Y}_{gi}$$
: not known

Assume  $\frac{S_{gi}(y)}{\bar{Y}_{gi}} \cong a$  for all primary strata and fpc ignored

Then

$$n_{gi} \cong n \frac{X_{gi}^q}{\sum_{g=1}^G \sum_{i=1}^I X_{gi}^q}$$

Primary strata: *n-scenario* 

q=0 corresponds to equal allocation

$$n_{gi} = n / GI$$

#### **Properties**

- 1. CVs for primary strata almost equal
- 2. CVs across primary strata can be large

### Primary strata: n-scenario

q=1 corresponds to Neyman allocation

$$n_{gi} = n \frac{N_{gi} S_{gi}(x)}{\sum_{g=1}^{G} \sum_{i=1}^{I} N_{gi} S_{gi}(x)}$$

- $S_{gi}(x)$  the standard standard deviation of the x's.
- Properties
  - 1. CV across primary strata is minimized.
  - 2. CVs at the primary stratum level can be large

Bankier (1988) recommended q = 0.3 or 0.5 as a compromise

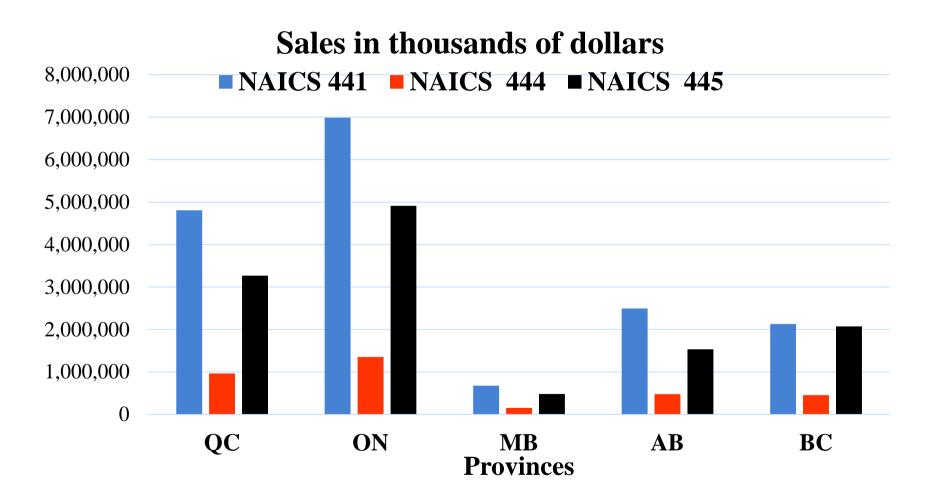
#### Secondary strata: *n-scenario*

- Stratify each primary stratum into secondary strata
  - Take-all, take-some, and take none
- Boundaries and sample sizes
  - Choose allocation procedure to secondary strata: Neyman, *X* proportional, power allocation
  - Minimize variance of estimated mean for each gi-th primary stratum:  $V(\bar{X}_{gi})$

#### **Setup: Comparison between** *c* **and** *n* **sce**narios

- Used a simulated data set of 2,000 establishments of the Monthly Retail Trade Survey: Rivest and Baillargeon (2022)
- Fitted data to a gamma distribution
- Generated sale population values for establishments using predicted gamma values
  - Counts and sales made to agree with the June 2024 Monthly Retail Trade Survey tables published by Statistics Canada
  - Primary strata: five provinces and three industry groups

#### **Primary Strata**

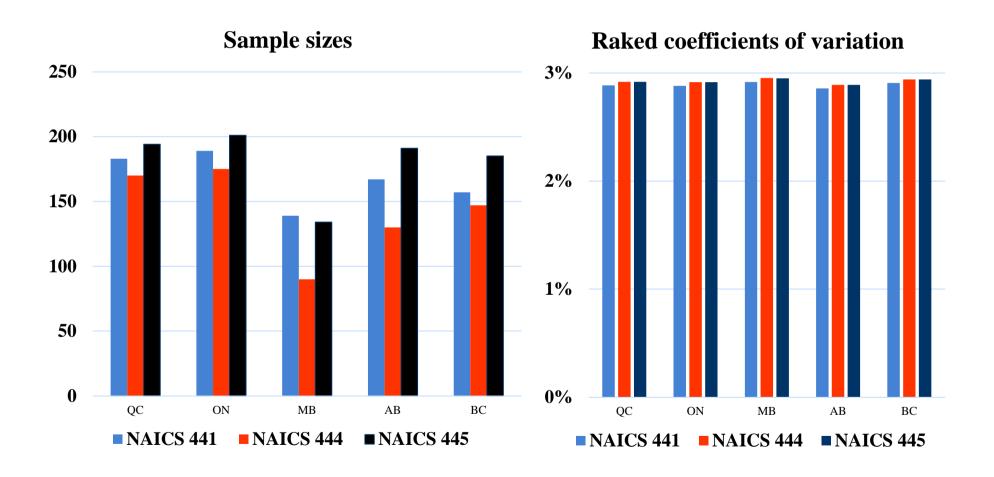

• **Provinces**: Quebec, Ontario, Manitoba, Alberta, British Colombia

#### • Industries

NAICS 441: Motor Vehicle and Parts Dealers

NAICS 444: Building Material and Garden Equipment and Supplies Dealers

NAICS 445: Food and Beverage Stores




#### Steps for c-scenario

- 1. Overall coefficient of variation: 1%
- 2. Compute raked coefficients of variation for each primary stratum
- 3. Compute sample sizes for each secondary stratum given specified take-all stratum with two take-some strata using Neyman allocation.

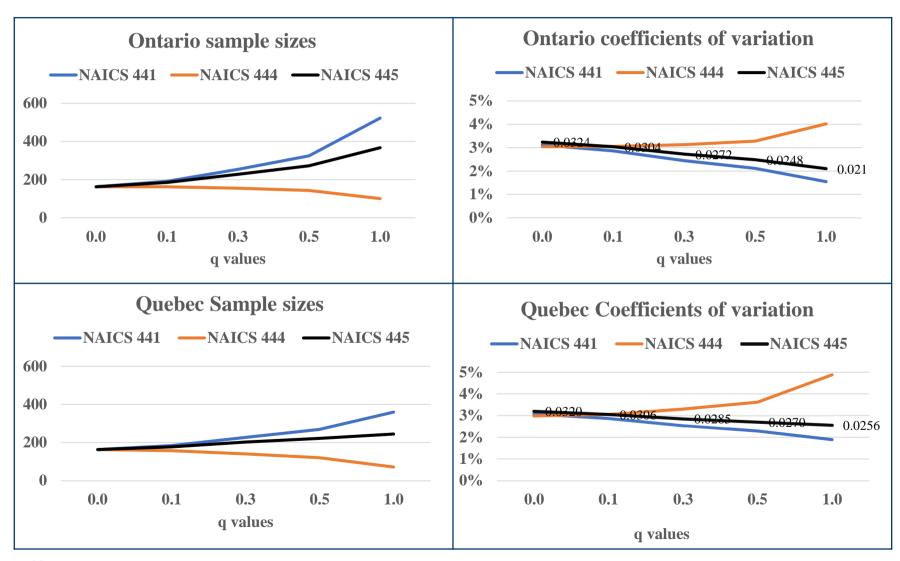
**R** program: Rivest and Baillargeon (2022)

### Results for c-scenario



### Summary c-scenario

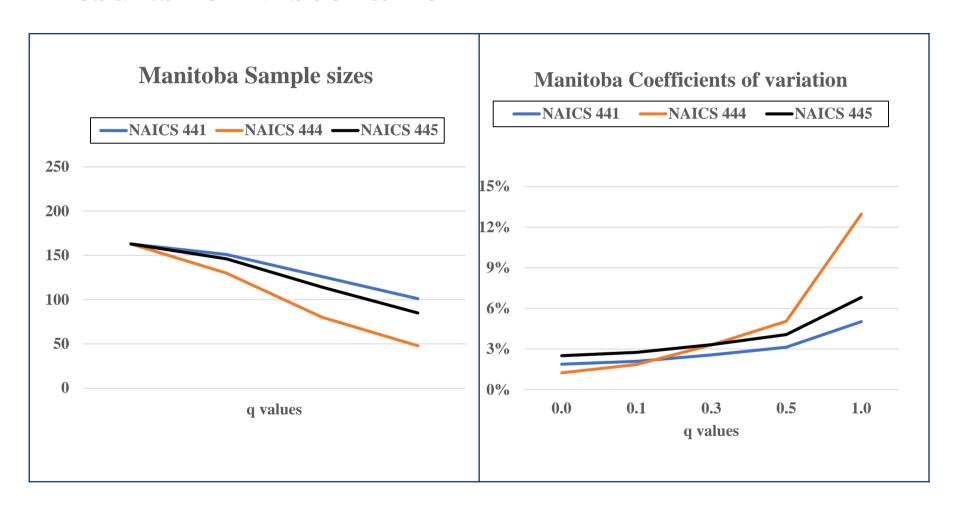
- 1. Raked CVs are stable around 2.9%, indicating consistent precision.
- 2. Larger sample sizes correspond to slightly lower CVs.
- 3. Ontario and Quebec show the largest samples and lowest CVs.
- 4. Manitoba has smaller samples and higher CVs.
- 5. NAICS 444 shows the most variation across provinces
- 6. CV  $\propto 1/\sqrt{n}$


### Steps for *n*-scenario

- Used overall sample size from c-scenario: n=2,452
- Allocated *n* to the primary strata using Bankier's (1988) power allocation

$$n_{gi} = n \frac{X_{gi}^{q}}{\sum_{g=1}^{G} \sum_{i=1}^{I} X_{gi}^{q}}$$

- q=(0.0,0.1,0.3,0.5, and 1.0)
- Computed sample sizes for each secondary stratum *gi*, given a take- all stratum and two take-some strata


#### Results for *n*-scenario



#### Results for *n*-scenario



### Results for *n*-scenario



### Summary *n-scenario*

- 1. q = 0.1-0.3 appears optimal, as it balances sample size and coefficient of variation.
- 2. High  $q \ge 0.5$  leads to deterioration in CVs, especially for smaller provinces.
- 3. Large provinces tolerate higher q values without major loss in quality.
- 4. Comparable to c-scenario when q=0.1
- 5. Advantage over *c*-scenario: direct computation of sample sizes given n

# 3. Sampling from the Business Register

#### **BR** continually changing

 Need to record the status of statistical units targeted for sampling

#### Sample control file (SCF)

- central operational file used to manage and monitor the sample selection and estimation processes for a survey.
- Provides a structured record of all sampled units (e.g., businesses), their design information, and their evolving survey status.

# 3. Sampling from the Business Register

#### Sample control file (SCF)

- Each survey has its own SCF
- History of snapshots of the BR
- All statistical units in the scope of a survey are identified on the SCF
- SCF updated with each survey occasion to identify births and deaths of statistical units on the BR
- From survey occasion to survey occasion
  - Deaths are not deleted
  - Births are added

# 3. Sampling from the Business Register

#### Sample control file (SCF)

#### **Typical components**

- Survey ID
- Identification of statistical units
- Stratification: Geography, industry, size code
- Frame: Birth and death dates
- Sample selection: Inclusion flag, selection method, Initial weight  $(1/\pi)$ , rotated in or out

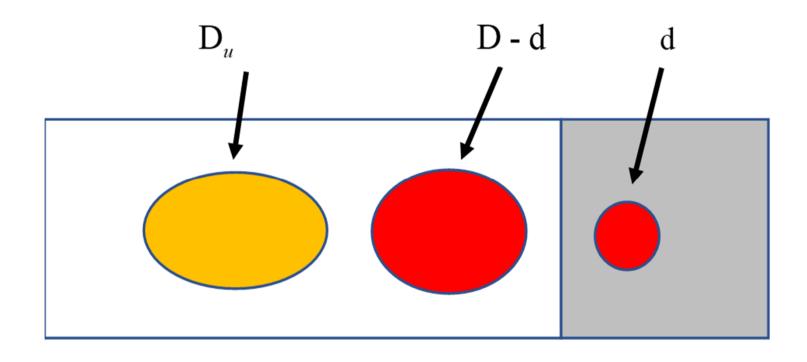
**SCF enables** unbiased estimation for domains of interest

#### Why remove dead units?

- Dead units do not have impact on estimate
- However, variance of estimate gets larger over time if dead units are not removed

- Stratum is defined by the survey: geography, industry and size (employment / revenue)
- Basic idea: remove in-sample and out-of-sample dead units from latest Sample Control File
- Removal takes place at fixed dates: every 6 months

#### **Problem:**


How many dead units should be retained in sample and outof-sample to represent the *unknown* number of out-of-sample dead units?

#### **Solution**

Remove a number in-sample *known* dead units, as well as a number of out-of-sample *known* dead units, so that the number of remaining in-sample dead units represents the out-of-sample *unknown* deaths.

#### Unknown dead units

#### Known dead units



**Out-of-sample** 

In-sample

#### **Notation (stratum level)**

N : population units

n : units in sample s

d: known deaths in sample

D-d: known deaths out-of-sample

| w d                | estimated number of deaths in the population              |
|--------------------|-----------------------------------------------------------|
| (w-1) d            | estimated number of out-of-sample deaths                  |
| (w -1) d - (D – d) | estimated number of unknown dead units outside the sample |

If  $(w-1) d - (D - d) \le 0$ : do nothing

If (w-1) d - (D - d) > 0: remove in and out-of-sample deaths

x: Number of dead units left in the sample:

w *x*: Estimated number of dead units in the population.

(w-1) x: Estimated out-of-sample deaths

Note that (w-1) d - (D-d) is equal to (w-1) x

Solving for x, we obtain

$$x = d - \frac{D - d}{w - 1}$$

1. Number of dead units removed from sample

$$d^* = \frac{D - d}{w - 1}$$

2. Estimated number of deaths to be removed from the population  $D^* = w d^*$ 

3. Remove D\* – d\* units from the known D-d out-of-sample dead units

### **Outcomes for removing deaths**

| Condition                         | In-sample dead units removed | Out-of-sample dead units removed |
|-----------------------------------|------------------------------|----------------------------------|
| int(d*) =0                        | None                         | None                             |
| $int(d^*) = d$                    | All                          | $int (D^* - d^*)$                |
| $0 < \operatorname{int}(d^*) < d$ | int(d*)                      | int $(D^* - d^*)$                |

## 5. Concluding Remarks

#### Focused on

- 1. The construction, structure, and ongoing maintenance of the business register
- 2. Methods for determining and allocating sample size
- 3. Sampling: Tracking is evolution, thereby ensuring unbiased (nearly) estimators of parameters of interest
- 4. A procedure for the elimination of dead units.