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Outline

@ Introduction
o Linear, unit-level model

@ Extension 1: Lognormal models
o Empirical best prediction concepts

@ Extension 2: Zero-inflated lognormal models
e Population-level covariates

Extension 3: Informative sampling
o Nonlinear parameters, exponential dispersion families
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What is small area estimation?

o Large-scale surveys play an important role in the federal statistical
system
o National Crime Victimization Survey — criminal victimization rates for
individuals ages 12 and older in the US
o National Resources Inventory — characteristics related to natural
resources and agriculture
e Canadian labor force survey — parameters related to employment
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What is small area estimation?

@ Complex surveys are often designed to produce estimates for /arge
estimation domains. Data users often request estimates for estimation
domains with small sample sizes

o National Crime Victimization Survey publishes national level estimates
o State-level estimates are of interest

o National Resources Inventory publishes state-level estimates
o County-level estimates are of interest

e Canadian labor force survey produces estimates for broad employment
categories at the provincial level

@ Detailed employment categories are of interest
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What is Small Area Estimation?

@ The challenge

e As a result of small sample sizes, direct estimators are unreliable
@ The solution: small area estimation (Rao & Molina 2015)

e Use models to obtain more efficient estimates
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Basic Unit-Level Model: Set-up

o i=1,...,D index the areas
@ j=1,...,N; index the elements in the entire population for area i
@ j=1,...,n; < N index the elements in the sample for area i

@ y;i is the variable of interest for unit j in area i
@ The parameter of interest is the area mean defined by

1Y
0= Vi
i 4
j=1
@ Data available

{y,-j:jzl,...,n,-}U{x,-j:jzl,...,n,-}U{)_(N’,-:izl,...,D}
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Basic Unit-Level Model (Battese et al. 1988)

@ Model Assumption

yij = Bo + xjB1 + ui + ejj,
ui % N0, 2)

iid
ej ~ N(0,02)

e Use REML (R function Imer in Ime4 package, or SAE R package) to

obtain estimates: [y, (1, 65, 63
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Basic Unit-Level Model

Challenges
@ Skewed response variables
@ Zero-inflated data

@ Informative sampling
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Part 1: Unit-Level Lognormal Model (joint work with Hukum Chandra)
@ Small area model for skewed data

@ lllustrate basic concepts of small area prediction under nonlinear
models
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Unit-Level Lognormal Model: Motivation

@ Response variable (Y) has a non-normal distribution

o Skewed

e Positive support

e Variance increases with the mean

o Nonlinear associations to covariates

@ Linear predictors inefficient
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Unit-Level Lognormal Model: Framework

@ Areas: i=1,...,D; units: j=1,....N;

log(yjj) = z;;8 + ui + e
A N(0, diag(c2, 02))
(B.05.00), 0=(8.63,62)

D.

2

(u,,e,J)
o

@ Data available
{y,-j Zj:].,...,n,'}U{Z,'J':j:l,...,Nf},f:1,...,D
ys=1{yj:j=1,...,n,i=1,...,D}

e n; = sample size, N; = population size
@ Quantity to predict: small area mean

n; N;
D Vit D Vi
j=1

Jj=ni+1
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Unit-Level Lognormal Model: Predictor

@ Best (Bayes) predictor (minimum MSE) — general

n; N;
Y v+ D, Elyil 6,y
=1 j=ni+1

o Conditional expectation for the lognormal

Elys | 0,ys] = exp [Z,J,@—l-’y,(ES, - ,3)+ 7 (;:’4—1)]

1

n;
=n; " log(yy), vi=od(oh+ntod)!

o Justification for E[y; | 6, y]
log(yij) | 0, ys ~ N(ZU,@ +’Yl(£s: — Z,8),7io L+ Ucze)
] November 29, 2023  12/62



Unit-Level Lognormal Model: Predictor
e Empirical best predictor (general)

. N
R _ R 1 n;j i .
I . .
Jj=1 Jj=nj+1

° )“/,\‘-7,,5 for the lognormal biased due to nonlinear transformation of 0

E{E[yij 16, ys] — Ely | G,ys]} #0

@ Multiplicative bias correction
o Bias-corrected estimator - ygB-5¢
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Unit-Level Lognormal Model: MSE Estimation

@ General MSE of an EB predictor

MSE(95) = Eln; = 7w,)’]
= E[(7y,(8) — 7n.)*] + E[(9n; — 7.(6))°]
Mhi(6) M2i(60)
Mii(0) = E[V (¥ | ys)]
= MSE of best predictor constructed with (unknown)

true parameters

M,;(6) = variance due to estimation of 8
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Unit-Level Lognormal Model: MSE Estimation

@ Closed-form expression for My;(8)

Myi(8) = MSE{yy.(6)}

= 25 | O en(#iB)%6 + (3 o228
! JES JEsi

(&, i, ki) are known functions of 2, o2, n;

@ Taylor series approximation for M;(8)
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Unit-Level Lognormal Model: MSE Estimation

@ Plug-in estimator

MSE; = My;(8) + Mo,

o Biased because E[My;(8) — My;(8)] # 0

@ Bias-reduced estimator:

MSEo; = My;(6;) + My

o 0; depends on Taylor expansion of My;(0)
o E[Ml,(B,) — Ml,(O)] ~0
o The bias-adjusted MSE estimator is non-negative
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Unit-Level Lognormal: Simulation Models
o N =19990,D = 30

log(yij) = Bo + P1rzij + u; + €jj
(zij, ui, ej) ~ N{(12,0,0), dlag(a O'U,O'g)}

Four Parameter Sets
o2 16 16 12 12

z

02072 05 02 05 0.2
o, 06 04 07 05

(12, Bo, B1) = (3.253, —1.62,0.9)

@ Mean and variance of y;; approximately equal to mean and variance of
the number of chickens per segment in a 1960 USDA area survey
(Fuller, 1991)

. T



Simulations: Designs and Estimators

@ MC sample size of 2000
@ For each MC sample,
© Generate a new set of z;
@ Select a stratified SRS with areas as strata
o ;N !~ 0.0375
e ni=5i=1,...,15; n; =20,i=16,...,30
o Estimators

e TrIP - Indirect predictor based on Karlberg (2000)

e TrMBD - Model-based direct estimator of Chandra and Chambers
(2011)

e EB - empirical best predictor
e EB.BC - EB predictor with multiplicative bias correction
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Simulations: Results

@ Relative bias of predictor, yy.

Emclyn, — Vi
RB, — Emclin. — ]
E[yNi]

@ TrIP and TrMBD unibased
@ RB; of EB larger for 0, =2 than 0, = 1.6

e For o, =1.2 and n; =5, the average RB; is 1.3 for 0, = 0.5 and 1.4
for o, =0.2

o Average RB; less than 3% of MC RMSE

e EB.BC unbiased

o RB; smaller for n; = 20 than n; =5

. T ey
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Simulations: Results

@ MSE of predictor, yy,, relative to MSE of EB.BC predictor

MSEpmc(9n;)

RelMSE; = 2
" MSEmc(9525°)

Average RelMSE;

n; = 5 n; = 20
020;2 o, | TrIP trMBC TrIP TrMBD
0.5 16| 22 1.8 6.1 1.5
0.2 16| 13 2.8 25 1.8
0.5 1.2 ] 22 2.8 5.9 2.2
0.2 1.2 ] 13 4.5 25 2.6
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Simulations: Results

@ Properties of MSE estimators

@ Relative bias

EMC[MSE2,] — MSEpc(yEB-BC)
: MSEmc(9x2 BC)

o Average RB; between -2.2% and 10.7%
e Coverage of normal theory Cl's with nominal coverage of 95%
o Empirical coverage between 94.6% and 95.3%
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Unit-Level Lognormal: Take-Home Messages

@ Unit-Level lognormal model

o Extends the linear, unit-level model to handle skewed, positive response
variables

@ Empirical Bayes predictor

o Closed-form expression

o More efficient than competitors in simulations
o MSE estimator

o Closed-form expression

o Relative biases less than 11%

e Empirical coverages close to the nominal level

. Ty



Unit-Level Lognormal: Take-Home Messages

@ Basic concepts of SAE for nonlinear models

e EB predictor is estimate of conditional expectation of small area mean
given data
o MSE of EB predictor decomposes into a sum of two terms

o Leading term = conditional variance of small area mean given data
@ Second term = variance due to estimation of fixed parameters
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Part 2: Zero-Inflated Lognormal Model (joint work with Annie Lyu)
@ Extends the lognormal to handle zero-inflated data
@ Apply the method to data from an agricultural survey

@ Discuss the challenges and importance of obtaining unit-level auxiliary
information at the population level
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Sheet and Rill Erosion

@ Sheet and rill erosion (SRE) — transport of soil from thin surface
layers (sheets) or small channels (rills) due to rainfall or shallow runoff

Factors Impacting Erosion
@ Rainfall
@ Soil properties
o Slope
length /steepness

o Erosivity (ease of
detachment)

@ Crop managements

Conservation practices

@ SRE degrades agricultural land and pollutes water
@ Conservation policies rely on estimates of SRE

. Eve 2, A 25
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Small Area Estimation for SRE

Conservation Effects Assessment Project (CEAP)
@ Two-phase survey that quantifies water & wind erosion on cropland
o CEAP conducts farmer interviews at a subset of locations classified as

cropland in a larger survey called the National Resources Inventory
(NRI)

@ Survey data and auxiliary info. on soils and climate are processed

through the APEX computer model
@ An approximation for SRE is one APEX output

€ Agricultural Policy
—) )
Environmental A

eXtender

Sheet and Rill

t Erosion

Rainfall Soil Crop
(Slope, Erosivity)
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Small Area Estimation for SRE

@ Estimates of average SRE in South Dakota counties are of interest
o CEAP county sample sizes are small — small area estimation

0
(0.5]
(5,10]
M (10,20
B (20,30]
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Small Area Estimation for SRE

@ Exploratory analysis of CEAP SRE data
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Small Area Estimation for SRE

Zero-Inflated Lognormal Model
SRE: y,-j‘- = yijdjj
yij > 0;  0;; ~ Bernoulli(pj)
i=1,...,64 (SD Counties); j=1,...,N; (crop field in pop.)

Positive Part Binary Part
log(yij) = Bo + 2’1,,-1-51 + Ui + €j logit(p;) = ao + z'27,~ja1 + b;
e X N(0,02) pij : = pij(bi)

Correlation b/ Positive and Binary Parts
Y ) BUN(0, ), S = ou oub
bi ) ub) ub — Tub 0_12)

Oub = POu0p

I T S B
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Small Area Estimation for SRE

County mean of interest: yy. = Nfl ZJN:’I Vi
@ Data for small area prediction:

° (y* z)—{yu JESI}U{ZU—(Zlya 2U) 1jEsUS}
e s; is sample for county i with sample size n; = |s;|
o 5 is set of nonsampled elements in county i with |5;| = N; — n;

@ Minimum MSE (Bayes) predictor:

TSEO) = N[ Yoy + DBl | (v 2): )]

JEs; JES;

2 2 2
0= (60763_70407 04/17 Oes 0y Ub7p)/

@ Challenge
o Correlation parameter p introduces a need for integration over the
bivariate distribution of (u;, b;)
@ Approach

e Transform bivariate integrals to univariate integrals

. REve 0 A )



-
Small Area Estimation for SRE: Empirical Bayes Predictor

@ Gauss-Hermite approximation to univariate integral

e Empirical Bayes (EB) predictor:

FMSEB) = [ v+ B | 0. 2)i)

JEsi JES;

o Maximum likelihood estimator 6

. Ty



N
Small Area Estimation for SRE: MSE Estimator

@ "One-step” estimator of My;(8)

o Replace 6 with MLE 0 ° Méaioot(é) — parametric

o Use Gauss-Hermite to
approximate univariate
integral

bootstrap estimator of M,;(8)

“Semi-boot” MSE estimator

MSE; = My;(0) + ME°°t(6)
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Small Area Estimation for SRE: Covariates

* Covariates measure factors impacting erosion and are known for the
full population of cropland in South Dakota

o Rainfall

o logR: log R-factor, a measure of long-term, average rainfall in a county
@ Soils

o logS: log of slope steepness factor at a unit’s location

e logK: log of soil K-factor (erodibility index) at a unit's location

o Higher K-factors indicate greater erosivity — potential for detachment

o Crop type

o We use crop classifications from the Cropland Data Layer (CDL), a
satellite-derived landcover map with 30meter? resolution

o is.soybean = 1 if location classified as soybeans; 0 otherwise
o is.sprwht = 1 if location classified as spring wheat; 0 otherwise
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Small Area Estimation for SRE: Estimates and Cl's

@ Specific covariates selected with step-wise AlIC

Maximum Likelihood Estimate & Bootstrap SE
Positive Part Binary Part
Estimate (SE)  Estimate (SE)

logR 2.19 (0.36) 494 (0.72)
logK 0.52 (0.23)

log$S 0.49 (0.08) 0.38 (0.21)
is.soybean 0.71 (0.33)
is.sprwht 0.98 (0.52)
Var: county 0.22 0.47
Var: residual 1.23

e Correlation p = 0.77 with 95% bootstrap Cl of (0.21,0.99)
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Small Area Estimation for SRE: Spatial Distribution of
Predictions

o Cartogram of EB predictors; fraction of shaded area inversely

proportional to CV
: <

. oy
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Discussion

@ An understanding of sheet and rill erosion is important for
conservation efforts
o Using CEAP data, we estimate mean SRE for South Dakota counties
o Zero-inflated lognormal model
o Non-trivial correlation betwen b; and u;

@ A key challenge is deriving covariates that are available for the full
population and relate to factors impacting erosion

e We integrate NRI, CDL, and Soil Survey to obtain covariates for the
population of interest
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Part 3: Informative sampling (joint work with Abdulhakeem Eideh)
@ Develop predictors for unit-level models under informative sampling
@ Generalize procedures to the broad class of exponential dispersion
families
@ Prediction of nonlinear parameters
@ Validate the methods through simulation and data analysis
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Framework

@ Areas: i =1,...,D (all are sampled)
o Units: j=1,...,N;
e Sample: A; C {1,...,N;}

e Sample inclusion indicator: [; = I[j € Aj]

o Probability that unit j in area i is selected: m;; = Pjj(l; = 1)
o Weight: wj; = 7r,-J_-1

@ Covariate: x;; observed for j =1,..., N;

o

Response: yj; observed for j € A;

DSZ{X;J':jEU;}U{y,'j:jEA,'}U{W,'j:jEA;}

. ey
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Distributions (Pfeffermann & Sverchkov 2007)

Population Distributions
ind .
Yij “ fp(ylj| U,‘,X,'J‘),_]:].,--.,N,'

ui % (i | Oubu)i=1,....D

Sample Distributions

f:SI(y’J | XU7 U,’) = fp(Yu | U,',X,'j, l’./ = 1)

Complement Distribution

fei(yij | Xij, ui) = fpyiy | i xj, Iy = 0)

Relationships
fei(yij | xij; ui) o< Es(wi — 1| xij, yij)fsi(yis | Xy, ui)
fo(yij | Xij, ui) oc Es(wij | Xij, yij)fsiyi | Xij, ui)
] November 29, 2023 39 /62




Assumptions

Exponential Dispersion Family

fi(yij | 0, @) = exp [d(vy0 — b(05)) + c(vy, )]
01] = g(xij7 U,‘)
f(ui | em ¢u) = exp [¢u(ui9u - b(eu)) + C(u,-, ¢u)]

Models for the Weights (Pfeffermann & Sverchkov 2007, Kim & Wang 2023)

@ Mean weight model
Esi(m; " | yip, xip) = exp(ai + Y1yij + ¥oXiiij + ¥3%i)
. . ind
@ Beta prime weight model: 7j; | l; = 1 '~ Beta(pjj¢1 + 1, (1 — pij)d1)

Esi(m; ' — 11 yij, xi) = ao jexp(ary; + abxiyj + axy) i= pjj — 1

v
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Implications

Theorem 1

@ Under the mean weight model,

fo(yij | xij, ui) = exp[d(y;07; — b(0};)) + c(vij, D)
05 = 0 + 72/ + X173/

Theorem 2

@ Under the beta-prime weight model,

fui(yij | xij, ui) = expd(yifi — b(0;)) + c(vij, ¢)]
éij = (9,'j + 042/¢ + X{,ija3/¢

. YT
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Estimators

Max. Likelihood for 91 = (8', du, 6,)'

i=1

D oo Ni
p1 = argmaxy, Z |0g(/ [H fsi(yij | 0(u), &)fs(u | bu, 0,)du)
oo iy

Least Squares for ¥ = (72,75)’

o Let (G1,...,dp,91,52,%3) minimize
Dies jes (log(wyy) — qi = x{ jv1 — yiyv2 — yigxq ;773)?

Max. Likelihood for Beta-Prime Weight Model

(q@l, &) = argmax(y, o'y L3(d1, ), @ = (o1, ..., 0,0, ), a2, a3)’,

1
(0@ HB (o1 + L. (1 — py)dr)

1)

ﬂ“u‘m (1 _ TFU)(I_MU)¢1_1

v
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Empirical Best Prediction Overview

o Generalizations of Molina & Rao (2010)
e Simulate from complement distributions
@ Algorithm 1: mean weight model
e Simulate from population distribution
o Algorithm 2: beta-prime
e Simulate from complement distribution
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Empirical Best Prediction: Mean Weight Model

Algorithm 1: For r = 1,..., R, repeat the following steps.

) w \ D5, B,, bu,0u) for i =1,..., D, where

)= [T foi(yii | 03(ui), &) fs(ui | Ou du)
T failyi | 03(w), @)fa(u | Ous du)du

O Generate u;

f;’(ui | Ds;B’ d)a ¢u7 0

@ Generate y,( rn fo(Vij | HU ,52,%3), where HAI(J.') = g(x! ,é ) for
je ;.

@ Define 61 () = h(y,....¥)).
Empirical best predictor: §; = f;(¢p) = R™* 2% 10, VW), b = (P, )

. YT
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Empirical Best Prediction: Beta-Prime Weight Model

Algorithm 2: For r = 1,..., R, repeat the following steps.
@ Generate u(r) i fi(u; | Ds, 3,0, bu, 0 Au) fori=1,...,D.
@ Generate y( 0 g i(vii | ég.r),dg,d3) where 0( = g(x! B ) for
Jj¢si. Forjé€s;, set y,-J(-r) =Y.
@ Define 61 () = h(y,....¥)).
Empirical best predictor: 0, = 9,’(¢BP;y,‘s) =R! Zle 9§r)(1/A)BP;y,-5),
'l,Z’BP ("#1704270‘3)/

. e 2, A 5
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MSE Estimation

MSE(@,) = Mli + Mg,'
Mi; = E[V(0; | Ds)]

M,; reflects variation of parameter estimators

Mean Weight Model

@ Challenge: Do not specify full distribution for sampling weight —
fully parametric bootstrap not apply
@ Solution: Use MSE estimation procedure of Cho & Berg (2022)

o Estimate M;; as sample variance of 9,@ r=1,...,R
o Estimate M,; from asymptotic normal distribution of parameter
estimators

Beta-Prime Weight Model
e Method 1: Cho & Berg (2022)
o Method 2: fully parametric bootstrap (Gonzdlez-Manteiga et al. 2008)

v
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Simulations: Set-Up

D =50, N; =200

Vi ind Bernoulli(pj)

log <pu> = =2+ .7x; + u;
1-— Pij
iid

ui S N(0,.25)

Parameters
@ Mean = N,-_1 J,-Vzilyij
o Var = (N; —1)7! EJ,'V:H(YU — N7 Zszll vi)?
e Odds = [ZJN:’I 1- yu][szz'l yil

e Ty




Alternative Procedures

@ Inf: Proposed method

@ Noninf: Proposed method with vy =a =0
e PL: Bayesian pseudo-likelihood (Parker et al. 2023)
o Stan code provided on Github ?

Fysi | uxsi) = T £ | uixi)™

JEA;
ysi ={yij:j € Ai}
u=(ug,...,up)

@ MSE estimators
o Inf-1: Cho & Berg (2022)
o Inf-2: Fully parametric bootstrap
e PL: posterior variance
1https:
//github.com/paparker/Unit_Level_Models/blob/master/Model_1.stan
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https://github.com/paparker/Unit_Level_Models/blob/master/Model_1.stan
https://github.com/paparker/Unit_Level_Models/blob/master/Model_1.stan

Criteria
D M
L M S AR
i=1 m=1
“1p-1 b M plm) (m)
Rel. Abs. Bias = D= M= >y | > (6] 6;"")]

D-1M-15°M 5D 4(m)

M D
MSE =MD"ty MSE™

m=1 i=1
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Case 1: Mean Weight Model

@ PPS-systematic sample with

~ 10exp(0.25y; + dj)
S, exp(0.25y + di)

Tij

Rel. Abs. Bias AveMSE MSE
Inf  Noninf  PL Inf  Noninf  PL Inf  PL
Mean | 0.53 11.63 1.29 | 0.90 1.17 1.00| 0.89 0.96
Var | 0.28 0.83 2.49 | 0.04 0.04 0.04 | 0.04 0.06
Odds | 1.39 19.70 NA | 38.52 44.09 NA |38.73 NA
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Case 2: Beta Prime Weight Model

@ PPS-systematic sample with

o exp(—3 + 0.25yj)
Y 1+ exp(—3+0.25y;)°

Rel. Abs. Bias AveMSE MSE
Inf  Noninf PL Inf  Noninf PL | Inf-1 Inf-2 PL

Mean | 0.86 11.75 1.55 | 0.84 112 091| 076 0.78 0.88
Var | 0.27 0.79 1.80 | 0.03 0.04 0.04| 0.03 0.03 0.05
Odds | 1.65 19.82 NA | 3577 41.17 NA |33.27 NA NA
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National Resources Inventory Application

@ Longitudinal survey of agriculture and natural resources
e We consider presence or absence of wetlands
e We use data for 2012

@ Multi-faceted sample design
e Foundation sample

o Stratified 2-stage sample
o Observed 1982, 1987, 1992, 1997

o Supplemented panel design

@ 2000-present
@ subsets of foundation sample observed each year

@ State estimates published
o We consider county estimation

. Ty



National Resources Inventory Application

D = 21 counties in New Jersey

1 if wetland in 2012
Yij =

0 otherwise

Parameters: Mean, Var, Odds
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Auxiliary Information

@ Cropland data layer

@ Sampled elements

1 if CDL any kind of wetland
Xijj = _
0 otherwise.

@ Regard a nonsampled location to represent 100 acres
° Xjj = l,j: 1,...,[AW,,‘/100]
° Xjj = 0,j= [A17;/100]—|—1,...,A,'
o A, ;= CDL wetland area of county i
e A; = area of county /

. ey 2, A
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Sample Model for Application

Yii nd Bernoulli(pj)

log <pU> = Bo + Bixj + u;
1-— Pij
iid 5
ui ~ N(0,0%)

Es(wi | yij, xij) = wiexp(v2yij + 71x57)

. Ty



Model Parameter Estimates

Est. SE
Bo -1.856 0.016
B1 2241 0.016
o2 0.211 0.004
72 0.070 0.010

November 29, 2023
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Evaluating Goodness of Fit
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Predictions

@ Circles: Proposed predictors against direct estimators.

@ Triangles: Predictors assuming noninformative sampling against direct
estimators.
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Uncertainty Measures

@ Average standard errors of direct estimators (Dir) and average root
mean square errors of predictors (Pred).

Dir  Pred

Mean 0.028 0.025
Variance 0.014 0.013
Odds 1.678 0.787
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Summary and Discussion

@ Developed a small area procedure to address three issues:
o Exponential dispersion families, informative sampling, nonlinear
parameters
Mean Weight vs. Beta-Prime Weight Model
@ Mean weight model: requires fewer distributions, applicable if weights
are 1l
@ Beta-prime weight model: allows straightforward MSE estimation

Comparison to Bayesian PL
@ PL method uses relatively informative priors, and specification of
more diffuse priors led to computational difficulties.
@ Proposed method avoids the complicated problem of prior
specifications
@ Estimators for proposed method can be obtained using standard
software )
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Extensions of the Basic Unit-Level Model

@ Three extensions
o Skewed data
e Zero-inflated data
e Informative sampling
o Key themes
e Concepts of empirical best prediction
e Importance of population-level covariate information

o Generalizability to exponential dispersion families and nonlinear
parameters

. Sy



Thank You
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