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Abstract

Small area estimation (SAE) provides reliable inference for domains with limited survey sample data

by borrowing strength across areas throughmodeling. The typical area-level model assumes normally

distributed random effects, an assumption that may not hold in practice. This paper empirically exam-

ines the performance of residual maximum likelihood (REML) and adjusted REML estimators under

general area-level models with non-normal random effects. Using simulations with heavy-tailed and

asymmetric distributions, we evaluate point estimation and prediction interval performance. REML

remains reasonably robust in estimating the variance component and supporting reliable predictions,

but zero boundary estimates can degrade interval performance when the number of domains is small.

Adjusted REML reduces boundary issues and yields more reliable interval coverage while maintaining

competitive estimation accuracy. These results highlight adjusted likelihood methods as a practical

and robust option even when the normality assumption is uncertain.

Keywords: data linkage, survey statistics, uncertainty quantification.

1 Introduction

In survey sampling, researchers often aim to estimate population parameters such as totals, means,

or proportions based on data from a representative sample. In many practical settings, however,

it is also of interest to estimate similar characteristics for specific subpopulations or domains (e.g.,

regions, demographic groups, or institutions). Large-scale surveys are typically designed to yield

reliable estimates for large domains, but for smaller domains, the sample sizes may be too small or

even zero, to produce direct estimates with acceptable precision. This situation gives rise to the small

area problem.

To address this challenge without increasing sample sizes, small area estimation (SAE) techniques

have been developed to “borrow strength” across related areas. Model-based SAE methods achieve

this by linking data from different areas through statistical models that include area-specific random

effects and auxiliary information. These approaches enable more precise and reliable estimation of

small area parameters.

Suppose that the population of interest, U , is partitioned intom areas ( or subpopulations), denoted by

U1, · · · , Um and that we are interested in estimating the corresponding area means {θi, i = 1, · · · ,m}.
Let si denote the sample drawn from area Ui. When the sample size ni is small, we may encounter

the small area issue. A widely used framework in SAE is the two-level area-level model, which for

area i = 1, · · · ,m, can be expressed as:

Level 1: (Sampling model): ŷi|θi
ind∼ N (θi, Di);

Level 2: (Linking model): θi
ind∼ G(x′

iβ,A, φ).
(1)

The Survey Statistician 52 January 2026, Vol. 93, 52–61.



Early Career Survey Statistician

The Level 1 model represents the sampling distribution of the direct estimator ŷi, which may be a

weighted or unweighted estimate for area i. For example, ŷi could be the sample mean based on ni

observations from area i with sampling variance Di = σ2/ni, where σ2 is known or reliably estimated

from all areas (Fay and Herriot, 1979; Otto and Bell, 1995; Hawala and Lahiri, 2018). The Level 2

model links the true small area means θi to a vector of known auxiliary variables xi = (xi1, · · · , xip)′,
often obtained from administrative records, census data, or other external sources. We assume

that the Level 2 distribution G is a fully parametric distribution, not necessarily normal, with mean

E(θi) = x′
iβ, variance Var(θi) = A ≥ 0, and any additional parameters φ. The coefficient vector

β ∈ Rp and the variance component A are unknown and must be estimated from the data.

The classical area-level model proposed by Fay and Herriot (1979) assumes normality at both levels.

The normality assumption at Level 1 may not be considered as restrictive as the normality of θi, due

to the central limit theorem’s effect on direct estimator ŷi (Rao and Molina, 2015; Jiang and Torabi,

2022). To relax this assumption, recent studies have explored non-normal alternatives for the Level

2 distribution G (Chen, Hirose, and Lahiri, 2024). For instance, Bell and Huang (2006) used a t-

distribution to mitigate the influence of outliers; Fabrizi and Trivisano (2010) proposed exponential

power and skewed exponential power distributions to handle heavy-tailed or asymmetric effects; and

Jiang and Torabi (2022) employed a skewed normal distribution.

The above two-level model can equivalently be expressed as the linear mixed model:

ŷi = θi + ei = x′
iβ + ui + ei, i = 1, · · · ,m, (2)

where random effects ui’s and sampling errors ei’s are independent with ui
i.i.d∼ G(0, A, φ) and ei

ind∼
N (0, Di). The small area parameter of interest is θi = x′

iβ + ui, i = 1, · · · ,m. When A is known, the

best linear unbiased predictor (BLUP) of θi that minimize the mean squared prediction error (MSPE)

among all linear unbiased predictors, is given by

θ̃i = (1−Bi)ŷi +Bix′
iβ̃, (3)

where Bi = Di/(A + Di) is the shrinkage factor, β̃ = β̃(A) is the standard weighted least squares

estimator of β. The BLUP effectively shrinks the direct estimator yi toward the regression synthetic

estimator x′
iβ̃, with the degree of shrinkage determined by Bi. In this paper, we assume A > 0.

In practice, since A is unknown, it must be estimated from the data, leading to the empirical BLUP

(EBLUP):

θ̂i = (1− B̂i)yi + B̂ix′
iβ̂, (4)

where B̂i = Di/(Â+Di) and β̂ = β̃(Â).

When G is normal, several methods have been proposed to estimate A, including the Fay-Herriot

method-of-moments (FH) estimator (Fay andHerriot, 1979), the Prasad-Rao simplemethod-of-moments

(PR) estimator (Prasad and Rao, 1990), the maximum likelihood (ML) estimators and the residual

maximum likelihood (REML) estimators (Datta and Lahiri, 2000). When the number of areas m is

small, standard variance estimation methods, particularly the PR estimator, often produce boundary

estimate A = 0, leading to B̂i = 1 for all i, even when some of the true Bi are not close to 1 (Li

and Lahiri, 2010; Chen, Hirose, and Lahiri, 2024). This causes an overshrinkage problem in EBLUP,

since now the EBLUP of θi reduces to the regression synthetic estimator. Moreover, with Â = 0,

it also causes the problem of degenerate distribution and prevents the use of parametric bootstrap

methods for uncertainty quantification, such as estimating MSPE or constructing prediction intervals.
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To address this issue under normal random effects, several adjusted likelihood methods have been

developed to guarantee positive estimates of A (Li, 2007; Yoshimori and Lahiri, 2014; Hirose and

Lahiri, 2018). These methods solve the two problems above simultaneously in SAE applications. In

addition, they show that the biases of the adjusted ML and REML estimators are of order O(m−1)

(Li and Lahiri, 2010), and those of the parametric bootstrap MSPE being o(m−1) (Hirose and Lahiri,

2018). However, the performance of these adjusted estimators when the random effects are non-

normal remains largely unexplored.

In this study, we investigate methods for estimating variance components under a general area-level

model that allows for possibly non-normal random effects. Laird and Ware, 1982 and Cressie, 1990,

among others, have favored the REML method over the ML method for variance component estima-

tion in complex small area models. This preference was later supported by Datta and Lahiri (2000), in

which they showed that the REML estimator has a lower order of bias than the ML estimator. There-

fore, in this paper, we focus on the REML approach. Following Jiang (1996), we define the REML

estimator of variance components as the solution to the REML equations, which we introduce in the

next section. Although Jiang (1996) theoretically showed that REML estimates are consistent under

certain identifiability and information conditions, their empirical performance under non-normal ran-

dom effects has not been well studied in SAE. We therefore (i) empirically evaluate the performance

of REML estimators under various non-normal settings, and (ii) extend the adjusted REML methods

of Li and Lahiri (2010) to the general area-level model, assessing their performance through Monte

Carlo simulations.

The remainder of this paper is organized as follows. Section 2 provides the list of notations and regu-

larity conditions. Section 3 reviews the estimation methods for variance components, including REML

and adjusted REML estimators. Section 4 presents Monte Carlo simulation results comparing differ-

ent estimators under various model settings. Section 5 concludes with a summary and discussion.

2 A list of notations and regularity conditions

We introduce the following notations that will be used throughout the paper:

y = (ŷ1, · · · , ŷm)′, a m× 1 column vector of direct estimates;

X ′ = (x1, · · · , xm), a p×m known matrix of rank p;

Σ = diag(A+D1, · · · , A+Dm), a m×m diagonal matrix;

β̃ = (X ′Σ−1X)−1X ′Σ−1y, weighted least square estimator of β with known A;

P = Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1.

We assume the following regularity conditions throughout the paper:

r.1 rank(X) = p is fixed;

r.2 supi≥1 hii = O(m−1), where hii = x′
i(X

′X)−1xi;

r.3 0 < infi≥1Di ≤ supi≥1Di < ∞.
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3 REML and adjusted REML estimators

The REML approach introduced by Patterson and Thompson (1971), eliminates dependence on nui-

sance parameters by basing inference on linear transformations of the data that remove the fixed

effects. Under normality at both levels, the restricted likelihood function is given by:

LRE(A) = c|X ′Σ−1X|−
1
2 |Σ|−

1
2 exp

(
−1

2
y′Py

)
(5)

where c is a constant independent ofA. Let lRE(A) denote the corresponding restricted log-likelihood.

The REML estimator ÂRE satisfies:

∂lRE(A)

∂A
=

1

2

[
y′P2y − tr(P)

]
= 0

(6)

In general (without assuming normality), the REML estimate ÂRE is defined as solution of (6).

Following Li and Lahiri (2010), we also consider the same adjusted restricted likelihood under the

general area-level model:

Ladj(A) = A× LRE(A). (7)

The adjusted maximum likelihood estimator Âadj is obtained by maximizing Ladj(A) or its logarithmic

form, ladj(A).

Since LRE(A) is a continuous positive function of A and limA→∞A × LRE(A) = 0 for m > p + 2 , it

follows from Lemma 2.1 of Li (2007) that the maximizer Âadj is strictly positive.

Specifically, because LRE(A) > 0 for all A, we have A× LRE(A) ≤ 0 for A ≤ 0 and A× LRE(A) > 0

for A > 0. Moreover, since A× LRE(A) → 0 as A → ∞, there exists some A0 > 0 such that

A0 × LRE(A0) = max
A

{A× LRE},

which ensures that the maximizer A0 is positive.

3.1 Parametric bootstrap prediction intervals

A traditional prediction interval for θi is of the form θ̂i±zα/2
√mspe, where zα/2 is the 100(1−α/2)th stan-

dard normal percentile and mspe is an estimate of the mean squared prediction error of θ̂i. However,
such intervals have coverage errors of order O(m−1), which may be inadequate for small area ap-

plications. Chatterjee, Lahiri, and Li, 2008 proposed a parametric bootstrap method that constructs

intervals from the bootstrap distribution approximation of σ̂−1
1 (θi − θ̂i) under a normal linear mixed

model, where σ̂2
1 = Di(1− B̂i). This method achieves improved coverage error of order O(m−3/2).

Chen, Hirose, and Lahiri (2024) extended this method to the general area-level model (1) with non-

normal level-2 distributions, and interestingly found that the bootstrap intervals can exhibit overcov-

erage under certain conditions. Their simulations also showed that there was high percentage of

zero estimates in ÂPR estimator which affects the performance of associated bootstrap intervals. The

result is consistent with the findings in Li and Lahiri, 2010.

In this paper, we assess the performance of the similar parametric bootstrap procedures under non-
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normal models using the REML and adjusted REML estimators of A. Specifically, let

ŷ∗i = x′
iβ̂ + u∗i + e∗i

where u∗i
iid∼ G(0, Â, φ̂) and e∗i

ind∼ N(0, Di) for i = 1, · · · ,m. Denote by β̂∗, Â∗, θ̂∗i , and σ̂∗
1 the quantities

computed from bootstrap samples y∗ = {ŷ∗i , i = 1, · · · ,m}, and let θ∗i = x′
iβ̂ + u∗i . The bootstrap

distribution of σ̂∗−1
1 (θ∗i − θ̂∗i ) is then used to approximate the distribution of σ̂

−1
1 (θi − θ̂i). For a given

significance level α, let ql and qu denote the α/2 and 1 − α/2 quantiles of the bootstrap distribution,

respectively. The parametric bootstrap prediction interval for θi is then given by (θ̂i + qlσ̂1, θ̂i + quσ̂1).

4 Monte Carlo Simulations

To empirically evaluate the performance of various variance estimators and their associated prediction

intervals in small m settings, we consider m = 10 and m = 15. Following Li and Lahiri, 2010, we use

an unbalanced pattern for the sampling variances (Di), consisting of five groups of small areas with

common Di values within each group. Specifically, we set Di ∈ {4.0, 0.6, 0.5, 0.4, 0.2} and fix A = 1.

Without loss of generality, we take x′
iβ = 0. To reflect practical conditions, we still estimate the mean

even when it is theoretically zero. Since areas within each group are exchangeable, we summarize

results by group means in the tables.

We consider two non-normal Level 2 distributions in the area-level model (1): (i) a t-distribution with

5 degrees of freedom (symmetric case), and (ii) a shifted exponential (SE) distribution (asymmetric

case). For each distributional scenario, we generate N = 1, 000 independent datasets {yi, i =

1, . . . ,m} and use 1,000 bootstrap samples to construct the parametric bootstrap prediction intervals.

We examine three estimators of A: the PR estimator ÂPR which does not rely on distributional as-

sumptions, the REML estimator ÂRE and the adjusted REML estimator ÂAR. We use both bias and

mean squared error to compare different estimators. Let Â(j) be the estimate for the jth simulation

run. We compute the following Monte Carlo measures:

Bias(Â) =
1

N

N∑
j=1

(Â(j) −A), RMSE(Â) =

√√√√ 1

N

N∑
j=1

(Â(j) −A)2.

Table 1 shows the percentages of zero estimates in Â and Â∗. For m = 10, the PR estimator yields

the highest rate of zero estimates in both Â and Â∗. Under the shifted exponential distribution, REML

also result in a zero estimate in Â although the percentage of 0 is relatively low (about 0.1%). All

methods can produce zero estimates in Â∗, and the adjusted REML estimator exhibits the lowest

percentage in all cases. As m increases to 15, the chance of zero estimate decreases across all

methods.

Table 2 summarizes the small-sample performance of the three variance estimators in terms of bias

and RMSE. Both PR and REML generally show smaller bias than adjusted REML. Overall, REML

achieves the best performance in terms of both bias and RMSE under both distributions. The per-

formance of adjusted REML estimator improves as m increases in terms of both bias and RMSE.

In SAE applications, prediction is often the primary objective. To investigate prediction accuracy of

EBLUP with different plug-in variance estimates, we approximate the true MSPE through Monte Carlo
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Table 1: Percentages of zero estimates in Â and Â∗ for different estimation methods.

m ÂPR ÂRE ÂAR Â∗
PR Â∗

RE Â∗
AR

t {ui}
10 21.900 0 0 33.411 0.015 <0.001

15 11.700 0 0 25.120 0.001 0

Shifted exponential {ui}
10 26.200 0.100 0 36.673 0.022 0.001

15 16.100 0 0 27.714 0.001 <0.001

Table 2: Comparison of different estimators of A for m = 10 and m = 15 with true value of A = 1.

Monte Carlo Bias Monte Carlo RMSE

m PR RE AR PR RE AR

t {ui}
10 0.035 -0.015 0.720 1.225 0.901 1.409

15 0.074 0.011 0.437 1.031 0.762 1.002

Shifted exponential {ui}
10 0.053 -0.043 0.690 1.418 1.119 1.653

15 0.086 0.014 0.443 1.148 0.917 1.173

simulations. Let θ
(j)
i and θ̂

(j)
i be simulated true value and the EBLUP for area i in the jth simulation

respectively, i = 1, · · · ,m; j = 1, · · · , N . We also compute the Monte Carlo mean squared prediction

error of θ̂i:

MSPE(θ̂i) =
1

N

N∑
j=1

(θ̂
(j)
i − θ

(j)
i )2.

Figure (1) shows the simulated MSPE results. When m = 10, θ̂i(ÂRE) tends to have the smallest

MSPE when the sampling variance is large (Di = 4), and θ̂i(ÂRE) and θ̂i(ÂAR) outperform θ̂i(ÂPR)

in the remaining groups. When m = 15, θ̂i(ÂRE) and θ̂i(ÂAR) perform similarly across all groups and

better than θ̂i(ÂPR).

For interval estimation, we compare two traditional intervals of the form θ̂i ± zα/2
√mspe based on

ÂPR and ÂRE, and three parametric bootstrap intervals based on ÂPR, ÂRE, and ÂAR. Derivations of

mspe(θ̂i) using ÂPR and ÂRE appear in Prasad and Rao (1990) and Datta and Lahiri (2000), respec-

tively.

Tables 3 and 4 present the empirical coverage probabilities and average lengths for nominal 95%

intervals. When m = 10, the parametric bootstrap method using ÂAR (PB-AR) performs the best

in terms of the coverage probabilities and the average lengths. The PR-based traditional interval

(PR) and PB-PR show severe undercoverage across all groups. The traditional REML interval also

undercovers, especially for group 1. PB-RE achieves good coverage but yields substantially longer

intervals than PB-AR. This may be because the REML method sometimes produces zero estimates.

Since the estimate Â∗ appears in the denominator of the term σ̂∗−1
1 (θ∗i − θ̂∗i ) used in our parametric

bootstrap method, this quantity becomes undefined whenever Â∗
RE = 0. To address this issue, we

replaced those zero estimates with 0.01. In such cases, the resulting values can be extremely large,

which may in turn lead to overly wide prediction intervals. As m increases, all methods improve,

although PR, RE, and PB-PR still exhibit undercoverage. Overall, PB-AR provides competitive cov-
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Figure 1: Simulated mean squared prediction error of θ̂i(Â).
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erage probabilities and interval lengths, showing only slight undercoverage for Group 1 under the

shifted exponential distribution.

Table 3: Average Monte Carlo coverage and average length of different intervals for m = 10 with

nominal coverage = 95% under t-distribution and shifted exponential distribution.
PR RE PB-PR PB-RE PB-AR

t {ui}
G1 84.10 ( 12.78 ) 88.70 ( 3.52 ) 83.90 ( 11.18 ) 96.25 ( 9.12 ) 95.10 ( 4.26 )

G2 85.65 ( 11.22 ) 93.90 ( 2.53 ) 85.65 ( 6.74 ) 96.75 ( 5.39 ) 95.15 ( 2.56 )

G3 85.65 ( 11.22 ) 93.90 ( 2.53 ) 85.65 ( 6.74 ) 96.75 ( 5.39 ) 95.15 ( 2.56 )

G4 86.00 ( 10.76 ) 94.60 ( 2.24 ) 86.10 ( 5.69 ) 96.70 ( 4.42 ) 94.65 ( 2.19 )

G5 86.25 ( 9.65 ) 96.30 ( 1.77 ) 86.60 ( 3.97 ) 97.25 ( 2.94 ) 94.70 ( 1.63 )

Shifted exponential {ui}
G1 84.20 ( 12.06 ) 87.85 ( 3.31 ) 84.10 ( 10.41 ) 94.55 ( 9.52 ) 94.85 ( 4.18 )

G2 83.85 ( 10.52 ) 93.70 ( 2.44 ) 83.90 ( 6.19 ) 95.50 ( 5.41 ) 94.80 ( 2.48 )

G3 83.85 ( 10.52 ) 93.70 ( 2.44 ) 83.90 ( 6.19 ) 95.50 ( 5.41 ) 94.80 ( 2.48 )

G4 84.30 ( 10.14 ) 95.45 ( 2.20 ) 84.75 ( 5.26 ) 95.95 ( 4.42 ) 95.00 ( 2.14 )

G5 87.05 ( 9.08 ) 96.80 ( 1.80 ) 87.35 ( 3.69 ) 96.00 ( 3.02 ) 94.70 ( 1.61 )

Table 4: Average Monte Carlo coverage and average length of different intervals for m = 15 with

nominal coverage = 95% under t-distribution and shifted exponential distribution.
PR RE PB-PR PB-RE PB-AR

t {ui}
G1 90.40 ( 10.76 ) 90.60 ( 3.52 ) 90.13 ( 9.52 ) 97.97 ( 6.46 ) 95.00 ( 4.07 )

G2 90.67 ( 9.82 ) 93.50 ( 2.46 ) 90.70 ( 6.02 ) 97.60 ( 3.98 ) 95.17 ( 2.50 )

G3 89.93 ( 9.74 ) 93.87 ( 2.33 ) 90.00 ( 5.65 ) 97.30 ( 3.69 ) 94.80 ( 2.34 )

G4 90.37 ( 9.61 ) 93.73 ( 2.17 ) 90.20 ( 5.18 ) 97.13 ( 3.34 ) 94.43 ( 2.15 )

G5 91.10 ( 8.99 ) 95.27 ( 1.68 ) 91.17 ( 3.75 ) 97.57 ( 2.35 ) 94.67 ( 1.62 )

Shifted exponential {ui}
G1 87.73 ( 10.63 ) 89.23 ( 3.40 ) 87.73 ( 9.36 ) 95.83 ( 7.14 ) 93.73 ( 4.09 )

G2 89.13 ( 9.68 ) 93.60 ( 2.40 ) 89.20 ( 5.85 ) 96.50 ( 4.24 ) 94.97 ( 2.45 )

G3 88.07 ( 9.56 ) 93.63 ( 2.28 ) 88.10 ( 5.47 ) 96.27 ( 3.94 ) 94.40 ( 2.29 )

G4 89.03 ( 9.44 ) 94.03 ( 2.13 ) 88.67 ( 5.02 ) 95.97 ( 3.56 ) 94.60 ( 2.11 )

G5 88.83 ( 8.85 ) 95.60 ( 1.69 ) 88.97 ( 3.64 ) 96.10 ( 2.51 ) 94.37 ( 1.60 )

5 Discussion

This study provides empirical evidence on variance component estimation in general area-level mod-

els that allow non-normal random effects. The results indicate that the REML estimator can remain

reasonably robust to deviations from normality, even when the number of areas is relatively small (for

example,m = 10). Under both heavy-tailed and asymmetric random effect distributions, according to

our simulation results, the bias of the REML estimator is similar to the PR estimator and its RMSE is

smaller than both PR and adjusted REML estimators. Moreover, associated EBLUP based on REML

estimate tends to perform well in prediction accuracy.

The simulation results also show that the effectiveness of parametric bootstrap prediction intervals

depends heavily on the variance component estimator. When zero estimates are frequent, particularly

when using the PR variance estimator, bootstrap intervals become unreliable due to the induced

degeneracy. In contrast, the adjusted REML estimator reduces boundary estimates and supports
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stable bootstrap inference, leading to improved coverage across all simulation settings considered.

This indicates that parametric bootstrap intervals based on adjusted REML estimates could be an

effective alternative, when m is small.

There are promising directions for future work. For example, a deeper theoretical investigation of ad-

justed REML under non-normal random effects, including refined bias corrections and accurate MSPE

estimation of EBLUP with adjust REML variance estimate, would strengthen its methodological foun-

dations. Overall, the findings highlight that positive and stable estimation of variance components is

essential for reliable small area prediction and inference. Adjusted likelihood methods offer a practi-

cal and robust alternative in applications where the normality assumption for random effects may not

hold.
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