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Abstract

Small area estimation (SAE) provides reliable inference for domains with limited survey sample data
by borrowing strength across areas through modeling. The typical area-level model assumes normally
distributed random effects, an assumption that may not hold in practice. This paper empirically exam-
ines the performance of residual maximum likelihood (REML) and adjusted REML estimators under
general area-level models with non-normal random effects. Using simulations with heavy-tailed and
asymmetric distributions, we evaluate point estimation and prediction interval performance. REML
remains reasonably robust in estimating the variance component and supporting reliable predictions,
but zero boundary estimates can degrade interval performance when the number of domains is small.
Adjusted REML reduces boundary issues and yields more reliable interval coverage while maintaining
competitive estimation accuracy. These results highlight adjusted likelihood methods as a practical
and robust option even when the normality assumption is uncertain.
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1 Introduction

In survey sampling, researchers often aim to estimate population parameters such as totals, means,
or proportions based on data from a representative sample. In many practical settings, however,
it is also of interest to estimate similar characteristics for specific subpopulations or domains (e.g.,
regions, demographic groups, or institutions). Large-scale surveys are typically designed to yield
reliable estimates for large domains, but for smaller domains, the sample sizes may be too small or
even zero, to produce direct estimates with acceptable precision. This situation gives rise to the small
area problem.

To address this challenge without increasing sample sizes, small area estimation (SAE) techniques
have been developed to “borrow strength” across related areas. Model-based SAE methods achieve
this by linking data from different areas through statistical models that include area-specific random
effects and auxiliary information. These approaches enable more precise and reliable estimation of
small area parameters.

Suppose that the population of interest, U, is partitioned into m areas ( or subpopulations), denoted by
Ui, ---, U, and that we are interested in estimating the corresponding areameans {¢;, i = 1,--- ,m}.
Let s; denote the sample drawn from area U;. When the sample size n; is small, we may encounter
the small area issue. A widely used framework in SAE is the two-level area-level model, which for
areai=1,---,m, can be expressed as:

Level 1: (Sampling model): ¢;|6; nd N(6;, D;);

Level 2: (Linking model): 6; &' G(x,3, A, ¢).

(1)
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The Level 1 model represents the sampling distribution of the direct estimator ¢;, which may be a
weighted or unweighted estimate for area i. For example, §j; could be the sample mean based on n;
observations from area i with sampling variance D; = o2 /n;, where ¢ is known or reliably estimated
from all areas (Fay and Herriot, 1979; Otto and Bell, 1995; Hawala and Lahiri, 2018). The Level 2
model links the true small area means 6; to a vector of known auxiliary variables x; = (xi1,- -+ ,zp)’,
often obtained from administrative records, census data, or other external sources. We assume
that the Level 2 distribution G is a fully parametric distribution, not necessarily normal, with mean
E(¢;) = x3, variance Var(¢;) = A > 0, and any additional parameters ¢. The coefficient vector
8 € RP and the variance component A are unknown and must be estimated from the data.

The classical area-level model proposed by Fay and Herriot (1979) assumes normality at both levels.
The normality assumption at Level 1 may not be considered as restrictive as the normality of 6;, due
to the central limit theorem’s effect on direct estimator ¢; (Rao and Molina, 2015; Jiang and Torabi,
2022). To relax this assumption, recent studies have explored non-normal alternatives for the Level
2 distribution G (Chen, Hirose, and Lahiri, 2024). For instance, Bell and Huang (2006) used a t-
distribution to mitigate the influence of outliers; Fabrizi and Trivisano (2010) proposed exponential
power and skewed exponential power distributions to handle heavy-tailed or asymmetric effects; and
Jiang and Torabi (2022) employed a skewed normal distribution.

The above two-level model can equivalently be expressed as the linear mixed model:

yAZ:91+el:X;ﬁ+uZ+6la ’L:]-aama (2)
where random effects u;’s and sampling errors ¢;’s are independent with w; i G(0, A, ¢) and e; nd
N (0, D;). The small area parameter of interest is 6, = x5 + u;, i = 1,--- ,m. When A is known, the

best linear unbiased predictor (BLUP) of #; that minimize the mean squared prediction error (MSPE)
among all linear unbiased predictors, is given by

0; = (1 — B;)§; + Bix3, (3)

where B; = D;/(A + D,) is the shrinkage factor, 5 = ((A) is the standard weighted least squares
estimator of 5. The BLUP effectively shrinks the direct estimator y; toward the regression synthetic
estimator x;B, with the degree of shrinkage determined by B;. In this paper, we assume A > 0.
In practice, since A is unknown, it must be estimated from the data, leading to the empirical BLUP
(EBLUP):

A~

0i = (1= Bi)yi + Bixi, (4)
where B; = D;/(A+ D;) and 3 = B(A).

When G is normal, several methods have been proposed to estimate A, including the Fay-Herriot
method-of-moments (FH) estimator (Fay and Herriot, 1979), the Prasad-Rao simple method-of-moments
(PR) estimator (Prasad and Rao, 1990), the maximum likelihood (ML) estimators and the residual
maximum likelihood (REML) estimators (Datta and Lahiri, 2000). When the number of areas m is
small, standard variance estimation methods, particularly the PR estimator, often produce boundary
estimate A = 0, leading to B; = 1 for all i, even when some of the true B; are not close to 1 (Li
and Lahiri, 2010; Chen, Hirose, and Lahiri, 2024). This causes an overshrinkage problem in EBLUP,
since now the EBLUP of 6; reduces to the regression synthetic estimator. Moreover, with A = 0,
it also causes the problem of degenerate distribution and prevents the use of parametric bootstrap
methods for uncertainty quantification, such as estimating MSPE or constructing prediction intervals.
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To address this issue under normal random effects, several adjusted likelihood methods have been
developed to guarantee positive estimates of A (Li, 2007; Yoshimori and Lahiri, 2014; Hirose and
Lahiri, 2018). These methods solve the two problems above simultaneously in SAE applications. In
addition, they show that the biases of the adjusted ML and REML estimators are of order O(m™!)
(Li and Lahiri, 2010), and those of the parametric bootstrap MSPE being o(m~!) (Hirose and Lahiri,
2018). However, the performance of these adjusted estimators when the random effects are non-
normal remains largely unexplored.

In this study, we investigate methods for estimating variance components under a general area-level
model that allows for possibly non-normal random effects. Laird and Ware, 1982 and Cressie, 1990,
among others, have favored the REML method over the ML method for variance component estima-
tion in complex small area models. This preference was later supported by Datta and Lahiri (2000), in
which they showed that the REML estimator has a lower order of bias than the ML estimator. There-
fore, in this paper, we focus on the REML approach. Following Jiang (1996), we define the REML
estimator of variance components as the solution to the REML equations, which we introduce in the
next section. Although Jiang (1996) theoretically showed that REML estimates are consistent under
certain identifiability and information conditions, their empirical performance under non-normal ran-
dom effects has not been well studied in SAE. We therefore (i) empirically evaluate the performance
of REML estimators under various non-normal settings, and (ii) extend the adjusted REML methods
of Li and Lahiri (2010) to the general area-level model, assessing their performance through Monte
Carlo simulations.

The remainder of this paper is organized as follows. Section 2 provides the list of notations and regu-
larity conditions. Section 3 reviews the estimation methods for variance components, including REML
and adjusted REML estimators. Section 4 presents Monte Carlo simulation results comparing differ-
ent estimators under various model settings. Section 5 concludes with a summary and discussion.

2 A list of notations and regularity conditions

We introduce the following notations that will be used throughout the paper:
y = (91, ,9m), @am x 1 column vector of direct estimates;
X' = (%1, ,Xm), @ p x m known matrix of rank p;
Y =diag(A+ Dy, -, A+ D,,), am x m diagonal matrix;
B = (X'271X)"1X'n-ly, weighted least square estimator of 3 with known A;
P=x"!_2lx(X's1Xx)1x'n-1
We assume the following regularity conditions throughout the paper:
r.1 rank(X) = pis fixed;
r.2 sup;s; hii = O(m™'), where h;; = x;(X'X) 'x;;

r3 0< infizl D; < Sup;>1 D; < 0.
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3 REML and adjusted REML estimators

The REML approach introduced by Patterson and Thompson (1971), eliminates dependence on nui-
sance parameters by basing inference on linear transformations of the data that remove the fixed
effects. Under normality at both levels, the restricted likelihood function is given by:

1
Lrp(A) = ¢|X'S71X|72 (%72 exp (—2y’Py> (5)

where cis a constant independent of A. Let [z (A) denote the corresponding restricted log-likelihood.

The REML estimator Arp satisfies:
94 —§[yPy—tr(P)}
=0

(6)

In general (without assuming normality), the REML estimate Ay is defined as solution of (6).

Following Li and Lahiri (2010), we also consider the same adjusted restricted likelihood under the
general area-level model:
Lagj(A) = A x Lgrg(A). (7)

The adjusted maximum likelihood estimator Aadj is obtained by maximizing L.q;(A) or its logarithmic
form, l,q;(A).

Since Lrg(A) is a continuous positive function of A and limyg_,oc A X Lrg(A) = 0form > p+ 2, it
follows from Lemma 2.1 of Li (2007) that the maximizer fladj is strictly positive.

Specifically, because Lrg(A) > 0 for all A, we have A x Lrg(A) <0for A <0and A x Lrg(A) >0
for A > 0. Moreover, since A x Lrg(A4) — 0 as A — oo, there exists some Ay > 0 such that

Ao X LRE(A()) = II]EX{A X LRE};

which ensures that the maximizer Ag is positive.

3.1 Parametric bootstrap prediction intervals

Atraditional prediction interval for 6; is of the form éiiza/z\/m, where 2, /; is the 100(1—a/2)th stan-
dard normal percentile and mspe is an estimate of the mean squared prediction error of §;. However,
such intervals have coverage errors of order O(m '), which may be inadequate for small area ap-
plications. Chatterjee, Lahiri, and Li, 2008 proposed a parametric bootstrap method that constructs
intervals from the bootstrap distribution approximation of Efl‘l(ei — 9}) under a normal linear mixed
model, where 6 = D;(1 — B;). This method achieves improved coverage error of order O(m3/2).

Chen, Hirose, and Lahiri (2024) extended this method to the general area-level model (1) with non-
normal level-2 distributions, and interestingly found that the bootstrap intervals can exhibit overcov-
erage under certain conditions. Their simulations also showed that there was high percentage of
zero estimates in Apy, estimator which affects the performance of associated bootstrap intervals. The
result is consistent with the findings in Li and Lahiri, 2010.

In this paper, we assess the performance of the similar parametric bootstrap procedures under non-
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normal models using the REML and adjusted REML estimators of A. Specifically, let
B =xif +uj + ¢

where v % G(0, 4, ) and e "™ N (0, D;) fori = 1,--- ,m. Denote by 3*, A*, §*, and 67 the quantities

computed from bootstrap samples y* = {yf, i = 1,--- ,m}, and let 6 = x;B + u;. The bootstrap
distribution of 6771 (6 — 47) is then used to approximate the distribution of ;! (6; — 6;). For a given
significance level «, let ¢; and ¢, denote the a/2 and 1 — «/2 quantiles of the bootstrap distribution,

respectively. The parametric bootstrap prediction interval for 6, is then given by (éi + qi61,0; + quo1)-

4 Monte Carlo Simulations

To empirically evaluate the performance of various variance estimators and their associated prediction
intervals in small m settings, we consider m = 10 and m = 15. Following Li and Lahiri, 2010, we use
an unbalanced pattern for the sampling variances (D;), consisting of five groups of small areas with
common D; values within each group. Specifically, we set D; € {4.0,0.6,0.5,0.4,0.2} and fix A = 1.
Without loss of generality, we take x5 = 0. To reflect practical conditions, we still estimate the mean
even when it is theoretically zero. Since areas within each group are exchangeable, we summarize
results by group means in the tables.

We consider two non-normal Level 2 distributions in the area-level model (1): (i) a ¢-distribution with
5 degrees of freedom (symmetric case), and (ii) a shifted exponential (SE) distribution (asymmetric
case). For each distributional scenario, we generate N = 1,000 independent datasets {y;, i =
1,...,m} and use 1,000 bootstrap samples to construct the parametric bootstrap prediction intervals.

We examine three estimators of A: the PR estimator APR which does not rely on distributional as-
sumptions, the REML estimator Agp and the adjusted REML estimator A,. We use both bias and
mean squared error to compare different estimators. Let AU) be the estimate for the jth simulation
run. We compute the following Monte Carlo measures:

. 1M . 1M
Bias(4) = > (AY) — 4), RMSE(4) = ~ » (AG) — A2,
j=1 j=1

Table 1 shows the percentages of zero estimates in A and A*. For m = 10, the PR estimator yields
the highest rate of zero estimates in both A and A*. Under the shifted exponential distribution, REML
also result in a zero estimate in A although the percentage of 0 is relatively low (about 0.1%). All
methods can produce zero estimates in A*, and the adjusted REML estimator exhibits the lowest
percentage in all cases. As m increases to 15, the chance of zero estimate decreases across all
methods.

Table 2 summarizes the small-sample performance of the three variance estimators in terms of bias
and RMSE. Both PR and REML generally show smaller bias than adjusted REML. Overall, REML
achieves the best performance in terms of both bias and RMSE under both distributions. The per-
formance of adjusted REML estimator improves as m increases in terms of both bias and RMSE.

In SAE applications, prediction is often the primary objective. To investigate prediction accuracy of
EBLUP with different plug-in variance estimates, we approximate the true MSPE through Monte Carlo
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Table 1: Percentages of zero estimates in A and A* for different estimation methods.
m APR ARE AAR AI*DR AI*KE AZR
t {uz}
10 21.900 0 0 33411 0.015 <0.001
15 11.700 0 0 25120 0.001 0
Shifted exponential {u; }
10 26.200 0.100 0 36.673 0.022 0.001
15 16.100 0 0 27.714 0.001 <0.001

Table 2: Comparison of different estimators of A for m = 10 and m = 15 with true value of A = 1.

Monte Carlo Bias Monte Carlo RMSE
m PR RE AR PR RE AR
t{ui}

10 0.035 -0.015 0.720 1.225 0.901 1.409
15 0.074 0.011 0.437 1.031 0.762 1.002

Shifted exponential {u;}
10 0.053 -0.043 0.690 1.418 1.119 1.653
15 0.086 0.014 0.443 1.148 0917 1.173

simulations. Let «91@ and égj) be simulated true value and the EBLUP for area i in the jth simulation
respectively,i=1,---,m; j=1,---, N. We also compute the Monte Carlo mean squared prediction
error of 6;:

N
1 5(5) (]
MSPE (4 =% Z (6 — 6

Figure (1) shows the simulated MSPE results. When m = 10, Gi(ARE) tends to have the smallest
MSPE when the sampling variance is large (D; = 4), and 6;(Agg) and 6;(Aar) outperform 6;(Apg)
in the remaining groups. When m = 15, 6;(Arg) and 0;(AAg) perform similarly across all groups and
better than ;(Apg).

For interval estimation, we compare two traditional intervals of the form 6, + za/gﬁ/ spe based on
Apg and Agg, and three parametrlc bootstrap intervals based on Apr, Agg, and A AR- Derivations of
mspe(Gz) using Apr and Arg, appear in Prasad and Rao (1990) and Datta and Lahiri (2000), respec-
tively.

Tables 3 and 4 present the empirical coverage probabilities and average lengths for nominal 95%
intervals. When m = 10, the parametric bootstrap method using Aag (PB-AR) performs the best
in terms of the coverage probabilities and the average lengths. The PR-based traditional interval
(PR) and PB-PR show severe undercoverage across all groups. The traditional REML interval also
undercovers, especially for group 1. PB-RE achieves good coverage but yields substantially longer
intervals than PB-AR. This may be because the REML method sometimes produces zero estimates.
Since the estimate A* appears in the denominator of the term & 51 1(9;k — é;‘) used in our parametric
bootstrap method, this quantity becomes undefined whenever A*E = 0. To address this issue, we
replaced those zero estimates with 0.01. In such cases, the resulting values can be extremely large,
which may in turn lead to overly wide prediction intervals. As m increases, all methods improve,
although PR, RE, and PB-PR still exhibit undercoverage. Overall, PB-AR provides competitive cov-

The Survey Statistician 57 January 2026, Vol. 93, 52-61.



Early Career Survey Statistician

(m =10, 1) (m = 10, SE)
I R S 477 T R
— - Adjusted REML| — - Adjusted REML|
© ®© |
o o
& o
© ©
< <
o (=)
N N
c 7 (=) -
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
(m =15, 1) (m = 15, SE)
S — —
i T R T R
Adjusted REML] o Adjusted REML]
3 - 3
w w o
o L -]
= 5 ©
= =
< <
o | o
o~ | N ]
S - o -
T T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Figure 1: Simulated mean squared prediction error of 0;(A).

The Survey Statistician 58 January 2026, Vol. 93, 52—-61.



Early Career Survey Statistician

erage probabilities and interval lengths, showing only slight undercoverage for Group 1 under the
shifted exponential distribution.

Table 3: Average Monte Carlo coverage and average length of different intervals for m = 10 with
nominal coverage = 95% under t-distribution and shifted exponential distribution.

PR RE PB-PR PB-RE PB-AR
t{ui}
G1 84.10(12.78) 88.70(3.52) 83.90(11.18) 96.25(9.12) 95.10(4.26)
G2 8565(11.22) 93.90(253) 8565(6.74) 96.75(5.39) 95.15(2.56)
G3 85.65(11.22) 93.90(2.53) 85.65(6.74) 96.75(5.39) 95.15(2.56)
G4 86.00(10.76) 94.60(2.24) 86.10(569) 96.70(4.42) 94.65(2.19)
G5 86.25(9.65) 96.30(1.77) 86.60(3.97) 97.25(2.94) 94.70(1.63)

Shifted exponential {u; }
87.85(3.31) 84.10(10.41) 94.55(9.52) 94.85(4.18
G2 83.85(10.52) 93.70(2.44) 8390(6.19) 9550(5.41) 94.80(248

G1 84.20(12.06 ( ) ( )
( ) ( ) ( )
G3 83.85(10.52) 93.70(2.44) 83.90(6.19) 9550 (5.41) 94.80(2.48)
( ) ( ) ( )
( ) ( ) ( )

~— N N ~—

G4 84.30(10.14) 9545(2.20) 84.75(5.26) 9595(4.42) 95.00(2.14
G5 87.05(9.08) 96.80(1.80) 87.35(3.69) 96.00(3.02) 94.70 (1.61

Table 4: Average Monte Carlo coverage and average length of different intervals for m = 15 with
nominal coverage = 95% under t-distribution and shifted exponential distribution.
PR RE PB-PR PB-RE PB-AR
t {'LLZ}
G1 90.40(10.76) 90.60(3.52) 90.13(9.52) 97.97 (6.46) 95.00 (4.07)
G2 90.67(9.82) 93.50(246) 90.70(6.02) 97.60(3.98) 95.17(2.50)
G3 89.93(9.74) 93.87(2.33) 90.00(5.65) 97.30(3.69) 94.80(2.34)
G4 90.37(9.61) 93.73(2.17) 90.20(518) 9713(3.34) 9443(2.15)
G5 9110(899) 9527 (1.68) 91.17(3.75) 97.57(2.35) 94.67(1.62)

Shifted exponential {u;}

G1 87.73(10.63) 89.23(3.40) 87.73(9.36) 95.83(7.14) 93.73(4.09)
G2 89.13(9.68) 93.60(2.40) 89.20(5.85) 96.50 (4.24) 94.97 (2.45)
G3 88.07(9.56) 93.63(2.28) 88.10(5.47) 96.27 (3.94) 94.40(2.29)
G4 89.03(9.44) 94.03(2.13) 88.67(5.02) 9597 (3.56) 94.60(2.11)
G5 88.83(8.85) 95.60(1.69) 88.97(3.64) 96.10(2.51) 94.37(1.60)

5 Discussion

This study provides empirical evidence on variance component estimation in general area-level mod-
els that allow non-normal random effects. The results indicate that the REML estimator can remain
reasonably robust to deviations from normality, even when the number of areas is relatively small (for
example, m = 10). Under both heavy-tailed and asymmetric random effect distributions, according to
our simulation results, the bias of the REML estimator is similar to the PR estimator and its RMSE is
smaller than both PR and adjusted REML estimators. Moreover, associated EBLUP based on REML
estimate tends to perform well in prediction accuracy.

The simulation results also show that the effectiveness of parametric bootstrap prediction intervals
depends heavily on the variance component estimator. When zero estimates are frequent, particularly
when using the PR variance estimator, bootstrap intervals become unreliable due to the induced
degeneracy. In contrast, the adjusted REML estimator reduces boundary estimates and supports
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stable bootstrap inference, leading to improved coverage across all simulation settings considered.
This indicates that parametric bootstrap intervals based on adjusted REML estimates could be an
effective alternative, when m is small.

There are promising directions for future work. For example, a deeper theoretical investigation of ad-
justed REML under non-normal random effects, including refined bias corrections and accurate MSPE
estimation of EBLUP with adjust REML variance estimate, would strengthen its methodological foun-
dations. Overall, the findings highlight that positive and stable estimation of variance components is
essential for reliable small area prediction and inference. Adjusted likelihood methods offer a practi-
cal and robust alternative in applications where the normality assumption for random effects may not
hold.
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