

Argentina

Reporting: **Verónica Beritich**

INDEC hosted officials from the United Nations System in Argentina

On September 11th, the authorities of INDEC, together with the authorities of the Ministry of Foreign Affairs, International Trade and Worship of Argentina, took part in a meeting with representatives of 14 organizations of the United Nations System in Argentina. The purpose of this meeting was to strengthen data production in the country. The institutional work plan was presented, highlighting the use of official statistics to promote economic, social, and environmental development, and inviting international agencies to work in coordination with INDEC on projects involving the National Statistical System.

The use of administrative records is one of the structural pillars of the projects shared in this meeting, and INDEC's obligation is to harness all that potential to produce better data. Other key pillars highlighted by INDEC's authorities included the crucial support of the United Nations agencies in Argentina in breaking down the natural barriers that exist within the State, and the need to work in a coordinated manner to provide information that meets the growing demand and thus deliver timely, high-quality statistics for decision-making.

The working session was divided into two parts. At the beginning, representatives of each multilateral organization briefly described the projects they are promoting, which are primarily based on information produced by INDEC. Afterwards, the main current lines of work of the Institute were presented:

- Strengthening the statistical structure through projects that include the continuous updating of population projections and the implementation of the new Master Urban Household Sample of the Argentine Republic (MMUVRA).
- Expanding the conceptual frameworks for the production of new economic, social, and environmental statistics and incorporating the integrated governance system.
- Developing an integrated system of administrative records for statistical use, based on statistical records of population, housing, and economic units.
- Applying technological innovation in statistical operations and in the harmonization of administrative records.
- Strengthening institutions by coordinating activities between national State agencies that provide information and produce statistics and international organizations in the field.

General information can be found at <https://www.indec.gob.ar>.

For further information, please contact <https://www.indec.gob.ar/indec/web/Institucional-Indec-Contacto>.

Australia

Reporting: **Paul Schubert**

Enhancing household survey frames when you don't have a population register

National Statistical Offices (NSOs) across the globe have an urgent need to address increasing collection costs, caused by the increased difficulty in making contact with households and securing their cooperation, while maintaining data quality. The biggest threat to data quality that all NSOs are working to safeguard against is nonresponse bias given the increasing trends of survey nonresponse.

Unlike Scandinavian countries (for example), Australia does not have a population register; frame information to assess and help adjust for nonresponse biases in household surveys has been very limited.

The goal of the Australian Bureau of Statistics' (ABS) Data Improved Frames From the Address Register (DIFFAR) project is to address these challenges head-on by delivering improved survey frames for household surveys. The improvement comes from augmenting existing survey frames - a full population list of addresses eligible for selection - with categorical auxiliary information derived from the Person Level Integrated Data Asset (PLIDA) that can support more efficient and targeted survey designs, operations and processes (for more about PLIDA, see: Person Level Integrated Data Asset (PLIDA) | Australian Bureau of Statistics.)

The key methodological innovation of the DIFFAR project is the use of a random forest model, a machine learning approach, to predict the probability that an address has certain characteristics based on its reported PLIDA data – for example, whether a low-income household resides at the address or a child is present at the address. These predicted probabilities are then used to group addresses into decile categories which can be used to:

- ensure representation of key subpopulations in the sample design and selection
- track response during data collection operations to prioritise groups for follow-up
- improve estimation results through this use of auxiliary information.

It is important to note that this method protects the privacy of personal information from PLIDA by not using it directly to categorise addresses.

While with DIFFAR the ABS is still in the early days of introducing more and better use of auxiliary information in our survey processes, it has already enabled us to reduce biases in survey estimates, and improve efficiency of sample designs by up to 20%. It has also identified subpopulations that are under-represented in response so far during enumeration, allowing data collection staff to prioritise these subpopulations in follow-up, and delivering a more representative final sample. The use of DIFFAR information in estimation has provided new insights into subpopulations that are currently under-represented in weighted estimates, and is providing the information required to remove the resulting nonresponse bias from estimates.

For further information, please contact Bruce Fraser.

Brazil

Reporting: **Andrea Diniz da Silva**

Learning Paths: Professional Training and Statistical Literacy

The Brazilian Institute of Geography and Statistics has created a set of Learning Paths for various audiences: professionals from the public and private sectors, academics, policy makers, and other professionals interested in the topics offered. The courses will be offered free of charge, remotely, with synchronous and asynchronous activities. To ensure regional reach, spots are reserved for each region of Brazil. Spots are also distributed equally between men and women. This aims to ensure nationwide reach and a diverse range of trainees. Participants are expected to disseminate the knowledge, references, and materials provided in each course.

There are six Learning Paths: Current Situation Analysis and Public Communication; Improving Municipal Planning: Regulations and Indicators; Data Science, Big Data, and Artificial Intelligence; Demographic Census and Municipal Planning; Statistics, Territory, and Public Policies; and the National System of Statistics and Geography. The courses in these Paths are mostly taught by IBGE staff, but also include guest professors.

All Paths focus on statistics, their production, use, and understanding, thus fulfilling a dual role: professional training and statistical literacy.

Canada

Reporting: **Darren Gray**

Statistics Canada's generalized systems are migrating to R and Python

Statistics Canada's generalized systems have supported our statistical production infrastructure for many years, providing efficient, vetted, and reusable solutions that can be deployed across multiple programs. These systems are used throughout the Integrated Business Statistics Program (IBSP), numerous economic and social surveys, and in our Census program. They are also shared internationally at no cost, supporting methodological consistency and cooperation among National Statistical Organizations (NSOs).

Statistics Canada is modernizing its broader statistical systems through a progressive shift toward open-source technologies such as R and Python. These languages offer extensive statistical, analytical, and machine-learning capabilities for better scalability and performance, and they align with the technical skill sets of new statisticians, analysts, data scientists, and programmers joining the agency. This modernization strengthens our ability to work within global statistical and data-science communities.

As part of this broader initiative, we are migrating our SAS-based generalized systems to R and Python. For some of the systems, this includes not just a change in programming language but new functions, features, and overall enhancements. The modernization is already well underway: Banff and G-Series were released publicly in early 2025, and additional systems are on the way. In addition to using R and Python, we also plan on making the source code publicly available on our GitHub account to improve transparency, enhance code quality, and encourage collaboration. The table below summarizes the migration plan and targeted release dates for our SAS-based generalized systems:

Current system (SAS-based)	Functionality	New system (Language)	Release date
Banff	Editing imputation	and Banff & Banff Processor (Python)	January 2025
G-Series	Time series adjustment	G-Series (R)	January 2025
G-Sam	Probabilistic sampling	Jasper (R)	October 2025 (internal); preparing for public dissemination
G-Confid	Disclosure control	G-Confid (Python)	March 2026 (planned)
G-Link	Record linkage	G-Link (Python)	March 2026 (planned)
G-Est	Weighting and estimation	Yoho (R)	June 2026 (planned)

Releasing these systems publicly will strengthen collaboration, reduce duplication of effort across agencies, and promote international methodological consistency. For questions or further information, please feel free to reach out to Darren Gray at darren.gray@statcan.gc.ca.

Released systems:

Statistics Canada (2025). *Banff*. Python package version 3.1.3,

<https://github.com/StatCan/gensol-banff>.

Statistics Canada (2025). *Banff Processor*. Python package version 2.0.3,
<https://github.com/StatCan/gensol-banff-processor>.

Statistics Canada (2025). *G-Series*. R package version 3.0.2,

<https://github.com/StatCan/gensol-gseries>.

Croatia

Reporting: **Ksenija Dumičić**

New Developments in the 2024 EU SILC Survey Methodology in Croatia

In 2025, Državni zavod za statistiku (DZS) released the 2024 wave of EU-SILC, based on an updated sampling design and updated data-collection practices. The 2024 sample was drawn as a random sample of private-household dwellings, using the 2021 Population, Households and Dwellings Census as the sampling frame. From 13,049 randomly selected households, 9,410 completed interviews were obtained, yielding a household-level response rate of 77.53 % (DZS, 2025a; DZS, 2025b). The survey retains its panel-design structure: selected households remain in the sample for a four-year rotation, enabling both cross-sectional and longitudinal analyses of income, poverty, material deprivation, and other living conditions indicators. Data collection was carried out primarily via computer-assisted personal interviewing (CAPI), supplemented by telephone interviewing (CATI) when necessary, by authorised and certified DZS interviewers (DZS, 2025b). Importantly, the 2024 wave introduced a **methodological innovation** by integrating administrative data sources for

income variables, such as wages, pensions, and social transfers, alongside traditional household interviews. This hybrid approach strengthens data accuracy, reduces respondent burden, and marks a break in the time series compared with previous years when income was collected solely via interviewing (DZS, 2025a). The updated sampling frame based on the 2021 Census ensures up-to-date population coverage; weighting procedures account for unequal selection probabilities, unit non-response, and post-stratification to known population totals at national and regional (HR-NUTS 2) levels. These enhancements considerably improve the representativeness, reliability, and European comparability of Croatian EU-SILC data, aligning the survey with best practices in longitudinal income and living conditions measurement across EU member states.

References

- DZS (2025a) *Indicators of Poverty and Social Exclusion, 2024 (EU-SILC Survey)*. First Release, ZUDP-2025-1-1. Zagreb: DZS. Available at: <https://podaci.dzs.hr/2025/en/97252>
- DZS (2025b) *Income and Living Conditions Survey – survey documentation and methodological notes*. Zagreb: DZS. Available at: <https://dzs.gov.hr/in-focus/survey-researches/income-and-living-conditions-survey/1787>

France

Reporting: **Philippe Brion**

Audience Measurement in France

Audience measurement aims to understand and quantify the number of people exposed to media content, whether on a television channel, radio station, website, or any other medium.

Behind this generic term "measurement" lie, beyond technical aspects, concepts and approaches that can be quite different. There are two main types of audience measurement. On one hand, there are declarative measurements, based on sample surveys, generally involving large samples. Press and radio audience measurements mainly rely on this type of method. On the other hand, there are automatic measurements, which require the installation of a technical measurement system and are based on panel tracking. Television and internet measurements have been built on this type of method.

Many factors contribute to making audience measurement increasingly complex. First, media are evolving, and their usage is becoming more and more fragmented. Accurately measuring the audience of the multitude of available content would require significantly increasing sample sizes. However, the digitalisation of media now offers other data sources: return path data from operator boxes or from publishers' websites and applications. This has led to the emergence of hybrid measurements, resulting from the combined use of these return path data for a precise estimate of the number of visitors/viewers, together with panel data to provide socio-demographic profiles.

Moreover, historically, audience measurements have been constructed in silos: one measurement per medium. However, media are no longer managed in silos, and their content circulates from one channel to another, creating the need for a global cross-media measurement, particularly for advertising campaign measurement. This is why statistical fusion approaches have multiplied, allowing different studies to be brought together by associating respondents based on their similarity across a number of criteria, prioritised according to their explanatory power on the variables of interest, here the audiences. For example, a respondent in the television audience measurement is associated with the radio audience of a "twin" to estimate duplication between the two media. These approaches are becoming more sophisticated today to more broadly take into account media and available data, whether from sample surveys or exhaustive sources. The aim is to create virtual populations on which advertising contacts are distributed according to probabilistic models.

In France, television, radio, and internet audience measurements are carried out by Médiamétrie. More recently, this institute has launched audience measurement for SVOD platforms.

More information :

<https://static-webmail.mediametrie.com/Livre+blanc+Hybride+et+IA/EN/Mediametrie+White+Paper+Hybrid+and+AI.pdf>

Contact : Aurélie Vanheuverzwyn (avanheuverzwyn@mediametrie.fr)

Hong Kong Special Administrative Region, China

Reporting: **Ronald Chan**

Applications of Large Language Models in Statistical Work

The Census and Statistics Department (C&SD) of Hong Kong, China is actively exploring the applications of Large Language Models (LLMs) to streamline and enhance statistical operations. This initiative supports C&SD's digital transformation strategy to modernise workflows, improve service quality and optimise resource allocation.

Key LLM applications include:

- **Program development:** Automating code generation for statistical programming (Python and SAS), assisting with debugging, and improving documentation efficiency.
- **Data processing:** Extracting and analysing information from unstructured text data, including open-ended survey responses, sales receipts and corporate announcements.
- **Insights generation:** Supporting data validation and review by identifying potential trends, anomalies and patterns in statistical datasets.
- **User services:** Developing intelligent chatbots to handle public inquiries and enhance internal knowledge management.

C&SD is implementing these LLM applications through a carefully planned, phased approach, focusing on enhancing cost-effectiveness of internal processes in the initial phase. To ensure responsible implementation, C&SD will establish robust safeguards, including expert validation of LLM outputs to prevent potential errors and biases. Additionally, computing capabilities are being enhanced to securely handle internal data while providing sufficient power to run LLMs effectively.

For more information, please contact Ronald Chan (rchchan@censtatd.gov.hk).

Lithuania

Reporting: **Danutė Krapavickaitė**

Baltic-Nordic-Ukrainian (BNU) network workshop on survey statistics

The 28th event of the BNU network was organized in Vilnius on August 25-29, 2025. 51 statisticians participated onsite and online from the network countries and from France, Great Britain, the Netherlands and Switzerland. The main topic was "Addressing nonresponse in survey statistics", other topics were also included.

The keynote speakers gave the talks relevant to the practitioners and theoreticians in survey statistics. The lecture of Alina Matei was entitled "Spatially balanced sampling and its applications in official statistics". It stimulates to introduce sample coordination system in the case of enterprise surveys and to create the sampling designs for agriculture and social surveys. The lecture of

Guillaume Chauvet "Bootstrap methods in survey sampling with focus on the rescaling bootstrap" will find applications in the future activities of the network. It is useful in social surveys when the survey population is large. The lecture of Jacek Wesolowski "Rotation sampling schemes and Chebyshev polynomials" showed a view of pure mathematics to survey sampling. We were honoured by participation of Professor Carl-Erik Särndal with the talk "The nonresponse dilemma: some thoughts on its origin, impact and future role in survey statistics". It was a pleasure to have among us the founders of the network Imbi Traat and Jānis Lapinš.

Representatives from the network countries gave invited lectures. Other participants gave the contributed presentations, which were discussed by the discussants, appointed in advance. Topics relevant to official statistics, application of machine learning in survey statistics, adjustment for nonresponse were popular. The round table discussions were going on the following urgent topics: "Teaching of survey sampling"; "Modern methods in survey sampling: machine learning, AI, SAE, nonprobability samples"; "Dealing with non-sampling errors and accuracy estimation".

Many young statisticians took part in the workshop. It was their first workshop, in which they presented results of their research. We expect that this event will stimulate their positive attitude to the further development of the statistical science and participation in it.

The workshop was sponsored by Vilnius Gediminas Technical University, State Data Agency, Nordplus, Lithuanian Statistical Society, Lithuanian Mathematical Society and International Association of Survey Statisticians. On behalf of the participants of the workshop, we express sincere thanks for support which has made the event interesting and pleasant.

You may visit the workshop home page:

<https://wiki.helsinki.fi/xwiki/bin/view/BNU/Events/Workshop%20on%20Survey%20Statistics%202025/>

The Netherlands

Reporting: **Lianne Tessers-Ippel**

Smartphone-first questionnaire design at Statistics Netherlands (CBS)

As smartphones have become the primary device for online survey participation in household surveys, Statistics Netherlands (CBS) developed a *smartphone-first* redesign of its web questionnaires and evaluated this in a large-scale field experiment. The experiment examined six factors: a revised login process, a smartphone-first designed questionnaire layout, alternative grid formats (including carousel and accordion designs), the inclusion of smileys and icons, a speech-to-text encouragement for open questions, and questionnaire length. The questionnaire redesign also aligned with the CBS corporate design system and accessibility requirements.

The results revealed few significant differences across indicators of response behaviour, data quality, and respondent satisfaction. This indicates that the smartphone-first design can be introduced without jeopardising comparability over time or introducing measurement bias. The new design will be gradually implemented in production surveys to ensure a user-friendly experience that is consistent across devices.

A detailed report on the experiment by Deirdre Giesen, Maaike Kompier and Jan van den Brakel is available at "Experiment smartphone-first questionnaire layout" (<https://www.cbs.nl/en-gb/background/2025/42/experiment-smartphone-first-questionnaire-layout>).

For more information please contact Deirdre Giesen at d.giesen@cbs.nl.

Poland

Reporting: **Tomasz Żądło**

The 5th Polish Statistics Congress took place from July 1 to 3, 2025, in Warsaw. It was organized by Statistics Poland and the Polish Statistical Association. The event covered topics such as mathematical statistics, survey sampling and small area estimation, population, social, economic, regional, and spatial statistics, data analysis and classification, AI methods, big data and data science, Polish statistics in the international context, history of Polish statistics, communication and education, public statistics and data management systems, as well as data integration and harmonization in official statistics.

The program included two keynote speeches by:

- Professor Partha Lahiri (University of Maryland, College Park) on "Poverty Mapping"
- Professor Ronald Lee (University of California, Berkeley) on "How low fertility and shrinking populations will impact our economies".

A panel discussion titled "From data to decisions - for social and economic development" was also held, along with 28 sessions and a poster session.

The survey sampling and small-area estimation session organized by Janusz Wywiał, Mirosław Szreder, and Tomasz Żądło contained four presentations:

- invited presentation: "Item Count Techniques under Some Assumption Violations" by Barbara Kowalczyk and Robert Wieczorkowski,
- invited presentation: "Comparing Institutional Performance" by Nicholas Longford,
- "On the Maximum Likelihood Estimation of Population and Domain Means" by Janusz Wywiał,
- "On Complex Estimators Under the Pathak Sampling Scheme" by Krzysztof Szymoniak-Książek.

Program of the conference: <https://kongres2025.stat.gov.pl/en/Program>

Abstracts and presentations: https://kongres2025.stat.gov.pl/en/Ksiega_abstraktow

Video recordings: <https://kongres2025.stat.gov.pl/en/Transmисja>

10th Edition of the Statistical Olympiad

The Statistical Olympiad is organized by Statistics Poland and the Polish Statistical Association and is addressed to high school students. Its goal is to promote statistical knowledge and develop skills in socio-economic data analysis through a three-stage competition that selects finalists and laureates. The 10th edition is co-financed by the Ministry of Education and Science, and its first stage took place in November 2025.

The Statistical Olympiad has three consecutive stages designed to gradually evaluate and enhance students' statistical reasoning and data analysis skills. The first stage, the school level, is organized by each participating school and involves an online test that assesses basic knowledge and problem-solving skills in statistics. Schools register their contestants in the Olympiad IT system and appoint a School Committee to oversee the round. The Central Committee then provides the School Committees with the results achieved by the participants.

The regional stage is conducted simultaneously across the country's 16 regions (voivodeships) under supervised conditions and features a longer, more challenging online exam that includes applied and interpretive problems. Successful participants from the school stage compete at this

level for spots that qualify them for the central stage, and rankings are based on test scores with clearly defined tie-breaking rules.

The central stage is held in two parts: an initial central-round online test that filters the top participants, followed by a final written examination for a limited number of contestants who work on more complex, open-ended problems requiring deeper analysis, interpretation of socio-economic data, and clear written justification of methods and conclusions. The final ranking and the list of laureates are based on the combined results from both parts of the central stage.

Winners and finalists of the Statistics Olympiad can gain admission to many prestigious universities in Poland without needing to go through the regular admissions process. In the ninth edition of the competition, the three finalists received gift cards valued at PLN 6,000, PLN 5,000, and PLN 4,000.

United States

Reporting: **Andreea L. Erciulescu**

Principles and Practices for a Federal Statistical Agency

The Committee on National Statistics (CNSTAT) of the National Academies of Sciences, Engineering, and Medicine, identified 5 principles and 10 practices for federal agencies and units to adopt when conducting their activities involving collection, compilation, processing, or analysis of information for statistical purposes. These principles and practices, along with the 16 U.S. federally recognized statistical agencies and units, are provided in the eighth edition of the report titled Principles and Practices for a Federal Statistical Agency and available at the following link: [Principles and Practices for a Federal Statistical Agency - 8th Edition | The National Academies Press](#).

The 5 principles are as follows:

- 1) relevance to policy issues and society
- 2) credibility among data users and stakeholders
- 3) trust among the public and data subjects
- 4) independence from political and other undue external influence
- 5) continual improvement and innovation

The 10 practices are as follows:

- 1) a clearly defined and well-accepted mission
- 2) necessary authority and procedures to protect independence
- 3) commitment to quality and professional standards of practice
- 4) professional advancement of staff
- 5) an active research program
- 6) strong internal and external evaluation processes for an agency's statistical programs
- 7) coordination and collaboration with other agencies
- 8) respect for data subjects and data holders and protections of their data
- 9) dissemination of statistical products that meet users' needs
- 10) openness about sources and limitations of the data provided

Country Reports

The 16 federally recognized statistical agencies and units are as follows:

- Bureau of Economic Analysis (U.S. Department of Commerce)
- Bureau of Justice Statistics (U.S. Department of Justice)
- Bureau of Labor Statistics (U.S. Department of Labor)
- Bureau of Transportation Statistics (U.S. Department of Transportation)
- Census Bureau (U.S. Department of Commerce)
- Economic Research Service (U.S. Department of Agriculture)
- Energy Information Administration (U.S. Department of Energy)
- National Agricultural Statistics Service (U.S. Department of Agriculture)
- National Center for Education Statistics (U.S. Department of Education)
- National Center for Health Statistics (U.S. Department of Health and Human Services)
- National Center for Science and Engineering Statistics (National Science Foundation)
- Office of Research, Evaluation, and Statistics (Social Security Administration)
- Statistics of Income Division (U.S. Department of the Treasury)
- Center for Behavioral Health Statistics and Quality (Substance Abuse and Mental Health Services Administration; U.S. Department of Health and Human Services)
- Microeconomic Surveys Unit (U.S. Federal Reserve Board)
- National Animal Health Monitoring System (Animal and Plant Health Inspection Service, U.S. Department of Agriculture)

Uruguay

Reporting: **Marcelo Bisogno, Juan Pablo Ferreira and Juan José Goyeneche**

Weighting the 2023 Uruguay Census: Correcting Omission Through Doubly Robust Estimators

The 2023 Population, Household, and Housing Census of Uruguay applied a mixed methodology that combined the traditional census operation (CAWI + CAPI) with the inclusion of individuals identified through administrative registers. This integration improved population coverage and reduced net undercount by incorporating individuals who were not effectively enumerated but showed “signals of life” in systems such as education, health, or social security. This approach contributed to adjusting aggregate population totals and the age–sex structure.

The inclusion of individuals from administrative registers particularly improved coverage at higher geographic levels, such as departments. However, this strategy presents limitations when more granular territorial information is required. Geographic allocation based on administrative registers tends to concentrate individuals in urban areas, where administrative activity is more complete, potentially leading to underestimation of the population in rural areas or smaller communities. Moreover, administrative registers cannot replace the census operation, as they do not contain key census variables such as housing conditions, household equipment, household structure and composition, or socioeconomic characteristics. For this reason, individuals “incorporated through

registers" improve coverage but do not constitute complete observations for producing many census indicators.

Despite the strategy implemented, overall omission reached 10.3%, meaning that one in ten individuals was not enumerated. This omission was differential, with higher incidence in lower socioeconomic areas and regions with more difficult access. Consequently, the enumerated population does not represent a random selection of the total population but rather a subset with patterns of self-selection associated with social and territorial characteristics.

To produce valid estimates for census variables not available in administrative registers, it was necessary to construct weights that corrected differential omission. Households that were effectively enumerated were treated as a non-probability sample, and a doubly robust estimation approach was applied, combining a model for the propensity to be enumerated with a superpopulation model for each variable of interest. Under this framework, estimates can be unbiased if at least one of the models is correctly specified.

The propensity to be enumerated was estimated under the assumption that the response mechanism is Missing At Random (MAR), along with the construction of nonresponse classes at the level of groups or enumeration areas, assuming that the propensity (i.e., voluntarism) is homogeneous within each nonresponse class. Finally, a post-stratification estimator (a specific case of the linear regression estimator) was applied so that the estimates match the simple age–sex structure of the population. The resulting weights correct differential omission, reduce bias, and yield reliable indicators at the global level and for different domains of estimation.

For more information: mbisogno@ine.gub.uy , jferreir@ine.gub.uy , jgoyeneche@ine.gub.uy

Journal of Survey Statistics and Methodology

Volume 13, Issue 4, September 2025
<https://academic.oup.com/jssam/issue>

Survey Methodology

An Experimental Comparison of Modular and Non-Modular Approaches for Administering Surveys via Smartphone Apps

Christopher Antoun, Brady T. West, Xin (Rosalynn) Yang, Syed Junaid M. A. Zaidi and Jennifer Sinibaldi

Question form Matters: Examining Trust in Government Through Open and Closed Survey Items
Jana Bernhard-Harrer and Katharina Pfaff

Is Consent to Further Panel Participation Selective? The Case of a Self-Administered Family Panel Survey Announcing Organizational Change

Almut Schumann and Claudia Schmiedeberg

Survey Statistics

Synthesizing Surveys with Multiple Units of Observation: An Application to the Longitudinal Aging Study in India

Joshua Snone, Erik Meijer, Drystan Phillips, Jenny Wilkens and Jinkook Lee

Bayesian Tree Models for Survey Sample Data

Daniell Toth, Scott H. Holan and Diya Bhaduri

Journal of Official Statistics

Volume 41, Issue 4, December 2025
<https://journals.sagepub.com/toc/jofa/41/4>

Articles

The Poverty Free Life Expectancy in Europe

Gianni Betti, Federico Crescenzi and Andrea Nigri

Official Statistics and Government Decision Making: A Bibliometric and Thematic Analysis of Policy-Related Academic Research

Ana Božič Verbič

Why are Measures of Aggregate Hours Worked by the Unincorporated Self-Employed So Volatile?
Cindy Michelle Cunningham and Sabrina Wulff Pabilonia

Decomposing Residential Resale House Prices into Structure and Land Components

Erwin Diewert and Ning Huang

In Other Journals

Connected and Uncooperative: The Effects of Homogenous and Exclusive Social Networks on Survey Response Rates and Nonresponse Bias
Jonathan Eggleston and Chase Sawyer

STAHL: Seasonal, Trend, and Holiday Decomposition with Loess
Vincent Haller, Sébastien Daniel and Benoit Bellone

Age-Period Modeling of Mortality Gaps: The Cases of Cancer and Circulatory Diseases
Giacomo Lanfanti Baldi, Andrea Nigri and Han Lin Shang

Higher-Level Aggregation Using Long-Term Links in the Swedish CPI
Olivia Ståhl

When Cleaning Data Introduces Bias: A Critical Examination of Post-Hoc Methods in Detecting Insufficient Effort Responding
Melissa Dan Wang, Leifeng Xiao and Xuan Zang

Research Note

Which Nordic Countries Are the Most and Least Urban? The Muddling World of Urbanity Statistics
Marianne Tønnesen

Book Review

Review of “Register-Based Statistics – Registers and the National Statistical System”
Paul A. Smith

Volume 41, Issue 3, September 2025
<https://journals.sagepub.com/toc/jofa/41/3>

Foreword

Celebrating JOS Forty Years: Future Research Needs in the New Era of Official Statistics
Lilli Japec, Henri Luomaranta-Helmivuo, Li-Chun Zhang, Suad Elezovic and Yingfu Xie

JOS40

First Forty Years of Journal of Official Statistics
Risto Lehtonen

Challenges in a Federal Statistical Agency Ecosystem: The U.S. Census Bureau Robert L. Santos
GDP and Beyond: Dilemmas and Heresies
Steve MacFeely

Future Pathways Embracing Multisource Statistics and Novel Data Sources at National Statistical Offices
Anders Holmberg

Some Dimensions of Statistical Ethics and Scientific Integrity That Warrant Exploration Through Empirical Studies of Stakeholder Information Needs
John L. Eltinge

In Other Journals

Input Privacy Enhancing Technologies for Statistical Production: Motivations and Challenges
Fabio Ricciato

Statistical Disclosure Control: Moving Forward
Josep Domingo-Ferrer, David Sánchez and Krishnamurty Muralidhar

Competence, Training, and Collaboration of Universities with National Statistical Offices
Danny Pfeffermann

Where Have the Respondents Gone? Did We Lose Them or Failed to Win Them? And Is It Too Late?
Barry Schouten

The Future of Interviewer-Administered Surveys
Kristen Olson

Future Research Considerations for Mixed-Mode Surveys
Leah Melani Christian

Modernizing Data Collection
Frauke Kreuter

Census Transformation and the Future of Population Statistics
James J. Brown and James Chipperfield

Calibration Weighting for Analyzing Non-Probability Samples
Jae Kwang Kim

Blending Administrative and Nonprobability Survey Data to Enhance National and Subnational Estimates
Dan Liao and Paul P. Biemer

Future Challenges in Sampling and Estimation
Guillaume Chauvet

The Unknown Future of Statistical Data Editing: Some Imputations
Sander Scholtus

Machine Learning Methods for Estimation in Official Statistics
M. Giovanna Ranalli

Small Area Estimation in the Era of Machine Learning and Alternative Data Sources: Opportunities, Challenges, and Outlook
Nikos Tzavidis

Some Challenges and Research Needs for the Analysis of Integrated Data
Raymond L. Chambers

Challenges and Opportunities for Analytic and Causal Inference with Official Statistics
F. Jay Breidt, Robert Ashmead and Susan M. Paddock

Enhancing Microsimulation by Open Data

Ralf Thomas Münnich

Challenges and Future Directions for International and Cross-Cultural Comparability

Julie de Jong

Survey Research Methods

Volume 19, No.4, 2025

<https://ojs.ub.uni-konstanz.de/srm/>

Articles

Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation

Leah von der Heyde, Anna-Carolina Haensch, Bernd Weiß, Jessica Daikeler

A Matter of Perspective? Differences Between Adolescent–Parent and Parent–Teacher Pairs in Responses to the Strengths and Difficulties Questionnaire Using a Scottish National Cohort Study

Madison Bunker, Valeria Skafida, Emma Davidson

The Effects of Study Duration on Nonresponse and Measurement Quality in a Smartphone App-Based Travel Diary

Danielle Remmerswaal, Peter Lugtig, Barry Schouten, Bella Struminskaya

Invitation Messages for Business Surveys: A Multi-Armed Bandit Experiment

Johannes J. Gaul, Florian Keusch, Davud Rostam-Afschar, Thomas Simon

Effects of Replacing Telephone with Web, Mail, and Mixed-Mode Data Collection in an Establishment Follow-Up Survey

Benjamin Kühner, Joseph W. Sakshaug, Stefan Zins, Claudia Globisch

The Effect of Targeted Incentives on Response Rates and Representativeness: Evidence From the Next Steps Age 32 Survey

Alessandra Gaia, Matt Brown, Tugba Adali, Stella Fleetwood, Christy Lai

Retrieving True Preference under Authoritarianism

Jongyoon Baik, Xiaoxiao Shen

Measuring Gender and Sex in Surveys: Lessons Learned from 50 Years of Cross-National Survey Data and Nonresponse Patterns

Ilona Wysmulek

In Other Journals

Volume 19, No.3, 2025

Special Issue: Survey Climate and Trust in Scientific Surveys

<https://ojs.ub.uni-konstanz.de/srm/issue/view/243>

Editorial

Survey Climate and Trust in Scientific Surveys: Introduction to the Special Issue

Henning Silber, Bettina Langfeldt, Bella Struminskaya, Michael Traugott

Articles

Predicting Survey Nonresponse with Registry Data in Sweden between 1993 and 2023: Cohort Replacement or a Deteriorating Survey Climate?

Sebastian Lundmark, Kim Backström

Effects of Survey Design Features on Response Rates: A Meta-Analytical Approach Using the Example of Crime Surveys

Jonas Klingwort, Vera Toe poel

Survey Attitude as Indicator for Survey Climate and as Predictor of Nonresponse and Attrition in a Probability-Based Online Panel

Benjamin Rosche, Hugo Bons, Joop Hox, Edith De Leeuw

Trust, Concerns and Attitudes: Examples for Respondent (Non-)Cooperation in SHARE

Imke Herold, Michael Bergmann, Arne Bethmann

Trust in Survey Results: A Cross-Country Replication Experiment

Adam Stefkovics, Zoltán Kmetty

Public Confidence in Official Statistics in the UK: Characteristics of Respondents and Changes Over Time

Olga Maslovskaya, Annamaria Bianchi

Using Experimental Vignettes to Study How Survey Methods and Findings Affect the Public's Evaluation of Public Opinion Polls: Considering a Dual-Process Approach

Allyson L. Holbrook, Paul J. Lavrakas, Timothy P. Johnson, Andrew Crosby, Polina Polskaia, Xiaoheng Wang, Xiaoyan Hu, Evgenia Kapousouz, Young Ik Cho, Henning Silber

Volume 19, No.2, 2025

<https://ojs.ub.uni-konstanz.de/srm/issue/view/244>

Articles

Quality of Expenditure Data Collected With a Mobile Receipt Scanning App in a Probability Household Panel

Alexander Wenz, Annette Jäckle, Jonathan Burton, Mick P. Couper, Brendan Read

Pre-Trained Nonresponse Prediction in Panel Surveys with Machine Learning

John Collins, Christoph Kern

In Other Journals

Surely Shorter Is Better? A Questionnaire Length Experiment in a Self-Completion Survey
Tim Hanson, Eva Aizpurua, Rory Fitzgerald, Marta Vukovic

Internet Coverage Bias in Web Surveys in Europe
Alessandra Gaia, Emanuela Sala, Chiara Respi

The Impact of Scale Direction on Data Quality
Ting Yan, Alexandru Cernat, Florian Keusch

Response Burden and Response Quality in Web Probing: An Experiment on the Effects of Probe Placement and Format
Patricia Hadler

Effects of Mode and Transitioning to a Mixed-Mode (Web/Phone) Design on Categorical Survey Estimates: Do Question Characteristics Matter?
Mengyao Hu, Vicki Freedman, Justin Kamens

Effects of Changing the Incentive Strategy on Panel Performance: Experimental Evidence From a Probability-Based Online Panel of Refugees
Jean-Philippe Décieux, Sabine Zinn, Andreas Ette

Other Journals

- **Statistical Journal of the IAOS**
<https://content.iospress.com/journals/statistical-journal-of-the-iaos/>
- **International Statistical Review**
<https://onlinelibrary.wiley.com/journal/17515823>
- **Transactions on Data Privacy**
<http://www.tdp.cat/>
- **Journal of the Royal Statistical Society, Series A (Statistics in Society)**
<https://rss.onlinelibrary.wiley.com/journal/1467985x>
- **Journal of the American Statistical Association**
<https://amstat.tandfonline.com/uasa20>
- **Statistics in Transition – New Series**
<https://sit.stat.gov.pl>

Welcome New Members!

We are very pleased to welcome the following new IASS members:

Title	First name	Surname	Country
Mrs.	Clyde E.	Charre de Trabuchi	Argentina
Mr.	Tony	Labillois	Canada
Ms.	Anita	Harmina	Croatia
Dr.	Yannick	Lemel	France
Dr.	Christophe	Lefranc	France
Dr.	Jan Pablo	Burgard	Germany
Dr.	Faisal	Awartani	Israel
Mr.	Leonard Warren	Cook	New Zealand
Mr.	Bjorn K. Getz	Wold	Norway
Mrs.	Awa	Thiongane	Senegal
Dr.	Willie	Lahari	Solomon Islands
Dr.	Hyoung Il	Lee	South Korea
Professor	Beat	Hulliger	Switzerland
Dr.	Philippe	Eichenberger	Switzerland
Professor	H. Öztas	Ayhan	Turkey
Professor	Peter J.	Lynn	United Kingdom
Dr.	Tarek	Al Baghal	United Kingdom
Mr.	Gary	Bennett	United Kingdom
Professor	Martin R.	Frankel	United States
Professor	Roderick J	Little	United States
Dr.	Daniel	Kasprzyk	United States
Mr.	Edward J.	Spar	United States
Dr.	Keith	Rust	United States
Dr.	J. Michael	Brick	United States
Dr.	David Alan	Marker	United States
Ms.	Francesca	Perucci	United States
Professor	Juan Pablo	Ferreira Neira	Uruguay
Mr.	Oliver	J. M Chinganya	Zambia

IASS Executive Committee Members

Executive officers (2025 – 2027)

President:	Partha Lahiri (USA)	plahiri@umd.edu
President-elect:	Ralf Münnich (Germany)	muennich@uni-trier.de
Vice-Presidents:		
Scientific Secretary	Katherine Jenny Thompson (USA)	jennythompson731967@gmail.com
VP Finance and IASS conferences support	Partha Lahiri (USA) Ralf Münnich (Germany)	plahiri@umd.edu muennich@uni-trier.de
Liaising with ISI EC and ISI PO plus administrative matters	Ralf Münnich (Germany)	muennich@uni-trier.de
Chair of the 2025 Cochran-Hansen Prize Committee Chair of the 2024 Hukum Chandra Prize Committee IASS representative on the ISI Awards Committee	Robert Clark (Australia)	robert.clark@anu.edu.au
IASS representatives on the World Statistics Congress Scientific Programme Committee IASS representative on the World Statistics Congress short course committee	Ralf Münnich (Germany)	muennich@uni-trier.de
IASS representative on the ISI publications committee	Partha Lahiri (USA)	plahiri@umd.edu
IASS Webinars 2025-2027 Volunteer for supporting training and Webinar activities within ISI Statistical Capacity Development Committee	Haoyi Chen (China)	
IASS representative on the Regional Statistics Conference 2026 IASS Social Media	Gaia Bertarelli (Italy)	gaia.bertarelli@unive.it
Ex Officio Member:	Conchita Kleijweg (The Netherlands)	c.kleijweg@isi-web.org

IASS LinkedIn Account:

<https://nl.linkedin.com/company/international-association-of-survey-statisticians-iass>

IASS Facebook Account: <https://www.facebook.com/iass.isi/>

IASS X Account: https://x.com/iass_isi/

IASS Webmasters: Ujjayini Das (ujstat@umd.edu) and Sabrina Zhan (SabrinaZhang@westat.com)

IASS Institutional Members

International organisations:

- Eurostat (European Statistical Office) – Unit 01: External & Inter., Luxembourg

National statistical offices:

- Australian Bureau of Statistics, Australia
- Instituto Brasileño de Geografía y Estadística (IBGE), Brazil
- Statistics Canada, Canada
- Statistics Denmark, Denmark
- Statistics Finland, Finland
- Statistisches Bundesamt (Destatis), Germany
- International Rel. & Statistical Coordination, Israel
- Istituto nazionale di statistica (ISTAT), Italy
- Statistics Korea (KOSTAT), Republic of Korea
- Direcção dos Serviços de Estatística e Censos (DSEC), Macao, SAR China
- Statistics Mauritius, Mauritius
- Statistics New Zealand, New Zealand
- Statistics Norway, Norway
- Instituto Nacional de Estatística (INE), Portugal
- Statistics Sweden, Sweden
- Office for National Statistics Service (ONS), United Kingdom
- National Agricultural Statistics Service (NASS), United States
- National Center of Health Statistics, United States

Universities:

- Department of Mathematics and Statistics, University of Ottawa, Canada
- Univ. of Tuscany, Dept. Economics & Management, Italy

Other statistical organizations:

- Institut Public de Sondage d'Opinion Secteur (Ipsos), Italy
- WESTAT Inc., United States