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Abstract

Modern parametric and nonparametric estimation methods based on machine learning are becoming
increasingly popular in surveys. This paper intends presenting a synthetic review of different uses
of recent modern parametric and nonparametric methods for estimating finite population totals by
means of probabilistic surveys, with full data as well as with missing data.
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1 Introduction

Since the first proposals for the use of probability surveys and estimation in the presence of auxiliary
information in the 19th century, sample surveys have undergone significant developments. The ob-
jectives pursued, the data collected as well as their acquisition methods, and the statistical techniques
used for their processing have all been deeply transformed. Over the past decade, due to the emer-
gence of big data driven by advancements in technology and computational capabilities, we have
witnessed a major transformation in this field, both in statistics in general and in sample surveys in
particular, national statistical institutes being not spared from this constantly evolving reality. This pa-
per intends giving an overview of recent machine learning methods used in survey sampling focusing
on estimation and prediction issues with probability surveys.

We present in Section 2 the historical development of estimation methods in survey sampling, high-
lighting the major steps starting from the ratio estimator proposed during the 19th century to con-
temporary estimation methods, particularly non-parametric estimation methods. Section 3 focuses
on modern machine learning estimation methods that have been proposed in survey sapling over
the last decade. Finally, Section 4 concludes the paper and discusses new challenges associated
with the use of machine learning methods in survey sampling as well as some caveats regarding the
automatic use of them, including model interpretability and overfitting.
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2 From parametric to traditional non-parametric estimation methods

We will consider as usual a target population U of size N. A probability sample s ⊆ U is selected
from U according to a sampling design p(·). Given p(·), each unit k from the population has a known
inclusion probability πk = P(k ∈ s) supposed to be strictly positive and a corresponding sampling de-
sign weight dk = 1/πk. In a survey, we are usually interested in estimating several study parameters.
The simplest study parameter is the finite population total of the study variable y on U, tyU =

∑
k∈U yk.

More complex study parameters such as means, ratios or quantiles as well as concentration mea-
sures (i.e. Gini index) may be also of interest but we devote our analysis to the finite population totals.
Some discussions on more complex parameters are given in the conclusion.

With full data, the unknown total tyU may be estimated by the Horvitz-Thomspon estimator (Horvitz
and Thompson, 1952):

t̂yd =
∑
k∈s

dkyk, (1)

which is design unbiased, namely Ep(t̂yd) = tyU , where Ep(·) is the expectation computed with res-
pect to the sampling design p(·). The design-variance of t̂yd is equal to Vp(t̂yd) =

∑
k∈U

∑
l∈U (πkl −

πkπl)(yk/πk)(yl/πl), where πkl = P(k, l ∈ s) is the second-order inclusion probability of units k and l
in the sample. If πkl > 0 for all k, l ∈ U, then the variance Vp(t̂yd) may be estimated unbiasedly by
V̂p(t̂yd) =

∑
k∈s
∑

l∈s((πkl−πkπl)/πkl)(yk/πk)(yl/πl). Variance and variance estimation are important
issues in the analysis of survey data, as national statistical or private institutes may desire computing
confidence intervals.

2.1 First use of auxiliary information

If auxiliary information is present in the sampling frame, then it can be used to construct effective
sampling strategies for the estimation of tyU . When the auxiliary information is available prior to
sampling, we may use it to build sampling designs, such as the stratified or balanced sampling, under
which the Horvitz-Thompson estimator may be highly efficient (i.e. with small design variance). An
alternative way is to build new estimators based on such auxiliary information and exhibiting low
design variance. We focus on this paper on the second approach.
One of the first estimators to use auxiliary information was the ratio estimator (Laplace, 1814) used
to estimate the total number of habitants from France in 1802:

t̂yrat = txU
t̂yd

t̂xd
=
∑
k∈s

wksyk, (2)

where t̂xd =
∑

k∈s dkxk is the Horvitz-Thomspon estimator of the x-total, txU =
∑

k∈U xk. The ratio
estimator only needs the total, txU , of the univariate x-variable on U , without needing values of x
for the non-sampled individuals, which is particularly interesting when the auxiliary information is
accessible only in aggregate form. In addition, yk and xk must be available for all k ∈ s. Laplace
considered as auxiliary information the number of births, with known total thanks to the national birth
registers. From (2), the ratio estimator is a weighted sum of the y-values recorded for the sampled
individuals with weights wks = dktxU/t̂xd depending only on the x-variable and independent of the
study y-variable. The ratio estimator is no longer unbiased for tyU , as it is a non-linear function of
finite population totals, but it can be proven that it is asymptotically unbiased under mild asymptotic
assumptions (Särndal et al., 1992). It is highly efficient, namely its asymptotic variance is low, if the
relationship between y and x may be modeled by a straight line through the origin with the variance
around the line increasing proportionally to x. Laplace had visionary ideas since the ratio estimator is
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one of the most widely used estimators for a population total and many more complicated estimators
are in fact based on the ratio estimator.

2.2 Traditional linear regression based estimators

Since the ratio estimator, several estimators have been suggested in order to improve the estimation
of tyU under a given sampling design p(·) by using several auxiliary variables x1, . . . , xp. Usually, we
know only the finite population total of xk = (xkj)

p
j=1 denoted by txU . With multipurpose surveys, the

main goal is to derive a unique system of weights wks for each unit k ∈ s with wks independent of the
study variables, making so possible the simultaneous estimation of any linear combination of totals
and other finite population parameters.There are mainly two ways to incorporate auxiliary information
at the estimation stage: the model-assisted (Särndal et al., 1992) or the model-based (Valliant et al.,
2000) approaches if a model is considered, and the calibration approach (Deville and Särndal, 1992)
otherwise.

We assume that the yk values are realizations from an infinite super-population model ξ relating yk
to the vector xk, as follows:

ξ : yk = x>k β + εk, k ∈ U, (3)

where the error terms εk are supposed to be independent, with zero mean, Eξ(εk) = 0 and variance
Vξ(εk) = vk. The model-assisted approach is based on the generalized difference estimator (Cassel
et al., 1976):

tdiff
y,x = t̂yd − (t̂xd − txU )>β =

∑
k∈s

dk(yk − x>k β) +
∑
k∈U

x>k β, (4)

where β is the true regression coefficient. It is in fact the difference between the Horvitz-Thompson
estimator t̂yd and the bias of t̂yd − tyU under the model ξ. It can be also seen as the prediction of tyU
under the model ξ plus a design-bias adjustment. The unknown true β is estimated by design-based
weighted least square criterion as follows:

β̂ = arg min
β∈Rp

∑
k∈s

dkv
−1
k (yk − x>k β)2. (5)

The solution is given by β̂ =
(∑

k∈s dkv
−1
k xkx

>
k

)−1 (∑
k∈s dkv

−1
k xkyk

)
, assuming that the matrix Xs =

(x>k )k∈s is of full rank. The model-assisted estimator of tyU is obtained by plugging β̂ instead of β in
(4), we get t̂ma

y,x = t̂yd − (t̂xd − txU )>β̂ =
∑

k∈s dk(yk − x>k β̂) +
∑

k∈U x>k β̂. For univariate x variable
and variance function given by vk = σ2xk, k ∈ U, we get the ratio estimator (2). The widely used
poststratified estimator of tyU is obtained for xk = (1{k∈Ug})

G
g=1, where 1{k∈Ug} = 1 if the unit k

belongs to Ug and zero otherwise, Ug, g = 1, . . . , G being a partition of the population U according
to some classification criterion. The variance function is supposed to be constant over the whole
population, namely vk = v for all k ∈ U. The regression coefficient estimator is in this case given by
β̂ = (ˆ̄yg)

G
g=1, where ˆ̄yg =

∑
k∈sg dkyk/N̂g, with N̂g =

∑
k∈sg dk and sg = s ∩ Ug for all g = 1, . . . , G.

The poststratified estimator reduces to the sum of the estimated predictions of yk under the super-
population model and given by t̂post

y,x =
∑G

g=1Ng ˆ̄yg, where Ng is the size of Ug. The poststratified
estimator is the sum of G ratio estimators of totals of y over the poststrata Ug, for g = 1, . . . , G.

The model-based estimator of tyU is built on a prediction approach,

tpred
y,x =

∑
k∈s

yk +
∑

k∈U−s
x>k β =

∑
k∈s

(yk − x>k β) +
∑
k∈U

x>k β. (6)
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The unknown β is estimated as in (5) but without considering the sampling weights in the optimi-
sation criterion leading to the model-based estimator t̂mb

y,x =
∑

k∈s(yk − x>k β̂) +
∑

k∈U x>k β̂. Finally,
the calibration approach consists in finding weights (wcal

ks )k∈s, such that they are as close as possible
(from a pseudo distance point of view) to the sampling weights (dk)k∈s while satisfying the calibra-
tion constraints:

∑
k∈sw

cal
ks xk =

∑
k∈U xk. The calibration estimator is equal to the model-assisted

estimator under some conditions (Deville and Särndal, 1992).

Several important properties are shared by the above three-type estimators. All estimators need
only the population total of the auxiliary variables contained in the vector txU . They may be written
as weighted sums

∑
k∈swksyk of sampled y-values with weights wks, k ∈ s, depending only on xk

recorded for sampled units and importantly, they do not depend on the y-variable. As for the ratio
estimator, such weights are useful in multipurpose surveys.

2.3 Modern linear regression estimators

In the context of big data, the number p of auxiliary variables may be very large with respect to the
sample size and the efficiency of estimators based on the whole set of auxiliary information may
be highly deteriorated. The first issues appeared in a model-based approach since the estimators
are model-dependent and many auxiliary variables may be considered to protect from model mis-
specification, while the model-assisted or the calibration estimators are more robust to model mis-
specification since they are asymptotically design unbiased and consistent for tyU , whether the model
is correct or not.

The weights of estimators built on the traditional linear model (3) with a large number of auxiliary
variables become very instable (very large or very small) and they did not meet the predefined up-
per and lower range limits; they hardly satisfy a large number of calibration constraints. Finally, the
design-based precision of estimators may be deteriorated when p is large with respect to the sample
size, as it was noticed by Silva and Skinner (1997) by means of simulation studies and shown re-
cently theoretically by Goga and Chauvet (2022). To correct these drawbacks, ridge-type penalized
optimization criteria were suggested to relax the weight constraints (Bardsley and Chambers, 1984,
Rao and Singh, 1997) leading to penalized estimators of tyU . Beaumont and Bocci (2008) studied
the properties of penalized calibration estimators and Guggemos and Tillé (2010) suggested a new
optimisation criterion to ensure partial penalized calibration, namely a small number of important ca-
libration equations are exactly satisfied while the other ones are approximately satisfied. As shown
in Goga (2024), these penalized estimators for tyU may be also obtained by considering ridge-type
penalized optimization criterion to compute the regression coefficient as in classical statistics:

β̂
pen

= arg min
β∈Rp

∑
k∈s

ck(yk − x>k β)2 + λ

p∑
j=1

β2
j , (7)

where ck are positive constants; with ck = dk, we get the penalized calibration estimator. The solution
of (7) is a ridge-type regression coefficient estimator, β̂

pen
=
(∑

k∈s ckxkx
>
k + λIp

)−1 (∑
k∈s ckxkyk

)
,

where Ip is the identity matrix of size p. The ridge-type penalized estimators of tyU are next obtained
by plugging β̂

pen
in (4) or (6). The resulting ridge-type estimator of tyU holds the same properties

as the non-penalized estimator, namely it needs only txU and it is a weighted sum of y-values, with
weights not depending on the study variable. Different penalty functions in (7) lead to different pe-
nalized estimators of β and so, to different penalized estimators of tyU . McConville et al. (2017) used
the penalty λ

∑p
j=1 |βj | in (7), leading to the lasso estimator of β (Tibshirani, 1996) and studied the

lasso-penalized estimator of tyU . This penalty has the effect of shrinking the β-coefficients to zero
and, unlike the ridge, it can set some of them to zero, acting as a variable selection method. Dagdoug
et al. (2023b) used λ[α

∑p
j=1 |βj | + (1 − α)

∑p
j=1 β

2
j ] in (7) leading to the elastic-net estimator of β
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(Zou and Hastie, 2005), which can be viewed as a trade-off between the ridge estimator and the
lasso estimator, realizing variable selection and regularization simultaneously. Alternatively, dimen-
sion reduction methods based on principal component analysis may be used to estimate β and to
build new class of improved model-assisted or calibration estimators in presence of high-dimensional
auxiliary information (Cardot et al., 2017).

The penalized estimators of tyU may exhibit better efficiency than the non-penalized estimators; how-
ever, their efficiency highly depends on the tuning parameter values, which are sample data depen-
dent. Several algorithms have been suggested to compute λ in the case of ridge regression, such as
the bisection method (Beaumont and Bocci, 2008), the Fisher algorithm (Guggemos and Tillé, 2010)
or simply, choosing the value for which all the weights are positive (Bardsley and Chambers, 1984,
Cardot et al., 2017). More research is needed in this field.

With the emergence of smart connected objets, variables may be recorded at a very fine scale leading
to another kind of high-dimensional data. The study objects are functions or curves now and called
functional data. Cardot et al. (2013) considered the functional linear model, yk(t) = x>k β(t)+εk(t), for
t ∈ [0, T ] and extended the model-assisted estimator to estimate the total curve of some function y
over the target population. New goals and challenges appear in this new setting, such as computing
global confidence bands, and Lardin-Puech et al. (2014) give a review of works related to these
issues.

2.4 Traditional non-parametric model-based estimators

Estimation methods presented in sections 2.1-2.3 are all related to a linear relationship between
the study variable and the auxiliary ones. Datasets are nowadays more and more complex and
nonparametric models are more flexible to model the relationship between y and the x-variables:

ξ : yk = m(xk) + εk, k ∈ U,

where the regression function m(·) is unknown, but supposed to be a smooth function. Again, it was
in a model-based approach that nonparametric models have been employed for the first time as a
protection against model misspecification (Kuo, 1988). In model-assisted or calibration approaches,
nonparametric methods have emerged later, at the beginning of the 2000’s, with the seminal work of
Breidt and Opsomer (2000).

With nonparametric models, we need to estimate the unknown regression function m(·). Traditional
nonparametric methods consist in estimating m(·) by using kernel functions or by projecting onto a
known basis function such as the truncated polynomials or the B-spline functions. Both approaches
need to specify some tuning parameters, the bandwidth for kernel-based methods or the num-
ber of knots and the polynomial degree for the latter one. Once m is estimated by m̂, the non-
parametric model-assisted estimator is built from the difference estimator: t̂np

y,x =
∑

k∈s dk(yk −
m̂(xk)) +

∑
k∈U m̂(xk) and the nonparametric model-based from the prediction estimator: t̂np

y,x =∑
k∈s(yk − m̂(xk)) +

∑
k∈U m̂(xk). As usual, the design weights are included in m̂ for the model-

assisted case, while they are neglected for the model-based one. The nonparametric model-assisted
estimators based on spline functions (Breidt et al., 2005, Goga, 2005, McConville and Breidt, 2013)
inherit many desirable properties from the linear case. They may be written as traditional model-
assisted estimators with explicative variables given by the basis functions, they are weighted sums of
y-values with weights depending only on the x-values. However, the nonparametric estimators need
xk to be known for all the population units as we need to compute

∑
k∈U m̂(xk). For several auxiliary

variables, the additive models are the simplest way to incorporate them; for exemple, with two vari-
ables, the model is yk = m1(xk1)+m1(xk2)+εk andm1(·) andm2(·) may be estimated by using one of
the above method. Breidt and Opsomer (2017) give a recent review of nonparametric model-assisted
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estimation techniques and Goga (2021) of B-spline nonparametric estimation methods in surveys.

In case of the traditional calibration estimator, the underlying relationship between y and xk is imp-
licitly a linear one, so it is not adapted to account for nonlinear relationships. Montanari and Ranalli
(2005) suggest the nonparametric model-calibration estimator, which consists in finding weights sa-
tisfying

∑
k∈swksm̂(xk) =

∑
k∈U m̂(xk), while Goga (2021) suggests calibrating directly on the basis

functions (B-spline functions) instead of the regression function estimator, allowing in this way to
obtain weights not depending on the y-variable, property not owned by the nonparametric model-
calibration.

3 Modern non-parametric estimation methods

The traditional nonparametric models based on kernel or spline smoothing are relatively easy to use
and efficient if the number of auxiliary variables is low, at most three or four. As the number p of
auxiliary variables is becoming large, these models tend to breakdown as they need extremely large
sample sizes, phenomenon known as the curse of dimensionality. Moreover, additive models do
not account for interactions between the x-variables. Semiparametric models (Breidt et al., 2007),
containing linear terms as well as nonlinear terms, may be used as a tradeoff between completely
parametric and nonparametric models. Alternately, the K-nearest neighbors may be used as it is
a simple nonparametric method which can be used with multivariate auxiliary information (Baffeta
et al., 2010).

Modern machine learning algorithms, as suggested lately in the statistical literature, are nonparamet-
ric methods which can handle easily a large number of auxiliary variables. Broadly speaking, these
methods may be classified into two classes as they are based on bagging or on boosting (Hastie
et al., 2011). Bagging produces a large number B of predictions and combines them to produce
more accurate predictions than a single model would do:

m̂(x) =
1

B

B∑
b=1

m̂(b)(x), (8)

where m̂(b) is the prediction of m obtained by some nonparametric method. Any nonparametric
method may be used to obtain m̂(b), however bagging is particularly interesting for regression trees.
To obtain B different models, initial dataset is bootstrapped (with replacement). Boosting works dif-
ferently, it starts with a weak fit (or learner) and improves it at each step of the algorithm by predicting
the residuals of prior models and adding them together to make the final prediction:

m̂(b)(x) = m̂(b−1)(x) + m̂(x, ε(b−1)), b = 1, . . . , B,

where m̂(x, ε(b−1)) is the prediction based on data xk and the residuals ε
(b−1)
k = yk − m̂(b−1)(xk)

computed from the previous model. While B should be very large to improve the efficiency of bagging
methods, it should be small for boosting to avoid overfitting. To cope with overfitting issues, a large
value of B is considered and a penalty term is added in the boosting algorithm (Hastie et al., 2011).

3.1 Tree-based estimation methods

Regression trees based on CART algorithm as suggested by Breiman et al. (1984) are simple to
use in practice and useful for interpretation. Toth and Eltinge (2011) studied the asymptotic behavior
of regression trees for survey data and McConville and Toth (2019) used them in a model-assisted
context. Regression tree prediction of x in some point x is obtained in two steps. The predictor
space spanned by the x-variables measured on data is partitioned, according to some criterion, into
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Aj , j = 1, . . . , J disjointed zones called terminal nodes and the unknown regression function in a
point x is approximated as m(x) ' β11{x∈A1} + . . . + βJ1{x∈AJ}. The β-coefficients are estimated
with survey data by weighted least-square criterion (McConville and Toth, 2019) leading to β̂j =∑

k∈Aj dkyk/N̂j = ˆ̄yj , where N̂j =
∑

k∈Aj dk. For every unit from Aj , tree-based predictions are the

same and equal to the weighted mean of y-values of units belonging to Aj , namely m̂(x) = β̂j for all
x ∈ Aj . The tree model-assisted estimator t̂tree

y,x of tyU is obtained by plugging m̂(xk) in (4). As (Aj)
J
j=1

is a partition of the predictor space, then
∑

k∈s dk(yk − m̂(xk)) = 0 leading to t̂tree
y,x =

∑
k∈U m̂(xk) =∑J

j=1Nj ˆ̄yj , which is a poststratified-type estimator with random poststrata Aj of size Nj built on the
sample data (xk, yk)k∈s (see section 2.2 for the traditional poststratified estimator).

To determine the terminal nodes, we may use the greedy CART algorithm (Breiman et al., 1984)
which recursively searches for the splitting variable and the splitting position (i.e., the coordinates
on the predictor space where to split) leading to the greatest possible reduction in the residual
sum of squares. More exactly, let CA be the set of all possible pairs (j, z) in A and AL(j, z) =

{xk ∈ A;xkj < z}, AR(j, z) = {xk ∈ A;xkj ≥ z} . The best split (j∗, z∗) in a region A is (j∗, z∗) =

arg min(j,z)∈CA{
∑

k∈s:xk∈AL(j,z)(yk−ȳAL)2+
∑

k∈s:xk∈AR(j,z)(yk−ȳAR)2}, where ȳAL (respectively ȳAR)
is the average of the y-values of units belonging to the node AL(j, z) (respectively AR(j, z)). The pro-
cedure continues until a stopping criterion is reached. The random non-overlapping regions obtained
by the CART algorithm depend on the sample data (xk, yk), k ∈ s. Nalenz et al. (2024) suggest a
CART criterion based on design-based estimation of the residual sum of square and Beaumont et al.
(2024) adapt the CART criterion to a classification problem and data integration issues by considering
well-chosen stopping criteria.

Regression trees are simply to use and interpret, however they are not appropriate with high-di-
mensional data and deep trees are known to have large variance and to lead to overfitting. The
random forest algorithm (Breiman, 2001) is an ensemble method that corrects the tree defaults by
a large number of randomized deep decorrelated trees. More exactly, the random forest prediction
of m(·) is a bagging estimator as in (8), where each m̂(b)(·) is a regression tree prediction of m(·)
built on a bootstrap sample data and selecting randomly at each split in the tree a new set of p0

auxiliary variables from the p initial variables. In this way, a fresh set of variables is considered
at each tree split. Random forests are very popular methods due to their predictive performances
and ability to handle large data sets, however their theoretical properties have been proved only
recently for particular algorithms (Scornet et al., 2015, Klusowski and Tian, 2024). Random forest
algorithms have been only recently used with survey data starting with Tipton et al. (2013), Buskirk
and Kolenikov (2015) for missing data, De Moliner and Goga (2018) for small area estimation. Very
recently, Dagdoug et al. (2023c) suggested the random forest model-assisted estimator and studied
its asymptotical properties. The random forest model-assisted estimator may be also written as a
weighted sum of y-values, however the weights depend now on the study variable as the partitions
are built on sample data (xk, yk), k ∈ s. With multipurpose surveys, the user has the choice between
two options: use random forest algorithms not depending on the study variable (Devroye et al., 2013)
or use a model-calibration procedure as suggested in Dagdoug et al. (2023c) to determine weights for
estimating simultaneously several totals. Dagdoug et al. (2023c) use a without replacement bootstrap
resampling procedure and they show that the random forest model-assisted estimator can be written
as the total of the estimated prediction of m(·) plus a correction term equal to the weighted sum of
residuals computed for the non-resampled units, also called the out-of-bag individuals, from each of
the B trees. This correction term brings additional information from the units not used in computing
the prediction and preventing in this way from overfitting. Nalenz et al. (2024) suggest bootstrapping
individuals with unequal probabilities.

The random forest algorithms depend on several hyper parameters: the number B of trees, the
number p0 of the selected variables and the number n0 of individuals from the terminal nodes, the
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hyper parameter values affecting the precision of the model-assisted estimators and finding the best
values of such hyper parameters may be difficult with complex sampling designs (Dagdoug et al.,
2023c,b). Another issue with random forests, and even with nonparametric methods in general, is
the result interpretability. These methods are known to have high predictive performances, however
the predictions are difficult to interpret and this may be a problem with surveys conducted by national
institutes.

3.2 Missing data

The estimators presented above supposed that all the sampled individuals respond, so we have com-
plete sample data yk, k ∈ s. In practice however, due to various reasons, some individuals respond
only partially (item nonresponse) or do not respond to the survey questionnaire (unit nonresponse).
Item nonresponse is treated by imputation while unit nonresponse is treated by weighting methods.

With item nonresponse, the imputed estimator t̂I of tyU is obtained from the Horvitz-Thompson es-
timator given in (1) by replacing the missing values yk by predicted values ŷk, t̂I =

∑
k∈sr dkyk +∑

k∈sm dkŷk, where sr is the respondent subset and sm, the subset of s containing the nonrespon-
dents. The imputed values are obtained by fitting an imputation model, assuming usually that the
response mechanism is MAR (missing at random). Recently, Dagdoug et al. (2023a) conduct a large
simulation study of parametric as well as nonparametric and machine-learning imputation procedures
in terms of bias and efficiency in a wide variety of settings, including high-dimensional data sets. They
considered methods such as B-spline additive model and K-nearest neighbor as well as regression
trees, random forest and boosting with the XGBoost algorithm (Chen and Guestrin, 2016), Bayesian
additive regression trees (Chipman et al., 2010), cubist algorithm (Quinlan, 1993). Their simula-
tion results show that, in general, the non-parametric imputation models are superior to parametric
models to capture the non-linear trend in the data. However, in high-dimension settings (i.e. a large
number p of auxiliary variables), the K-nearest neighbor or the additive models are out-performed by
machine learning methods which are more robust in such contexts. Dagdoug et al. (2024) study the
asymptotic properties of the regression tree and the random forest imputed estimator.

With unit nonresponse, the weighted estimator of tyU is t̂w =
∑

k∈s dkyk/p̂k, where p̂k is the esti-
mated response probability of unit k. The response probabilities pk may be estimated by parametric
logistic regression, or through nonparametric regression. Da Silva and Opsomer (2006) studied the
kernel smoothing and Da Silva and Opsomer (2009) extended it to local polynomial regression. Very
recently, Larbi et al. (2023) make a large simulation study of nonparametric and machine learning
methods for estimating the response probabilities.

3.3 Variance estimation

Variance estimation with survey data is a very important but difficult issue. In a design-based a-
pproach, the variance of estimators derived under the sampling design is desired in order to deduce
next estimated confidence intervals. All estimators presented in this paper are non linear estimators,
so their variances are not computable and in the best case, only asymptotic variances may be de-
duced. Using linearization techniques and adapted asymptotic framework including assumptions on
the sampling design, the study and the auxiliary variable, the asymptotic variance of model-assisted
or calibration estimators are equal to Horvitz-Thompson variance applied to residuals yk − m(xk),

AV(t̂ma
yx ) =

∑
k∈U

∑
l∈U (πkl − πkπl)((yk −m(xk))/πk)((yl −m(xl))/πl) and estimated by the Horvitz-

Thompson variance estimator applied to estimated residuals ε̂k = yk − m̂(xk), k ∈ s. With non-
parametric methods, overfitting usually happens leading to underestimated residuals ε̂k, k ∈ s, so
confidence intervals based on such variance estimator will not have the desired rate. This issue
was already raised by Opsomer and Miller (2005) in the context of local polynomial regression. To
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cope with this issue, Dagdoug et al. (2023c) suggested a variance estimator based on a K-fold cross-
validation criterion, widely used in machine learning community for determining for example the tuning
hyper parameters. More specifically, the sample s is split randomly into K groups sκ, κ = 1, . . . ,K, of
approximately equal size. For k ∈ sκ, let m̂(−κ)(xk) denote the prediction at the point xk fitted on s−sκ
and ε̂(−κ)

k = yk − m̂(−κ)(xk) the associated residual. The proposed K-fold variance estimator is given
by V̂(K) =

∑K
κ1=1

∑K
κ2=1

∑
k∈sκ1

∑
l∈sκ2

((πkl − πkπl)/πk`)(ε̂
(−κ1)
k /πk)(ε̂

(−κ2)
l /πl). In practice, the num-

ber of groups (or folds) is often set to K = 5 or K = 10. This variance estimation procedure allowed
to greatly improve the symmetric confidence interval rates for the random forest model-assisted esti-
mator and Dagdoug et al. (2024) adapted the method to account for the item-nonresponse.

4 Conclusion

This paper provides a synthetic presentation of estimation methods for totals in surveys, as their
objectives and type of data have evolved over time. Modern machine learning methods are becoming
increasingly popular in surveys. However, their automatic use in survey sampling comes with its own
set of challenges and caveats, including concerns about model interpretability, overfitting, and bias
amplification. The implementation of such modern estimation methods is not straightforward with
complex sampling designs. Most of machine learning algorithms have been implemented for non
survey data and they do not allow considering the sampling weights in the predictions m̂(·), leading
to potentially biased estimators for unequal and complex survey designs (Dagdoug et al., 2023b).
As such, it is essential for researchers and users to exercise caution and rigor in applying these
techniques and to complement them with traditional estimation methods to ensure the validity and
reliability of survey estimates. Many research perspectives open up: the choice of hyper-parameters
to use in machine learning algorithms, the bootstrapping of individuals or the estimation of variance
are really important questions that need to be explored further more deeply. The estimation of non-
linear study parameters with high-dimensional auxiliary information may be also of interest, however
there is little research on this field. Goga and Ruiz-Gazen (2014) used B-spline nonparametric
estimation for nonlinear functions such as median, Gini index but we are not aware of use of machine
learning methods for the estimation of such parameters. This paper treated the estimation issues
with probabilistic samples. Non-probabilistic surveys are used more and more often nowadays and
recent works started treating estimation issues with such samples by using also machine learning
methods. Another item not treated in this paper is the use of machine learning methods for small-
area estimation, the reader is referred to the excellent paper of Krennmair et al. (2022) for a review
on this area.
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