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Abstract 

The statistical matching problem consists in fusing information from two data sources that are 

representative of the same population but contain observations on disjoint sets of units. The lack of 

joint information on variables observed distinctly in the two data sources induces a source of 

uncertainty that usually statistics does not tackle directly, under the status of unidentifiability of the 

model given the data at hand. This paper gives an updated account of what has been proposed in 

order to deal with this problem. 
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1 Introduction 

The widespread use of data integration for statistical purposes gave rise to new challenges: 

statistical matching aims at overcoming one of these challenges for which there is not an immediate 

answer under the statistical point of view. The statistical matching problem consists in making 

“estimates” on parameters of the joint distribution of 𝑌 and 𝑍 when 𝑌 and 𝑍 are observed in two 

distinct data sources (A and B respectively), and the sets of units on which 𝑌 and 𝑍 are observed, 

although representative of the same population, are disjoint. Hence, it is not possible to connect 

records through the use of identifiers or exact or probabilistic record linkage.  

We avoid the description of well know methods, mostly already covered in D’Orazio et al. (2006a) 

and references therein. In this paper, we try to give the state of play on statistical matching on some 

specific issues. First of all, it should be clear once and for all that the use of the data in A and B is 

not enough for the two purposes for which statistical matching has been considered: i) a “fused” 

complete but synthetic data set on which whatever statistical analyses involving 𝑌 and 𝑍 could be 

performed (micro approach); ii) estimation of specific parameters on the joint 𝑌 and 𝑍 distribution 

(macro approach). Hence, a discussion on how to incorporate additional information in terms of data 

sources or constraints is given in Section 2. Secondly, most data sets are drawn according to 

complex survey designs, and Section 3 covers this issue. Section 4 illustrates different areas on 

which statistical matching applications have been conducted. Quality of the results obtained by 

statistical matching is an essential point that sometimes seems to be neglected in real applications: 

we describe the state of play on quality measures in Section 5. Some conclusions and hints on areas 

of research are finally discussed in Section 6.  
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2 Use of auxiliary information 

The statistical matching (SM henceforth) problem is naturally affected by an identifiability problem in 

the sense that data in A and B are not enough to estimate the parameters of the joint distribution of 

𝑌 and 𝑍. To fill this gap, assumptions as the independence of 𝑌 and 𝑍 given the matching variables 

𝑿 (conditional independence, CI henceforth) is needed and it is explicitly or implicitly used in the 

base SM procedures. This assumption severely limits SM procedures applicability. One way to move 

away from this assumption and thus improve the conclusions is that of using auxiliary information, 

particularly on the variables 𝑌, 𝑍 or (𝑌, 𝑍|𝑿). Such information can take several forms: it can be a set 

of micro data, information on parameters or aggregate values of the variables under observation, or 

refer to logical and statistical constraints on the variables (partial information) see D’Orazio et al. 

(2006b). 

2.1 Exploitation of additional data sources 

An auxiliary data set C can be used for matching purposes if it is a representative sample of the 

target population, otherwise the inference will be affected by a bias. Several methods have been 

proposed in the literature: parametric, nonparametric and mixed, see D'Orazio et al. (2006a) for a 

review. In the presence of a micro data set, the approaches described in D'Orazio et al. (2006a) 

follow the idea of creating a data set by appending file A, B and the auxiliary file C and treating it as 

a statistical inference problem in the presence of missing data. This approach is studied and further 

explored in a Bayesian context by Fosdick et al. (2016). They use a data augmentation algorithm 

that intrinsically produces multiply imputed values. The simulations show that the size of the auxiliary 

file C essentially represents the degree of confidence with respect to the auxiliary information. 

Although this result was expected, it is important to remember that every time a file C is used, its 

observed size naturally becomes our degree of confidence about its quality. 

The representativeness of C can be a limiting assumption as well. In fact, most of the times C is an 

outdated sample, or a file composed of proxy variables, i.e., it is composed of information related to 

the variables under investigation - and thus it is important to take C into account in order to avoid the 

CI assumption - but characterized by a sort of proxy information. How to deal with this issue is an 

important topic still under investigation. In Moretti and Shlomo (2023) and Fosdick et al. (2016) there 

are two ways of approaching the non-representativeness of the auxiliary file C. In the first, there is 

the research and use of further additional information, while the second is characterized by a further 

but weaker assumption about the representativeness of C. 

Moretti and Shlomo (2023) propose calibrating the prediction regression model of a mixed approach 

(predictive mean matching) to known marginal totals of the variables (𝑿, 𝑌, 𝑍) to make the estimation 

of parameters robust to misspecification of the model. They empirically show that this approach 

improves the results of the matched file. 

In Fosdick et al. (2016), an SM method is proposed for the case where the sample C is not 

representative for the joint distribution of (𝑿, 𝑌, 𝑍) but is representative for its conditional distributions 

𝑌|𝑿 and 𝑍|𝑿. The algorithm essentially consists of: 

1. estimating the conditional distributions 𝑌|𝑍, 𝑿 and 𝑍|𝑌,𝑿 from C,  

2. obtaining a synthetic auxiliary file C* by  

a) generating the observations from 𝑌,𝑿 and 𝑍,𝑿 observed in A and B respectively (e.g., by 

duplicating or sampling records with replacement from A and B),  

b) imputing the missing values of 𝑌 and 𝑍 in the respective subsets of C* using the 

conditional distributions estimated in the first step given the observations generated by 

step 2a.  
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This algorithm produces an auxiliary file C* that preserves the marginal distributions observed in A 

and B and the conditional distributions observed in C. 

Even in this case, however, an assumption is made, namely that the conditional distributions 

observed in C are representative of those in the target population. To measure the validity of this 

assumption, the authors propose an empirical evaluation. They suggest comparing the marginal 

distributions of 𝑌 and 𝑍 obtained in the synthetic file C* with those observed in A and B. A high 

discrepancy suggests that the conditional distributions of C are not representative and therefore this 

approach should be avoided. 

Though developed in a Bayesian context, this approach can be an interesting proposal for dealing 

with non-representative auxiliary information in different inferential contexts. 

2.2 Auxiliary information in terms of constraints 

Another type of auxiliary information often available in official statistics concerns the use of logical 

or statistical constraints, known in the field of editing and imputation as edit rules (soft and hard edit 

rules). Hard constraints (hard edits) refer to relationships between variables that must be necessarily 

fulfilled by the values of each observation, for instance, babies cannot have an academic degree 

and the total costs of a company are greater than or equal to the amount spent on purchases. Soft 

constraints (soft edits), on the other hand, identify abnormal although possible behaviors, e.g., the 

ratio of purchases to sales is generally within an interval [𝑙, 𝑢], see De Waal et al. (2011). Auxiliary 

information in terms of constraints was firstly studied in D’Orazio et al. (2006a and 2006b), later with 

discretized continuous variables by Conti, Marella and Scanu (2016 and 2017). An interesting and 

extensive recent study with continuous variables is in Claramunt-González et al. (2023). 

The introduction of hard constraints on the 𝑌, 𝑍 variables naturally makes the conditional 

independence model unfit and impossible. However, the use of hard constraints is not immediate 

and needs further investigation. In D'Orazio et al. (2006a), constraints are introduced at the model 

estimation stage, i.e., the estimable parameters that determine the region of uncertainty is bounded 

by the introduced constraints. Claramunt-González et al. (2023) focuses on a mixed method, that is 

in fact a predictive mean matching, and the constraints are used not in the parameter estimation 

step, but in the stage of donor imputation, namely, donors are chosen taking into account the hard 

and soft constraints. As noted in D’Orazio et al. (2006a) and Claramunt-González et al. (2023), there 

is a general improvement in the matching results. However, some constraints may be more or less 

useful. In particular, the introduction of hard constraints in the imputation phase can lead to having 

empty imputation cells or cells with a low number of donors. So, the introduction of a constraint on 

𝑌,𝑿 or 𝑍,𝑿 should be well thought because it does not make direct changes on the conditional 

independence model but may introduce problems for the imputation phase. It is also interesting to 

note that Claramunt-González et al. (2023) studied the use of constraints in the case of additional 

information on (𝑿, 𝑌, 𝑍) that allows estimating a model that is not based on CI. 

3 Approaches accounting for complex sample survey design 

A large part of SM methods proposed in literature are designed to integrate random samples 

consisting of independent and identically distributed (iid) observations. This assumption is seldom 

valid in official statistics where the available data come from complex probabilistic surveys that 

commonly include stratification and clustering; these complex selection mechanisms consist of two 

or more stages that typically invalidate the independence assumption (units belonging to a cluster 

show a degree of homogeneity) and often result in unequal weighting of the final in-sample units 

(Base weights, which are the reciprocal of first order inclusion probabilities, are corrected to 

compensate for unit nonresponse and for coverage problems, so the final survey weights are often 

the outcome of calibration or post-stratification procedures). In this framework, the target of inference 

are finite population quantities and the approach to inference is typically design-based or model-

assisted design-based (Särndal et al., 1992). Therefore, the application of SM methods has the 
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objective of estimating the correlation coefficient between 𝑌 or 𝑍 or the contingency table crossing 𝑌 

and 𝑍 at finite population level, or to create a synthetic representative sample that can be used for 

the subsequent analyses (under the paradigm of design-based inference). In this context, when SM 

aims at estimating model parameters (e.g., the correlation between 𝑌 and 𝑍), it should be considered 

that the model assumed for the data in the sample is often not the same as that in the population 

and the sampling design is said to be nonignorable or informative (cf. Opsomer, 2009). 

The SM methods accounting explicitly for the sampling design (and survey weights) are quite limited. 

In the past, two main different approaches were suggested: (i) Rubin’s file concatenation (Rubin, 

1986) and, (ii) Renssen’s matching by weight calibration (Renssen, 1998). 

Rubin’s file concatenation consists in appending the two data sources and re-calculating the 

sampling weights in order to achieve representativeness of the target population. As noted by Ballin 

et al. (2008 and 2009) the recalculation of weights is not straightforward and requires knowledge of 

information on several aspects (sampling frame, design variables, etc.) typically available solely 

within the statistical agency that administers both the surveys. In addition, the approach does not 

consider unit nonresponse and corresponding weights’ correction. In any case, the re-calculation of 

the weights does not solve the problem of lack of joint information regarding 𝑌 and 𝑍. In practice, 

two imputations steps are still required (𝑌 in subsample B and of 𝑍 in subsample A). For all these 

reasons the approach is seldom applied (see e.g., Ballin et al., 2008; Torelli et al., 2009).  

The matching by weights’ calibration proposed by Renssen (1998) is primarily intended to estimate 

the contingency table crossing 𝑌 and 𝑍 when 𝑌 and 𝑍 are categorical target variables. The method 

has the advantage of providing an estimated table whose marginal distributions are fully coherent 

with those estimated from the starting data sets via the Horvitz-Thompson (HT) estimator (𝑁𝑗 =

∑ �̃�𝐴𝐼(𝑦𝑘 = 𝑗)𝑘∈𝐴 ; 𝑗 = 1,… , 𝐽). However, Renssen pinpoints that for coherence purposes, before 

estimating the 𝑌 and 𝑍 cross-table, it is necessary to align the marginal/joint distributions of the 

matching variables 𝑿 in order to return the same known totals; this latter task requires two weights’ 

calibration steps. Renssen’s approach can exploit additional auxiliary information coming from a third 

sample C that observes both 𝑌 and 𝑍 (and possibly also 𝑿). This method permits also the creation 

of a synthetic sample by means of a two-step procedure (resembling predictive mean matching). In 

fact, the estimation of the 𝑌 and 𝑍 cross-table requires the adoption of linear models (linear 

probability models in the case of categorical variables), whose predictions can be used as input of 

nearest neighbor hotdeck to impute in the recipient the target variable observed in the donor sample 

(see e.g., Donatiello et al., 2022). D’Orazio et al. (2010) extend Renssen’s idea by replacing weights’ 

calibration with the procedure suggested by Wu (2004). 

Renssen’s procedure is the most popular approach to handle survey weights in the two samples. It 

belongs to the larger class of SM methods that use survey weights in the matching step. A seminal 

proposal in this sense is that of Barr and Turner (1981) that consists in creating a synthetic sample 

using a constrained nearest neighbor hotdeck where the weights assigned to matched units in the 

synthetic sample are obtained by solving an optimization problem that guarantees reproducing the 

same estimated total amount of 𝑌 (𝑍) obtained by applying the traditional HT estimator in A (B) (this 

procedure assumes CI on 𝑌 and 𝑍 given 𝑿 and that the starting weights in A and B return the same 

estimated population size). Renssen notes that this result can be achieved with much less 

computational effort by applying his procedure under CI (in absence of an additional auxiliary sample 

C), after the initial weights’ calibration aimed at aligning the totals of the matching variables. D’Orazio 

(2015) suggests a slight modification of random hotdeck to use donors’ survey weights in the random 

draw of a donor: this approach follows the ideas of weighted random hotdeck (cf. Andridge and Little, 

2010).  

Recently Kim et al. (2016) proposed a fractional imputation method aimed at creating a synthetic 

sample where the survey weights are used in the different steps of the imputation procedure.  

Jauslin and Tillé (2023) follow Renssen’s ideas to develop a nonparametric procedure; it at first 

applies weights’ calibration to harmonize the totals of the matching variables, and then imputes the 
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recipient data set by using a nearest neighbor hot-deck approach that is constrained to use a donor 

only once and to return estimated totals of the imputed variable equal to those estimated from the 

donor sample. The optimization problem is solved by means of an algorithm commonly used in 

balanced sampling.  

Schifeling et al. (2019) use SM to assess how measurement errors affect observation of a target 

variable (𝑍) in one survey when the same variable is observed free of errors (𝑌) in another survey. 

They suggest adoption of design-based inference to calculate the estimates of the cells of the 

contingency table crossing 𝑿 and 𝑌 and the corresponding sampling variance. Then this information, 

coupled with assumed measurement error models (that avoid CI), becomes the input of a Bayesian 

approach that ends with an estimated posterior distribution of the true values and of model 

parameters. 

Marella and Pfeffermann (2019) propose a unified framework for making inference on model 

parameters in the SM case when dealing with samples from complex sample surveys (informative 

samples). In particular, they define a sample likelihood that enables the estimation of the target 

population distributions and subsequently to impute the missing values. The authors give the 

conditions under which the sample models are identifiable and estimable from the starting data. 

4 Some applications 

SM methods have been and are applied in different domains: investigation of poverty and well-being, 

education statistics, travel and transportation statistics, agriculture statistics, etc. Although SM 

applications are mainly tailored to integrate data of probabilistic surveys, in some cases they are 

applied also to integrate probabilistic and non-probabilistic sources (administrative registers and 

more in general big data). Obviously, it is not possible to keep track of all the various applications of 

SM methods in the various domains and with different data settings. For this reason, in this section 

we limit our attention to some relevant applications with data stemming from probabilistic surveys 

referring to the same target population. 

A huge number of papers apply SM methods to get insight on people’s well-being (see e.g. Leulescu 

and Agafitei, 2013; Donatiello et al., 2016; Bernini et al., 2021). A large contribution to this objective 

is given by studies investigating the relationship between people’s income and consumption, due to 

the well-known difficulties in collecting detailed information on both these items in the same survey. 

In the European Statistical System (ESS) this objective has been pursued by integrating the EU-

Statistics on Income and Living Conditions (SILC) and the Household Budget Survey (HBS), in most 

of the cases by creating a synthetic sample that serves as basis for an in-depth investigation. Tonkin 

and Webber (2013) compare nonparametric methods and mixed SM methods. Donatiello et al. 

(2014, 2016 and 2022) investigate hotdeck imputation and warn about the consequences of 

assuming CI when matching the data of these two surveys. They show that CI approximately holds 

when considering a proxy of income or consumption in the matching process. As an alternative, they 

avoid CI by carrying out an assessment of uncertainty. Conti, Marella and Neri (2017) use Italian 

surveys to assess uncertainty due to the SM framework by including some constraints on the joint 

distribution of income and consumption. More recently, Donatiello et al. (2022) adopt Renssen’s 

approach to derive a synthetic sample through a two-step procedure that uses a proxy of 

consumption in the matching process. The paper shows how crucial it is to think about SM when 

designing both the surveys, by harmonizing ex-ante the definitions and the classifications used for 

the common variables and by collecting the information (proxy of consumption in SILC) needed to 

make CI valid. In addition, the paper stresses that the nice feature of Renssen’s approach of ensuring 

that the consumption imputed in the SILC survey maintains a marginal distribution aligned to that 

estimated in the HBS (donor) is crucial in official statistics, where the synthetic sample should provide 

estimates coherent with those obtained from the starting surveys. For the same reason, Rios-Avila 

(2015) suggests the use of a weight-splitting strategy to better comply with the constrained SM 

rationale and corresponding advantages. Ucar and Betti (2016) consider also the longitudinal 

dimension of the SILC survey and impute in it the consumption expenditure variable observed in the 
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cross-sectional HBS data; they also use a two-step Renssen procedure. Another application to 

Turkey data performs a constrained SM using propensity score ranking (Albayrak and Masterson, 

2017). Decoster et al. (2020) compare different methods to impute consumption in a dataset on 

income in Belgium and create a data set for microsimulation purposes. Lopez-Laborda et al. (2020) 

suggest fitting Engel curves in a parametric SM approach with the objective of imputing consumption 

in SILC.  

Recently attention moved from the joint distribution of income and consumption to a wider picture by 

including also wealth data. This is a very relevant domain of study, as it permits a thorough 

investigation of multidimensional poverty. A seminal paper on this topic is from Tedeschi and Pisano 

(2013) that investigate how to integrate the Survey on Household Income and Wealth (SHIW) carried 

out by the Bank of Italy with data on consumption available from the Italian HBS survey carried out 

by the Italian National Statistical Institute (Istat). Given the importance of the topic, recently Eurostat 

and OECD decided to join efforts and carry out an extensive SM exercise involving data from 

different countries within and outside EU (Balestra and Ohler, 2023), with the objective of measuring 

the joint distribution of household income, consumption and wealth at the micro level. In the same 

direction goes the work of Tram and Osier (2023) who want to explore multidimensional poverty in 

Luxembourg by applying a two-step approach that performs multiple imputation via Bayesian 

Bootstrap predictive mean matching.  

Other survey data that are often involved in SM applications are those related to time use (TU), a 

very important topic, in particular when jointly investigated together with data collected in Labour 

Force Surveys (LFS). Gazzelloni et al. (2008) present a hot-deck application with Italian LFS and TU 

data; Ghahroodi (2023) considers Iranian data and suggests fitting tailored models for TU data 

(conditional predictive Dirichlet distribution or conditional predictive multinomial distribution) in the 

first step of an SM mixed approach. Zacharias et al. (2014) investigate the relationship between TU 

data and consumption expenditures by applying SM based on propensity scores. To investigate the 

measure of time and consumption poverty at microdata level Rios-Aviola (2016 and 2020) applies 

SM to integrate TU and living conditions data for different African countries.  

Dalla Chiara et al. (2029) suggest an application of SM based on propensity scores for creating a 

synthetic dataset by integrating SILC, HBS, TU survey and data on household conditions and social 

capital; the fused file allows investigating households’ living conditions in Italy. 

Wiest et al. (2019) use SM to investigate effects of educational participation on well-being in later 

life. Bernini et al. (2021) aim at analyzing how happiness affects expenditure behaviour in different 

urbanized areas in Italy. Hossain et al. (2022) integrate data from the household travel survey with 

different specialized “satellite” surveys to assess the impact of COVID-19 on passenger travel 

demand in the Greater Toronto Area.  

Torelli et al. (2009) and Ballin et al. (2009) explore the application of SM to the Farm Structure Survey 

and Farm Accountancy Data Network survey carried out on Italian farms, with the additional difficulty 

of managing dependent surveys. In the same framework, D’Orazio and Catanese (2016) use SM to 

assess the revenues and economic growth of farms producing renewable energies.  

It is worth noting that a large part of the SM applications have a very challenging objective, namely 

the creation of a synthetic sample that serves as basis for in-depth analyses. Regardless of the SM 

method being applied and its complexity, a critical reading shows that several applications seem 

unaware of the assumptions underlying integration, in particular that of independence between the 

target variables conditional on the selected matching variables. Sometimes also the applications that 

are aware of CI and claim that it is valid, often ignore its consequences on extended analyses carried 

out on the synthetic sample. In fact, while CI permits to reliably explore the association/correlation 

between 𝑌 and the imputed 𝑍, the same assumption may not lead to valid results when studying for 

instance the relationship between 𝑊, a different variable observed in the recipient file, and the 

imputed 𝑍. In general, managing implications of the CI assumption can become quite difficult when 

SM is applied to integrate three or more data sources. For this reason, studies having very ambitious 



 

The Survey Statistician 53 January 2024 

objectives that require the integration of several samples should proceed very carefully and should 

dedicate much effort to understand whether the objectives can be reliably pursued given the 

available data and the underlying assumptions in the integration process. 

5 Quality issues 

As it is clear from the last considerations in Section 3, the big question in an SM problem is the 

assessment of the quality of the results. De Waal (2015) states that this is a primary field of research 

for SM, identifying two key issues: how to better extract information from the available data, and what 

kind of additional information could support SM?  

As far as the first question is concerned, an update on the possible different estimators or imputation 

procedures has already been given in the previous sections. Hence, we focus here on the modelling 

issues that, frequently, imply the use of specific methods. As already said, a multivariate model that 

includes (𝑌, 𝑍) is unidentifiable for the data at hand for SM. Since the publication of D’Orazio et al. 

(2006a), this additional source of uncertainty (i.e., uncertainty due to the lack of joint observations 

on 𝑌 and 𝑍) has become more important in the evaluations of SM results than the uncertainty due 

to sampling (that can be always investigated by means of the usual tools, as for instance coefficients 

of variation). A thorough discussion on uncertainty in statistical matching is given in Conti, Marella 

and Scanu (2017). Up to now, this kind of uncertainty has been treated in the following ways. 

1. It was resolved by assuming, possibly in an explicit way, specific models that are identifiable for 

the data. Much has been already said on the CI (mostly assumed subconsciously) and, as 

already remarked, we consider it important to be conscious of that assumption and to report it 

explicitly, if taken into account. This assumption seems appropriate just in those applications 

(see for instance Donatiello et al., 2022) that make use of at least one matching variable that is 

(very) highly correlated with either 𝑌 or 𝑍, so that 𝑌 and 𝑍 become almost independent given the 

matching variables (something that can be imposed by construction when matching is planned 

while organizing the observation of the source files A and B). The CI cannot be tested by the 

data at hand. 

2. A different identifiable model has been suggested by Kim et al. (2016). This model assumes that 

matching variables can be decomposed in two groups, say 𝑿 = (𝑉,𝑊), and that 𝑉 is an 

“instrumental variable” for 𝑌, i.e., 𝑉 is conditionally independent of 𝑍 given 𝑊 and 𝑌 but 𝑉 is 

correlated with 𝑌 given 𝑊. Under this model, the authors suggest the use of parametric fractional 

imputation (PFI, Kim et al., 2016). Also in this case, there is not a test that can validate the 

assumed model. Anyway, the authors state that “a sufficient condition for model identifiability is 

the existence of an instrumental variable in the model.” Furthermore “The proposed methodo logy 

is applicable without the instrumental variable assumption, as long as the model is identified.” 

Their estimation approach, based on the use of the EM algorithm, does not necessarily converge 

if the model is unidentifiable. They consequently claim: “In practice, one can treat the specified 

model as identified if the EM sequence converges.” This seems the most interesting and 

intriguing aspect of this approach, that can justify the use of model assumptions even if 

untestable. 

3. If no identifiable model can be constructed, a (possibly) large set of models are indistinguishable 

by the data at hand. D’Orazio et al. (2006a) use the notion of “likelihood ridge” as the set of all 

the equally likely maximum likelihood estimates of some parameters in order to represent the 

uncertainty on some parameters of the (𝑌, 𝑍) distribution given the data at hand. For specific 

parameters, the width of the interval or space of all the equally plausible solutions quantifies how 

uncertain these parameters are given the available data on A and B. Results on 𝑌 and 𝑍 

correlation coefficients are discussed in D’Orazio et al. (2006b), frequencies of contingency 

tables in D’Orazio et al. (2006a), for ordered categorical variables in Marella et al. (2013) and for 

generic empirical distributions on 𝑌 and 𝑍 in Conti et al. (2016). 
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The second question raised by De Waal (2015) was on what additional information can be 

considered in order to improve the quality of SM results. Much has already been described in Section 

2 as far as additional data sources are considered. Here we focus on the effects of the use of 

constraints in terms of uncertainty. Conti et al. (2016) adopt as SM estimate for the distribution of 

(𝑌, 𝑍) given 𝑿 the central distribution among the ones in the estimated likelihood ridge given the data 

at hand. Even if the likelihood ridge is rather well known in general (consider for instance the Fréchet 

bounds for categorical variables and the parameter under the CI as a midpoint), this computation of 

the likelihood ridge’s central distribution becomes cumbersome when constraints are imposed. They 

consequently define a very general estimator and derive its asymptotic properties as well as the 

width of the likelihood ridge in order to derive tests on the likelihood ridge’s sparseness around the 

estimated distribution. This is just one of the papers that make use of the likelihood ridge width as a 

measure of the SM uncertainty due to the lack of joint observations on 𝑌 and 𝑍. 

A specific measure of the sparseness of the uncertainty set of distributions when the variables are 

categorical is given by the Fréchet bounds (D’Orazio et al., 2006a). Fosdick et al. (2016) compute 

the Fréchet bounds of 𝑌 and 𝑍 given 𝑿 in order to verify, in a simulated context, the goodness of 

their estimator (described in Section 2.1) under the presence of different kinds of additional files C, 

and examine if these bounds are as tight as possible. 

A simulated set up is the context where quality measures can be defined and applied, exploiting all 

their potentiality, given that the actual parameters to be estimated are known in advance. For 

instance, this happens in the already cited paper by Claramunt-González et al. (2023) where a 

multivariate mixed method for SM for the estimation of the correlation between 𝑌 and 𝑍 is proposed: 

in that context, quality has been assessed by i) computing the estimator bias (which can be 

calculated due to knowledge on the actual parameters) in a multiple imputation case (allowing 

variance estimation) and ii) transforming estimates by means of Fisher z-transformation (in order to 

ensure that the resulting transformed estimates are generated by a normal distribution). Besides 

using the mean squared error as a measure of performance of an estimator, the same authors 

identify also a measure for the imputed data set, checking whether the individual imputations are 

“correct within a 100 × 𝜏 per cent”. For instance, when the 𝑍 observations 𝑧𝑎 (which are known in 

advance in file A in a simulation study) are imputed by an SM procedure, it is verified whether each 

imputation lies in the interval with extremes (1 − 𝜏)𝑧𝑎 and (1 + 𝜏)𝑧𝑎. The authors note that this is a 

way to derive the so-called “matching noise” (see Conti et al., 2010): given that the objective of the 

matching noise is to describe the distance between the actual data generation process and the 

imputation process, and that this computation can be cumbersome for some estimators as the mixed 

ones, the identification of such an empirical computation of the matching noise is a nice trick to take 

into account. The computation of the fraction of “correct within a 100 × 𝜏 per cent” imputed values 

should be considered as a quality measure for the statistically matched file. In fact, they say in the 

paper that: “we do not intend to release any statistically matched datasets.” We agree with their 

approach. Anytime a statistically matched data set is created and released for whatever unplanned 

statistical data production, it could happen that the chosen but unplanned 𝑌 and 𝑍 are connected in 

ways that that are not taken into account in the SM method, e.g., even by hard edit rules (see Section 

2.2 and discussion therein). The introduction of constraints, as already discussed in D’Orazio et al. 

(2006a), dramatically improves quality of results obtained by SM. In fact, the uncertainty set of 

equally plausible estimated distributions for the data set at hand changes significantly, and the use 

of hard constraints (as introduced for instance in Section 2.2) excludes the conditional independence 

model among the distributions that can contribute to the uncertainty space, moving the “conditional” 

uncertainty space towards the actual but unknown distribution. Claramunt-González et al. (2023), as 

noted in Section 2.2, suggest to include not only hard constraints in an SM problem, but also soft 

ones. As the authors note, these constraints generally need the help of a third complete data set that 

allows one to fix the characteristics of soft rules that allow to isolate those values that are unlikely, 

even if possible. The introduction of these rules should help an SM procedure in reducing the 

uncertainty space. However, it is yet not clear how effective they are, and this could be, in our 

opinion, an interesting area of research. 
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As far as the computation of uncertainty is concerned when dealing with samples drawn according 

to complex survey designs, D’Orazio (2015) includes survey weights in estimating the uncertainty in 

the case of categorical 𝑌 and 𝑍 for the cells in the contingency table 𝑌 × 𝑍 in a standard matching 

framework. In this case, before the assessment for coherence purposes, it is suggested to align the 

marginal/joint distribution of the chosen matching variables, e.g., by using the IPF algorithm (starting 

from v.1.3.0 of the R package StatMatch, D’Orazio 2022). In addition, robust estimation methods are 

introduced to handle the problem of statistical zeroes. 

6 Conclusions 

Although appealing, SM can be tricky and hides features that can be dangerous for the credibility of 

the results. As remarked in all the sections, a clear assessment and declaration of all the 

assumptions underlying the specific statistical matching application is absolutely necessary. In 

particular, the micro approach is the one that could be most harming, and could lead to the “dog food 

problem” (see Claramunt-González et al., 2023 and references therein). Even in case of additional 

information and/or specific assumptions, an evaluation of uncertainty should be given and the 

reasons which lead the analyst to choose just one of the equally plausible estimates for either the 

micro or the macro approach should be clearly stated. 

Furthermore, there are some approaches that need more attention and additional research, also in 

an applied setting. We mention just two of them. The first considers the use of models that include 

instrumental variables and make use of PFI (Kim et al., 2016): this approach touches all the main 

statistical matching issues, such as the presence of additional data sources and the use of complex 

survey designs for A and B, while paying attention to model identifiability. The second consists of a 

micro approach in which uncertainty is taken into account in the imputation process (imprecise 

imputation, see Endres et al., 2019), and that could be worthwhile also outside the usual statistical 

matching framework. 
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