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Abstract

We present a brief overview of calibration techniques for model-assisted estimation for probability
survey samples and their extensions for model-based prediction and doubly robust estimation to
missing data problems, causal inference, and analysis of non-probability samples. The focuses are
to provide a clear description of the setting for each of these areas and on how doubly robust estima-
tors are constructed either through a set of calibration equations or using model-calibrated empirical
likelihood methods. Theoretical details are left to additional references.

Keywords: Empirical likelihood; Double robustness; Inverse probability weighting; Model-assisted
estimation; Model-calibration.

1 Introduction

Survey samples have an important feature of representing a finite target population. Statistical tools
for dealing with descriptive finite population parameters are often discrete in nature, such as series
summations and double summations. There has been a separation between survey sampling and
the so-called mainstream statistics in terms of tools and methodologies, highlighted by the extensive
use of parametric or semi-parametric models, the likelihood principle, Bayesian pedagogies, etc., in
other fields of statistics but not or less so in survey sampling. The field of survey sampling often lags
behind on development of innovative general statistical tools.

There have been examples, however, where a method was first developed or rooted in survey sam-
pling and later became widely used in other fields of statistics. The most prominent example is the
Horvitz-Thompson estimator (Horvitz and Thompson, 1952; Narain, 1951), which is popularly termed
as the “inverse probability weighted” (IPW) estimator and is a fundamental tool for propensity score
based methods in missing data analysis and causal inference. Another less known example is the
doubly robust estimator, also popularized in missing data and causal inference literature starting from
the 1990s. It is rooted in model-assisted estimation methods first developed in survey sampling going
back to the 1970s. The generalized difference estimator of the population mean µy = N−1

∑N
i=1 yi of

the study variable y, where N is the population size, as discussed in Cassel et al. (1976) is given by

Copyright © 2023 Changbao Wu. Published by International Association of Survey Statisticians. This is an Open Access

article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

The Survey Statistician 86 July 2023

http://isi-iass.org/home/services/the-survey-statistician/
https://creativecommons.org/licenses/by/4.0/


µ̂yGD =
1

N

{∑
i∈S

yi − ci
πi

+

N∑
i=1

ci

}
, (1)

where S is a probability sample of size n, the πi’s are the first order inclusion probabilities, and
{c1, c2, . . . , cN} is an arbitrary sequence of known numbers. The estimator µ̂yGD is exactly unbiased
for µy under the probability sampling design p for any given sequence ci, and is also model-unbiased
if we choose ci = mi = Eξ(yi | xi) under the assumed model ξ on y given x. The estimator
µ̂yGD with the choice ci = mi is the same as the doubly robust estimator in the missing data and
causal inference literature where πi becomes the propensity score and mi is the mean function of the
outcome regression. Both πi and mi require an assumed model to be estimated, and the estimator
remains valid if one of the models is correctly specified. The doubly robust estimator is also called
the “augmented inverse probability weighted ” (AIPW) estimator in the literature.

Calibration methods are also first developed in survey sampling and later find general uses in other
areas. While the popularity of calibration methods is often credited to the highly cited JASA paper
by Deville and Särndal (1992), the original idea of calibration estimation goes back to Deming and
Stephan (1940) on raking ratio estimators. The model-calibration approach proposed by Wu and
Sitter (2001) serves as the basis for the discussions presented in the rest of the paper on model-
based prediction and doubly robust estimation.

2 Calibration methods for probability survey samples

The fundamental tool for design-based approach to survey sampling is the Horvitz-Thompson esti-
mator for the finite population total Ty =

∑N
i=1 yi, which is given by T̂yHT =

∑
i∈S diyi, where di = 1/πi

are the basic design weights. Most surveys collect information on a vector of auxiliary variables, x,
leading to a survey dataset {(yi,xi, di), i ∈ S}. The initial motivation of calibration estimators is to use
the known population totals of the auxiliary variables, Tx =

∑N
i=1 xi, to achieve the so-called internal

consistency by using calibrated weights wi instead of di such that∑
i∈S

wixi = Tx . (2)

Equations (2) are referred to as the calibration equations or benchmark constraints. Deville and
Särndal (1992) formulated the general calibration methods as a constrained minimization problem
where the calibration weights wi are obtained by minimizing a distance measure D(d,w) between
d = (d1, . . . , dn) and w = (w1, . . . , wn) subject to constraints (2). Deville and Särndal (1992) argued
intuitively that the calibration estimator T̂yC =

∑
i∈S wiyi should be more efficient than T̂yHT since “. . .

weights that perform well for the auxiliary variable also should perform well for the study variable”.

The calibration estimator T̂yC =
∑

i∈S wiyi is indeed a model-assisted estimator with the same spirit of
“double robustness” under a linear regression model with the mean function Eξ(yi | xi) = x′iβ, where
Eξ denotes the expectation with respect to the model ξ and β is the vector of regression coefficients.
Under the constrained minimization procedure of Deville and Särndal (1992), the estimator T̂yC is
design-consistent regardless of any models. It is also an unbiased model-based prediction estimator
under the linear regression model ξ since Eξ(T̂yC − Ty) = 0.

The calibration estimator T̂yC =
∑

i∈S wiyi with the constraints (2) is no longer model-unbiased under
any nonlinear models. Wu and Sitter (2001) considered a semiparametric model with a general
mean function Eξ(yi | xi) = µ(xi;β) and proposed a model-calibration approach through the use of
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the constraint ∑
i∈S

wiµ(xi; β̂) =

N∑
i=1

µ(xi; β̂) , (3)

where β̂ is a consistent estimator of β under the assumed model. There are three basic features
of the model-calibration estimator T̂yMC =

∑
i∈S wiyi with the model-calibration constraint (3): (i) it

is design-consistent irrespective of the model; (ii) it is an approximately model-unbiased prediction
estimator under the assumed model; and (iii) the use of the estimated model parameters β̂ in (3) has
no impact on the asymptotic variance of T̂yMC under the survey design. Nonparametric models can
also be used to construct model-calibration estimators (Montanari and Ranalli, 2005). The model-
calibration constraint requires the “population control”

∑N
i=1 µ(xi; β̂) to be known, which typically

requires complete auxiliary information {x1,x2, . . . ,xN} to be available under a nonlinear model for
y given x.

Calibration methods can be formulated under the framework of pseudo empirical likelihood (PEL)
where the distance measure D(d,w) is replaced by the pseudo empirical log-likelihood function of
Chen and Sitter (1999) defined as

`PEL(p) =
∑
i∈S

di log(pi) , (4)

where p = (p1, . . . , pn) satisfying pi > 0 and the normalization constraint∑
i∈S

pi = 1 , (5)

and the calibration weights are given byw = Np. The PEL approach with calibration equations has a
major advantage of constructing better behaved PEL ratio confidence intervals (Wu and Rao, 2006).
The PEL function `PEL(p) is defined explicitly through the design weights di. An alternative approach
is to incorporate the survey weights through an additional constraint and use the standard empirical
likelihood (EL) of Owen (1988) for the constrained maximization. Let

`EL(p) =
∑
i∈S

log(pi) . (6)

The maximum EL estimator of the population mean µy is given by µ̂yEL =
∑

i∈S p̂iyi, where p̂ =

(p̂1, . . . , p̂n) maximizes `EL(p) subject to the normalization constraint (5) and other suitably chosen
constraints. The estimator µ̂yEL is design-consistent if the following constraint is included:∑

i∈S
piπi =

n

N
. (7)

Note that constraint (7) is a sample version of the population moment condition N−1
∑N

i=1 πi = n/N

under survey designs with fixed sample size n. Alternative versions of (7) are used by Kim (2009)
and by Oguz-Alper and Berger (2016), among others. Estimator µ̂yEL is also approximately model-
unbiased under the assumed semiparametric model if we include the model-calibration constraint

∑
i∈S

piµ(xi; β̂) =
1

N

N∑
i=1

µ(xi; β̂) . (8)

The standard EL formulation through constrained maximization of `EL(p) subject to (5), (7) and (8)
brings a unified framework for model-assisted estimation with probability survey samples and doubly
robust estimators in other areas, as discussed in Section 3 below. The quantities on the right hand
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side of equations (7) and (8) are “population controls” and need to be replaced by suitable estimates
depending on the setting of the problem, as discussed in Section 3.

3 Calibration approach to propensity score based estimation

In this section, we describe suitable formulations of EL-based inference for missing data problems,
causal inference, and estimation with non-probability samples to construct doubly robust estimators
through calibration techniques. The focus is on similarities of these problems and their connections
to the calibration methods presented in Section 2.

3.1 Missing data

Let S be a set of n subjects with independent and identically distributed observations from an underly-
ing infinite population. The vector of covariates x is fully observed but the study variable y is subject to
missingness. Let δi = 1 if yi is observed and δi = 0 otherwise. Let SR = {i | i ∈ S and δi = 1} be the
set of respondents with observed y and SM = {i | i ∈ S and δi = 0} be the set of nonrespondents
with missing y. The observed data can be represented by {(δi, δiyi,xi), i ∈ S}.

Propensity scores, defined as πi = P (δi = 1 | yi,xi), play an important role for missing data analysis.
Under the missing at random assumption where πi = P (δi = 1 | xi), the πi’s can be estimated
based on an assumed parametric model on δ given x, denoted as model q, using the observed
dataset {(δi,xi), i ∈ S}. For instance, one can use a logistic regression model where πi = π(xi,α) =

1− [1 + exp(x′iα)]
−1 and estimate the model parameters α using maximum likelihood.

The IPW estimator of the population mean µy is given by µ̂yIPW = n−1
∑

i∈SR yi/π(xi, α̂), where the
estimator α̂ is obtained by a suitable method such as maximum likelihood and the IPW estimator is
consistent. With an assumed parametric form πi = π(xi,α), the propensity score model parameters
α can be estimated using a calibration method, and the resulting IPW estimator µ̂yIPW is doubly
robust if the outcome regression model ξ on y given x is linear. The calibration estimator α̂ is defined
as the solution to the calibration equations∑

i∈SR

xi
π(xi,α)

=
∑
i∈S

xi . (9)

The double robustness property of µ̂yIPW is justified based on the following two arguments. First,
the equation system (9) is “unbiased” with respect to the propensity score model q in the sense that
Eq{

∑
i∈SR xi/π(xi,α) −

∑
i∈S xi | x1, . . . ,xn} = 0, and the resulting calibration estimator α̂ is con-

sistent for α. Second, the sample means n−1
∑

i∈S xi is a valid approximation to the “population
controls” of the variables x because S is an iid sample. In practice, the calibration estimator α̂ ob-
tained as the solution to (9) tends to be less stable as compared to the maximum likelihood estimator;
see, for instance, Chen et al. (2020) for a discussion under the context of non-probability samples.

The EL-based methods for achieving double robustness through model-calibration is a more desirable
approach and is applicable to linear or nonlinear outcome regression models with a mean function
µ(x,β). It involves modifications to the three crucial components: the EL function, the constraint on
propensity scores, and the model-calibration constraint on the outcome regression. Let m =

∑
i∈S δi

be the number of units with observed yi. Let p = (p1, . . . , pm) and `EL(p) =
∑

i∈SR log(pi). The
maximum EL estimator of µy is computed as µ̂yEL =

∑
i∈SR p̂iyi, where p̂ = (p̂1, . . . , p̂m) maximizes

`EL(p) subject to the normalization constraint
∑

i∈SR pi = 1, the constraint for the propensity score
model π(xi,α) = Eq(δi | xi), ∑

i∈SR

pi π(xi,α) =
m

n
, (10)
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and the constraint for the outcome regression model µ(xi,β) = Eξ(yi | xi),∑
i∈SR

pi µ(xi,β) =
1

n

∑
i∈S

µ(xi,β) . (11)

The m used in equation (10) may be replaced by
∑

i∈S π(xi,α). For computational simplicity, the
model parameters α and β in equations (10) and (11) can be replaced by suitable estimates α̂ and
β̂, and the resulting estimator µ̂yEL =

∑
i∈SR p̂iyi remains doubly robust.

3.2 Causal inference

Estimation of the Average Treatment Effect (ATE) by comparing the responses of the treatment group
to the ones for the control group is a fundamental problem in causal inference. Let S be the set of
initial n subjects randomly selected from the target population, with measures on baseline variables
x for each subject. Let T be the treatment assignment indictor with Ti = 1 if subject i is assigned
to the treatment group and Ti = 0 if i is assigned to the control group. Let S1 and S0 be the set of
subjects in the treatment group and in the control group, with sizes n1 and n0, respectively. We have
S = S1 ∪ S0 and n = n1 + n0. Let y1 and y0 be, respectively, the study variable under the treatment
and the control. We have a unique two-sample setting with two datasets {(y1i, Ti = 1,xi), i ∈ S1}
and {(y0i, Ti = 0,xi), i ∈ S0}. The ATE is the parameter of interest and is defined as θ = µ1 − µ0
where µ1 and µ0 are, respectively, the population means of the study variable under the treatment
and under the control. We assume that Ti is conditionally independent of y1i and y0i given xi.

It is possible to construct a doubly robust estimator for each of µ1 and µ0 separately, and estimate θ
by θ̂ = µ̂1 − µ̂0, using a parallel procedure for the missing data problem described in Section 3.1 for
obtaining µ̂1 and µ̂0. Huang et al. (2023) used a two-sample EL formulation and dealt with θ directly
for EL-ratio confidence intervals. Let πi = P (Ti = 1 | xi) be the propensity score for treatment
assignments, with an assumed parametric form πi = π(xi,α); let µj(xi,βj) = Eξ(yji | xi) be the
mean functions of the response variable yj for the two groups j = 1, 0 under two assumed outcome
regression models. Let pj = (pj1, . . . , pjnj ), j = 1, 0. The two-sample EL function is given by

`(p1,p0) =
∑
i∈S1

log(p1i) +
∑
i∈S0

log(p0i) . (12)

The maximum EL estimator of θ is computed as θ̂EL =
∑

i∈S1 p̂1iy1i −
∑

i∈S0 p̂0iy0i, where p̂j =

(p̂j1, . . . , p̂jnj ), j = 1, 0 maximize `(p1,p0) subject to the normalization constraints
∑

i∈S1 p1i = 1 and∑
i∈S0 p0i = 1, the model-calibration constraints induced by the propensity scores,∑

i∈S1

p1iπ(xi,α) =
n1
n
,

∑
i∈S0

p0i[1− π(xi,α)] =
n0
n
, (13)

and the model-calibration constraints from the two outcome regression with respect to y1 and y0
conditional on x,∑

i∈S1

p1iµ1(xi,β1) =
1

n

∑
i∈S

µ1(xi,β1) ,
∑
i∈S0

p0iµ0(xi,β0) =
1

n

∑
i∈S

µ0(xi,β0) . (14)

The model parameters α, β1 and β0 used in constraints (13) and (14) can be replaced by suitable
estimates α̂, β̂1 and β̂0. The constraint for the parameter of interest, θ = µ1−µ0, which is part of the
system for computing the EL ratio function, is given by∑

i∈S1

p1iy1i −
∑
i∈S0

p0iy0i = θ . (15)
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The two-sample EL formulation with a single parameter of interest θ imposes some computational
challenges for the constrained maximization problem. Huang et al. (2023) contain further discus-
sions.

3.3 Non-probability samples

One of the basic features of probability samples is that the sample inclusion probabilities are known
under the given sampling design. Statistical analysis with non-probability samples requires assump-
tions about and modelling on the unknown sample selection/inclusion process, which further requires
auxiliary information on the target population. A popular setup widely used in the recent literature
involves a reference probability sample containing auxiliary information from the same target popula-
tion; see, for instance, Chen et al. (2020) and references therein. Let SA be the set of nA units for the
non-probability sample and SB be the set of nB units for the reference probability sample, both from
the same target population of size N . The two sample datasets are represented by {(yi,xi), i ∈ SA}
and {(xi, dB

i ), i ∈ SB}, where the dB
i are the survey weights for the reference probability sample.

Let Ri = 1 if i ∈ SA and Ri = 0 otherwise, i = 1, 2, . . . , N . Assume that Ri and yi are independent
given xi. A crucial step in analyzing the non-probability sample dataset is the modelling on the
propensity scores, also called the participation probabilities by some authors, i.e., πA

i = P (Ri = 1 |
xi), i = 1, 2, . . . , N . The participation probability πA

i is defined for all units in the target population,
and it is immediately clear that estimation of the πA

i ’s requires information on x from the entire target
population as well as an assumed model, even though the final IPW estimator of µy = N−1

∑N
i=1 yi,

computed as µ̂yIPW = N−1
∑

i∈SA yi/π̂
A
i , only requires the estimated πA

i for units in SA.

Let the form of πA
i = π(xi,α) be specified from a parametric model q on (Ri | xi). A pseudo maximum

likelihood estimator of α was described in Chen et al. (2020). A calibration estimator α̂ can also be
obtained as the solution to the calibration equations∑

i∈SA

xi
π(xi,α)

=
∑
i∈SB

dB
i xi . (16)

The right hand side of (16) is an estimate for the population controls
∑N

i=1 xi using the reference prob-
ability sample SB. Consistency of α̂ follows from the result that Eqp{

∑
i∈SA xi/π(xi,α)−

∑
i∈SB d

B
i xi}

= 0 under the joint randomization of the model, q, for sample participation and the probability sam-
pling design, p, for the reference sample. The IPW estimator µ̂yIPW = N−1

∑
i∈SA yi/π̂

A
i , with the

calibration estimator α̂ used in π̂A
i = π(xi, α̂), is doubly robust if the outcome regression model ξ for

(yi | xi) is linear since Eξp{µ̂yIPW − µy}
.
= 0 under the linear mean function Eξ(yi | xi) = x′iβ.

Chen et al. (2022) presented the PEL approach to doubly robust estimation with non-probability
samples with a linear or nonlinear outcome regression model Eξ(yi | xi) = µ(xi,β). Doubly robust
estimation can also be achieved through the standard EL. Let `EL(p) =

∑
i∈SA log(pi), where p =

(p1, . . . , pnA). The maximum EL estimator of µy is computed as µ̂yEL =
∑

i∈SA p̂iyi, where p̂ =

(p̂1, . . . , p̂nA) maximizes `EL(p) subject to the normalization constraint
∑

i∈SA pi = 1, the constraint
for the participation probabilities, ∑

i∈SA

piπ(xi,α) =
nA

N
, (17)

and the model-calibration constraint for the outcome regression model,∑
i∈SA

piµ(xi,β) =
1

N

∑
i∈SB

dB
i µ(xi,β) . (18)

The model parameters α and β used in (17) and (18) can be replaced by suitable estimates, and the
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population size N can be replaced by N̂ =
∑

i∈SB d
B
i . The resulting estimator µ̂yEL is doubly robust

as defined in Chen et al. (2020) where, in addition to model q for the sample participation and the
model ξ for outcome regression, the probability sampling design p is part of the joint randomization
framework.

4 Concluding remarks

Maximum Likelihood (ML) and Least Square (LS) are two fundamental principles for statistical infer-
ence. Calibration techniques have shown potential to be a general statistical tool, especially in the
modern era for combining data from different sources as well as information from different models.
The concept of model-calibration has found applications in a wide range of problems in recent years
and has demonstrated certain optimality and robustness for best use of auxiliary information through
an assumed model; see, for instance, Wu (2003) and Zhang et al. (2022), among others. The con-
strained minimization of a distance measure as described in Deville and Särndal (1992) provides a
natural connection to the constrained maximization of the empirical likelihood function, which has
been used in many areas of statistics. Calibration techniques for model-based prediction and dou-
bly robust estimation have been shown to be useful for problems described in this short article and
their potential for other problems and extensions to the so-called multiply robust estimation (Han and
Wang, 2013) deserves further exploration.
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