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Abstract

Missing data are ubiquitous in surveys. Unadjusted estimators may be substantially biased as the set
of respondents is generally a non-representative subset of the original sample. Item nonresponse,
which most often treated by some form of imputation, may eliminate the potential nonresponse bias
if the first moment of the imputation model is correctly specified. However, the resulting estimators
may suffer from appreciable bias if the model is misspecified. In this paper, we review doubly and
multiply robust imputation procedures. These procedures, that combine multiple nonresponse and
imputation models, may provide some protection against model miss-specification.

Keywords: Deterministic imputation; imputation model; missing data; nonresponse model; random
imputation.

1 Introduction

As response rates have declined sharply over the past two decades, reducing the nonresponse bias
has become an important issue for survey statisticians. Unadjusted estimators tend to exhibit sig-
nificant bias as the behaviour of the respondents typically differ from that of the nonrespondents. In
the absence of non-sampling errors, bias is generally not an issue as customary point estimators
(e.g., the Horvitz-Thompson estimator and calibration estimators) are design-unbiased or asymptoti-
cally design-unbiased. In this ideal setup, survey statisticians would typically opt for an estimator that
exhibit a small variance. In the presence of missing values, bias is the main issue. Reducing the
nonresponse bias as much as possible requires the availability of powerful auxiliary information. The
nonresponse treatment stage involves a modeling task that puts an additional burden on the survey
statistician’s shoulders, as heavily biased estimators will lead to misleading inferences. In this arti-
cle, we focus on item nonresponse, most often treated by some form of imputation, the first step of
which is to postulate an imputation model describing the relationship between the survey variable Y
requiring imputation and a set of fully observed variables x. The modeling task involves the selection
of variables that are predictive of the survey variable Y , and the specification of a suitable model for
the relationship between Y and x.
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If the data are Missing At Random (MAR, Rubin, 1976), the estimators obtained after imputation will
exhibit a negligible bias if the first moment of the imputation model is correctly specified. Otherwise,
the bias may be significant.

This led researchers to develop imputation/estimation procedures that provide some robustness
against model misspecification. This is where doubly and multiply robust procedures come into play.
The concept of double robustness in the context of missing data is attributed to Robins et al. (1994)
for their article published in the Journal of the American Statistical Association. However, it is worth
pointing out that, in the same issue of the journal, Kott (1994) also independently introduced the
concept of double robustness for missing survey data. In fact, the origin of doubly robust procedures
can be traced back in the 1970s to the survey sampling literature on the generalized regression
(GREG) estimator and, more generally, on model-assisted estimation procedures; see, e. g., Cassel
et al. (1976), Särndal (1980), Särndal and Wright (1984) and Särndal et al. (1992). For instance, the
GREG estimator of a population total, whose construction is assisted by a linear regression model,
possesses the double robustness property: it is model-unbiased if the model is correctly specified,
but remains design-consistent even if the model is misspecified.

In the context of missing data, doubly robust procedures combine two models. The first, called the
imputation model or the outcome regression model, describes the relationship between the survey
variable Y and a vector of explanatory variables. The second, called the nonresponse model or
the propensity score model, describes the relationship between the response indicator R and a set
of explanatory variables. If the data are MAR, doubly robust procedures remain consistent if either
the nonresponse model or the imputation model is correctly specified. This is an attractive property
closely related to the philosophy of model-assisted estimation in survey sampling. The literature on
doubly robust procedures is very rich; see e. g., Robins et al. (1994), Scharfstein et al. (1999), Bang
and Robins (2005), Haziza and Rao (2006), Tan (2006), Kang and Schafer (2008), Cao et al. (2009),
Kim and Haziza (2014), Boistard et al. (2016) and Seaman and Vansteelandt (2018). However,
doubly robust procedures have been criticized because the resulting estimators have been shown
to exhibit poor performances if both models are (slightly) misspecified; e. g., see Kang and Schafer
(2008).

Multiple robustness can be viewed as an extension of the concept of double robustness. Instead
of postulating a single imputation model and a single nonresponse model, one rather postulates
multiple imputation models and/or multiple nonresponse models. Each model may be based on a
different link function and a different set of explanatory variables. An imputation procedure is called
multiple robust if the resulting estimator remains consistent if anyone of the postulated models is
correctly specified; see e. g., Han and Wang (2013), Chan and Yam (2014), Han, (2014; 2016), Chen
and Haziza (2017), Duan and Yin (2017), Chen and Haziza (2019) and Han et al. (2019). Therefore,
these procedures provide some type of insurance against a single misspecified model. Multiply robust
procedures belong to the class of ensemble or aggregation procedures as the goal is to construct a
set of imputed values that can be viewed as a suitable aggregate of the information contained in the
multiple models.

2 Doubly robust procedures

Consider a finite population U of size N . Our goal is to estimate the population total of a survey
variable Y , ty =

∑
k∈U yk. A sample S, of size n, is selected from U according to a sampling design

with first-order inclusion probabilities πk. Let Rk be a response indicator attached to unit k such that
Rk = 1 if Y is observed and Rk = 0, otherwise. Let Sr be the set of respondents to item Y , of size nr;
that is the subset of S for whichRk = 1, and let Sm = S−Sr be the set of nonrespondents. We assume
that the data are MAR; i.e., the conditional distribution of Y given x observed among the respondents
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is identical to the conditional distribution of Y given x observed among the nonrespondents, where
x denotes a vector of fully observed variables. Under MAR, one can safely estimate the relationship
between Y and x from the set of respondents Sr, and ”extrapolate” from this relationship to construct
a set of imputed values.

We assume that the relationship between R and x can be described by the following nonresponse
model:

E (Rk | xk) = p(xk;α), (1)

where p(·;α) is a prespecifed function and α is a vector of unknown coefficients. We assume that
the relationship between Y and x can be described by the following imputation model:

E (yk | xk) = m(xk;β), (2)

where m(·;β) is a prespecifed function and β is a vector of unknown coefficients. For simplicity, we
assume that the first component of the x-vector is 1 for all k and that V(yk | xk) = σ2.

Doubly robust imputation can be described as follows:

(i) We obtain an estimator, α̂, of α by solving, for example, the following estimating equations:

∑
k∈S

π−1k

Rk − p(xk;α)

p(xk;α) {1− p(xk;α)}
∂p(xk;α)

∂α
= 0. (3)

In the case of a logistic regression model, p(xk;α) = exp (x>k α)/{1 + exp (x>k α)}, Expression
(3) reduces to the customary estimating equations∑

k∈S
π−1k {Rk − p(xk;α)}xk = 0.

Let p(xk; α̂) denote the resulting estimated response probability attached to unit k.

(ii) We obtain an estimator, β̂, of β, by solving the estimating equations

∑
k∈Sr

π−1k

1− p(xk; α̂)

p(xk; α̂)
{yk −m(xk;β)}xk = 0.

Let m(xk; β̂) denote the predicted value attached to unit k. If m(xk;β) = x>k β, the estimator β̂
reduces to the weighted least squares estimator of β:

β̂ =

∑
k∈Sr

π−1k

1− p(xk; α̂)

p(xk; α̂)
xkx

>
k

−1 ∑
k∈Sr

π−1k

1− p(xk; α̂)

p(xk; α̂)
xkyk.

(iii) The imputed y-value for k ∈ Sm is given by

y∗k = m(xk; β̂).

It follows that an estimator of ty after imputation is given by

t̂y,DR =
∑
k∈Sr

π−1k yk +
∑
k∈Sm

π−1k m(xk; β̂).

The estimator t̂y,DR is doubly robust in the sense that it remains consistent if either the nonresponse
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model (1) or the imputation model (2) is correctly specified. To see why this is the case, note that
t̂y,DR can be expressed in the following two forms:

t̂y,DR = t̂y,F −
∑
k∈Sm

π−1k

{
yk −m(xk; β̂)

}
(4)

= t̂y,PSA −
∑
k∈S

π−1k

(
Rk

p(xk; α̂)
− 1

)
m(xk; β̂), (5)

where t̂y,F =
∑

k∈S π
−1
k yk denotes the (unfeasible) full sample estimator of ty, and

t̂y,PSA =
∑
k∈Sr

π−1k

yk
p(xk; α̂)

corresponds to the propensity score estimator of ty. If the imputation model is correctly specified,
we have E

{
yk −m(xk; β̂)

}
≈ 0 and the second term on the right hand-side of (4) is, on average,

approximately equal to 0. We are left with the full sample estimator t̂y,F , which is consistent for
ty. Next, if the nonresponse model is correctly specified, we have E

(
Rk

p(xk;α̂) − 1
)
≈ 0, and the

second term on the right hand-side of (5) is approximately equal to 0. We are left with the propensity
score adjusted estimator t̂y,PSA, which is consistent for ty since the nonresponse model is correctly
specified.

The imputed values (2) belong to the class of deterministic imputation procedures. We can define a
doubly robust random version (Haziza and Rao, 2006) as follows:

y∗k = m(xk; β̂) + e∗k,

where e∗k is selected at random with replacement from the set of standardized residuals observed
among the respondents. That is,

e∗k = e`, ` ∈ Sr, with probability
φ`∑

t∈Sr
φt
,

where
φ` = π−1`

1− p(x`; α̂)

p(x`; α̂)
and e` = yk −m(xk; β̂).

Donor imputation is often used in practice as the imputed values are necessarily eligible values
observed among the respondents, which is often deemed a desirable feature when, for instance, the
variable requiring imputation is categorical. A doubly robust procedure random hot-deck imputation
procedure can be described as follows. We first obtain the scores m(xk; β̂) and p(x`; α̂). Then,
using a classification algorithm (e. g., the K-means algorithm), we create C homogeneous cells with
respect to both m(xk; β̂) and p(x`; α̂). Within each cell, a missing value is imputed using the y-value
of a donor selected at random and with replacement from the set of donors belonging to the same
cell.

3 Multiply robust imputation procedures

We consider two classes of parametric models: The first,M1, consists of H imputation models; i.e.,
M1 =

{
m(h)(x

(h)
k ;β(h)), h = 1, 2, . . . ,H

}
and, the second, M2, consists of J nonresponse models;

i.e., M2 =
{
p(j)(x

(j)
k ;α(j)), j = 1, 2, . . . , J

}
. The models in both classes may be based on different

functionals and/or different sets of explanatory variables. Two methods for constructing a set of
imputed values are: (i) Aggregation through calibration (Han and Wang, 2013; Han, 2014, 2016;
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Chen and Haziza, 2017) and (ii) aggregation through refitting (Duan and Ying, 2017, Chen and
Haziza, 2019). Although we focus on deterministic multiply robust imputation in the sequel, a random
version as well as a random hot-deck version can be obtained using approaches similar to those
described in Section 2 for doubly robust imputation.

Regardless of the aggregation approach, the first step is to fit each of the H + J models in classes
M1 and M2. For each k ∈ S, we can then construct 2 vectors: (i) The vector m̂, of size H,

given by m̂ =
(
m(1)(x

(1)
k ; β̂

(1)
), · · · ,m(H)(x

(H)
k ; β̂

(H)
)
)>

. (ii) The vector p̂, of size J, given by p̂ =(
p(1)(x

(1)
k ; α̂(1)), · · · , p(J)(x(J)

k ; α̂(J))
)>

. The estimators β̂
(1)
, · · · , β̂

(H)
, α̂(1), · · · , α̂(J), denote suit-

able estimators (e. g., maximum likelihood estimators or weighted least squares estimators) for their
corresponding parameters.

3.1 Aggregation through calibration

Aggregation through calibration proceeds as follows:

(i) We start by obtaining a calibrated weighting system {w1, w2, . . . , wnr}, where wk, k ∈ Sr, is
a scalar summary of the information contained in the H imputation models and the J nonre-
sponse models. For simplicity, we consider the generalized chi-square distance (Deville and
Särndal, 1992). We seek a weighting system {w1, w2, . . . , wnr} such that∑

k∈Sr

πk(wk − π−1k )2/2

is minimum subject to the H + J + 1 calibration constraints∑
k∈Sr

wk =
∑
k∈S

π−1k ,

∑
k∈Sr

wkm
(h)(x

(h)
k ; β̂

(h)
) =

∑
k∈S

π−1k m(h)(x
(h)
k ; β̂

(h)
), h = 1, . . . ,H,

and ∑
k∈Sr

wk
1

p(j)(x
(j)
k ; α̂(j))

=
∑
k∈S

π−1k

1

p(j)(x
(j)
k ; α̂(j))

, j = 1, . . . J.

The resulting weights wk are given by

wk = π−1k × (1 + λ̂
>
hk), (6)

where λ̂ is a vector of estimated Lagrange multipliers of size H + J + 1 and

hk = (1,h>1k,h
>
2k)
>

with

h1k =
(
m(1)(x

(1)
k ; β̂

(1)
)−m(1), . . . ,m(H)(x

(H)
k ; β̂

(H)
)−m(H)

)>
and

h2k =
(
p(1)(x

(1)
k ; α̂(1))− p(1), . . . , p(J)(x(J)

k ; α̂(J))− p(J)
)>

,

withm(h) =
∑

k∈S π
−1
k m(h)(x

(h)
k ; β̂

(h)
)/
∑

k∈S π
−1
k and p(j) =

∑
k∈S π

−1
k p(j)(x

(j)
k ; α̂(j))−1/

∑
k∈S π

−1
k .

Distance functions other than the generalized chi-square distance can be used; see Chen and
Haziza (2017). To better understand the rationale behind this type of aggregation, we define
the standardized version of λ̂ as λ̂

2
/λ̂
>
λ̂, where λ̂

2
≡ (λ̂20, · · · , λ̂2J+H)>. It follows that the
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standardized version of the term λ̂
>
hk on the right hand-side of (6) can be expressed as

λ̂
2

λ̂
>
λ̂
hk = δ0 + δ1

{
m(h)(x

(h)
k ; β̂

(H)
)
}
+ · · ·+ δH

{
m(H)(x

(H)
k ; β̂

(H)
)
}

+ · · ·+ δH+1

{
p(1)(x

(1)
k ; α̂(1))− p(1)

}
+ · · ·+ δH+J

{
p(J)(x

(J)
k ; α̂(J))− p(J)

}
, (7)

where δh = λ̂2h/
∑J+H

h=0 λ̂2h, h = 0, . . . ,H + J. The aggregation weights δh sum to 1, which
makes (7) a convex combination of the individual predictions obtained from each of the H + J

models. Therefore, the calibration weight in (6) can be viewed as an aggregate score or a scalar
summary of the information contained in the H + J models. If one of the models in either class
is correctly specified, we expect the associated aggregation weight δh to be large and the other
weights to be small.

(ii) The imputed values y∗k are obtained by fitting a weighted linear regression with Y as the depen-
dent variable, and hk as the vector of explanatory variables. The regression weights are given
by φk = π−1k

{
(1 + λ̂>r hk)− 1

}
. This leads to

y∗k = h>k γ̂, k ∈ Sm,

where

γ̂ =

∑
k∈Sr

φkhkh
>
k

−1∑
k∈Sr

φkhkyk

 .

It follows that an estimator of ty after imputation is given by

t̂y,MR =
∑
k∈Sr

π−1k yk +
∑
k∈Sm

π−1k h>k γ̂. (8)

The estimator t̂y,MR given by (8) is multiply robust in the sense that it remains consistent if all but one
of the H + J models are misspecified.

3.2 Aggregation through refitting

Aggregation through refitting proceeds as follows:

(i) Fit a linear regression model based on k ∈ Sr with Y as the dependent variable and m̂ as the
vector of explanatory variables. The vector of estimated regression coefficients is denoted as
η̂ = (η̂1, · · · , η̂H)>. Define the standardized version of η̂ as η̂2/η̂>η̂, where η̂2 ≡ (η̂21, · · · , η̂2K)>.

The aggregate or compressed score attached to unit k ∈ Sr is defined as

m̂k =
H∑

h=1

ωhm
(h)(x

(h)
k ; β̂

(h)
), (9)

where ωh = η̂2h/
∑H

h=1 η̂
2
h. The aggregation weights ωh sum to 1. Therefore, the aggregate score

m̂k, k ∈ Sr, can be viewed as a convex combination of the individual predictions obtained from
each of the H imputation models.

(ii) Fit a linear regression model based on k ∈ S with R as the dependent variable and p̂ as the
vector of explanatory variables. The vector of estimated regression coefficients is denoted as
τ̂ = (τ̂1, · · · , τ̂J)>. Define the standardized version of τ̂ as τ̂ 2/τ̂>τ̂ , where τ̂ 2 ≡ (τ̂21 , · · · , τ̂2J )>.
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The aggregate score attached to unit k ∈ S is defined as

p̂k =
J∑

j=1

φjp
(j)(x

(j)
k ; α̂(j)), (10)

where φj = τ̂2j /
∑J

j=1 τ̂
2
j . The aggregation weights φj sum to 1. Therefore, the aggregate score

p̂k, k ∈ S, can be viewed as a convex combination of the individual predictions obtained from
each of the J nonresponse models. This ensures that the aggregate score p̂k lies between 0
and 1.

(iii) The imputed values y∗k, k ∈ Sm is given by

y∗k = h>k γ̂
∗, k ∈ Sm,

where hk = (1, m̂k)
> and

γ̂∗ =

∑
k∈Sr

π−1k

1− p̂k
p̂k

hkh
>
k

−1 ∑
k∈Sr

π−1k

1− p̂k
p̂k

hkyk.

It follows that an estimator of ty after imputation is given by

t̂y,MR =
∑
k∈Sr

π−1k yk +
∑
k∈Sm

π−1k h>k γ̂
∗. (11)

The estimator t̂y,MR given by (11) is multiply robust in the sense that it remains consistent if all but
one of the H+J models are misspecified. This can be explained as follows: if the classM1 contains
the true imputation model, say m(1)(x

(1)
k ;β(1)), we expect the aggregation weight ω1 associated with

the prediction m(1)(x
(1)
k ; β̂

(1)
) to be close to 1, and the other aggregation weights ωh, h = 2, . . . ,H, to

be close to 0. Similarly, if the classM2 contains the true nonresponse model, say p(1)(x(1)
k ;α(1)), we

expect the aggregation weight φ1 associated with the prediction p(1)(x(1)
k ; α̂(1)) to be close to 1, and

the other aggregation weights φj , j = 2, . . . , J, to be close to 0. This is illustrated in Section 4.1

4 Empirical investigation

In this section, we present two limited empirical investigation: the first examines the distribution of the
weights involved in the aggregation procedures, whereas the second compares the performance of
several estimators in terms of bias and efficiency in the case of data Not Missing At Random (NMAR).

4.1 Distribution of the aggregation weights

We generated 1, 000 finite populations, each of size N = 10, 000. In each population, we generated 4
explanatory variables X1-X4 independently from a standard normal distribution. The y-values were
then generated according to yk = 1+ x1k + x2k + x3k + x4k + εk, k = 1, 2, . . . , N , where the εk’s were
independently generated from a standard normal distribution. In each population, we selected a
sample S, of size n = 800, according to inclusion probability proportional-to-size systematic sampling
with size variable sk = 0.5vk+1, where vk was generated from a standard chi-square distribution with
one degree of freedom. In each sample the response indicators Rk were independently generated
from a Bernoulli distribution with probability logit(p(xk;α)) = 0.5 + x1k + x2k + x3k + x4k. This led to
an overall response rate of about 56%.
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Figure 1: Distribution of the aggregation weights δh for the aggregation through calibration

The class of imputation models,M1, consisted of 4 imputation models: the correct imputation model
based on X1-X4 (M1); an incorrect linear regression model based on X2 only (M2); an incorrect
linear regression model based on X3 only (M3); an incorrect linear regression model based on x4
only (M4). The class of nonresponse models, M2, also consisted of 4 nonresponse models: the
correct nonresponse model based on X1-X4 (M1); an incorrect logistic regression model based on
X2 only (M2); an incorrect logistic regression model based on X3 only (M3); an incorrect logistic
regression model based X4 only (M4). In each class, each of the 4 models was fitted and the predic-
tions were aggregated using both aggregation through calibration (see Section 3.1) and aggregation
through refitting (see Section 3.2). For the aggregation through calibration procedure, we computed,
in each sample, the aggregation weights δh in (7). For the aggregation through refitting procedure,
we computed, in each sample, the aggregation weights ωh in (9) and the aggregation weights φj in
(10).

Figure 1 and Figure 2 display the distribution of the aggregation weights for the aggregation through
calibration and the aggregation through refitting, respectively. When the class M1 or M2 included
the correct model (M1), we note that both aggregation procedures put most of the weight on the
correct model (M1). The incorrect models received a much smaller weight. This suggests that both
aggregation procedures perform some type of implicit of model selection. When the classesM1 and
M2 did not include the correct model, each of the models (M2)-(M4) contributed almost equally to
the resulting predictions. In other words, a prediction was essentially defined as the average of the
predictions generated from each of the models.

4.2 Data Not Missing At Random

We evaluated the performance of several estimators in terms of bias and efficiency in the context
of NMAR. We used a simulation setup similar to that of Chen and Haziza (2021). We generated
B = 1, 000 finite populations, each of size N = 10, 000. In each population, we generated 4 ex-
planatory variables X1-X4 independently from a standard normal distribution. The y-values were
then generated according to yk = 210 + 27.4x1k + 13.7(x2k + x3k + x4k) + εk, k = 1, 2, . . . , N ,
where the εk’s were independently generated from a standard normal distribution. In each popu-
lation, we selected a sample S, of size n = 800, according to the same sampling design described
in Section 4.1. In each sample, the response indicators Rk were independently generated from a
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Figure 2: Distribution of the aggregation weights ωh and φj for the aggregation through refitting

Bernoulli distribution with probability logit(pk(α)) = α0 + α1x1,i + α2x2,i + α3x3,i + α4x4,i + α5y
1/4
i

with (α0, α1, α2, α3, α4, α5) = (−2.4,−1, 0.5,−0.25,−0.1, 0.5), which corresponds to a response rate
of about 40% and (α0, α1, α2, α3, α4, α5) = (−1.3,−1, 0.5,−0.25,−0.1, 0.5), which corresponds to a
response rate of about 60%. We assumed that only the transformed variables Z1-Z4 of X1-X4,
were available to the imputer, where z1k = exp(x1k/2), z2k = x2k {1 + exp(x1k)}−1 + 10, z3k =

(x1kx3k/25 + 0.6)3, and z4k = (x2k + x4k + 20)2. In other words, the imputer did not have access
to the variables X1-X4. Kang and Schafer (2008) used a similar setup.

We were interested in estimating the finite population mean of Y . In each sample, we computed the
following estimators of the mean: (1). The complete data estimator that corresponds to the weighted
mean of the sample y-values (COM); (2). The estimator based on doubly robust imputation, where
the nonresponse model was a logistic regression model based on Z1-Z4 and the imputation model
was a linear regression model based on Z1-Z4 (DR); (3). The estimator based on nearest-neighbor
imputation using Z1-Z4 as matching variables (NN); (4). Five multiply robust estimators based on
aggregation through calibration with the pseudo-empirical likelihood distance function. (MRC1)– Both
the nonresponse model and the imputation model were based on Z1-Z4. (MRC2)– Both models
in (MRC1) and their two-way, three-way, and four-way interaction terms; (MRC3)– Both models in
(MRC1) and the additional models with |Z|1/21 , |Z|1/22 , |Z|1/23 , |Z|1/24 , and their two-way, three-way,
and four-way interaction terms; (MRC4)– Both models in (MRC1) and the additional models with
log |Z1|, log |Z2|, log |Z3|, log |Z4| as explanatory variables, and their two-way, three-way, and four-way
interaction terms; (MRC5)–Based on all the models used in (MRC1) to (MRC4); (5). Four multiply
robust robust estimators based on aggregation through refitting: (MRP2)–Using the same models as
in (MRC2); (MRP3)– Using the same models as in (MRC3); (MRP4)– Using the same models as in
(MRC4); (MRP5)– Using the same models as in (MRC5).

For each estimator, we computed the following Monte Carlo measures: bias, standard error and root
mean squared error. The results are shown in Table 1. As expected, the complete data estimator
COM exhibited negligible bias and was the most efficient. Both the estimator DR and NN showed
appreciable bias. Except for MRP2, the MRC and MRP estimators performed much better than DR
and NN. The MRC estimators performed generally better than their MRP counterparts. This can
be explained by the fact that the calibration procedure used in the aggregation through calibration
provides some robustness against the presence of small estimated response probabilities.
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Table 1: Monte Carlo Bias (BIAS), Standard Error (SE), and Root Mean Squared Error (RRMSE) for
different estimation procedures.

Response rate–40% Response rate–60%
Procedure Bias SE RMSE Bias SE RMSE
COM - 0.05 1.39 1.39 0.01 1.34 1.34
DR -12.69 44.49 46.26 -6.71 40.90 41.44
NN -9.83 1.97 10.02 -5.30 1.52 5.52
MRC1 -2.70 1.95 3.33 -1.84 1.57 2.42
MRC2 -0.69 1.90 2.02 -0.69 1.57 1.72
MRC3 -0.83 1.65 1.84 -0.57 1.45 1.56
MRC4 -1.27 1.58 2.02 -0.67 1.40 1.55
MRC5 -1.02 2.26 2.48 -0.66 1.47 1.61
MRP2 -6.49 34.95 35.55 -3.98 17.51 17.95
MRP3 -1.62 4.27 4.56 -1.16 3.05 3.26
MRP4 -1.28 1.61 2.05 -0.72 1.47 1.64
MRP5 -1.08 2.16 2.42 -0.80 1.91 2.07
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