
The Survey Statistician, 2022, Vol. 86, 32–43.

M. S. Diallo. Samplics: A comprehensive library for survey sampling in Python

Mamadou S. Diallo1

1The Saudi Center for Opinion Polling (SCOP), Saudi Arabia, msdiallo@samplics.org

Abstract

Survey sampling is one of the main tools used by public and private organizations of all sizes to
produce statistics to guide decision-making. For example, governments regularly use large national
household and non-household surveys to inform policy in numerous sectors. Similarly, opinion polling
and market research surveys inform corporations and other entities on populations’ views and opin-
ions on issues and products.

Python has become a leading tool for data science and machine learning projects. Yet, survey statis-
ticians did not have any comprehensive library in Python for designing or analyzing complex survey
data. With the development of samplics, Python users no longer must learn another software to de-
sign or analyze complex survey samples. The library samplics classes and functions provide a large
coverage of survey sampling topics from sample size calculation, sample selection, weight adjust-
ments, estimation, tabulation, t-test to small area estimation. This paper discusses some of the APIs
of samplics.

Keywords: survey, sampling, sample size, small area estimation, Python.

1 Introduction

Python is a free and open-source software; it has become one of the most popular software during the
last decade. Most of its popularity is due to the explosion of data science and its applications. Python
is currently one of the software of choice for machine learning and data science due to the availability
of comprehensive and user friendly libraries such as scipy, numpy, matplotlib, pandas, scikit-learn,
statsmodels, keras, tensorflow, and pytorch. However, until the development of samplics, there was
no library for survey sampling techniques, see Lohr (2022).

samplics is a Python library for survey sampling techniques. The package is comprehensive and
is designed to assist the survey statistician from the conception with sample size calculation to the
estimation of population parameters. The main modules of the samplics library are sample size
calculation, sample selection, weighting, population parameters estimation, tabulation and hypothesis
testing, and small area estimation. A Python user no longer needs to move to the R Software or other
solutions to design or analyse complex survey samples.

Copyright © 2022 Mamadou S. Diallo. Published by International Association of Survey Statisticians, This is an Open

Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original author and source are credited.

The Survey Statistician 32 July 2022

https://python.org
https://scipy.org/
https://numpy.org/
https://matplotlib.org/
https://pandas.pydata.org/
https://scikit-learn.org/
https://www.statsmodels.org/stable/index.html
https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://cran.r-project.org/
http://isi-iass.org/home/services/the-survey-statistician/
https://creativecommons.org/licenses/by/4.0/

In this paper, we present the main APIs of the samplics library. It uses Python versions 3.7.x or
newer and the following packages: numpy, pandas, scpy, and statsmodels. To install it, use: pip
install samplics. The current version of the library is 0.3.35 (May, 2022), and its manual can be
downloaded at https://samplics.readthedocs.io/en/latest/.

2 Sample size calculation

During the design of the survey, investigators collaborate with statisticians to calculate the minimum
required sample sizes, see Chow et al. (2018) and Ryan (2013) for a comprehensive review of sample
size calculation methods. Often at the design phase, many variables are of interest. For the sample
size calculation, the investigators must reduce the number to ideally a single variable or a handful.
samplics provides the class SampleSize for calculating sample size to estimate proportions, means,
and totals. Its argument parameter can take the values ”proportion”, ”mean” or ”total”, while the
argument method takes the values ”wald” or ”fleiss”; for example:

SampleSize(parameter = ”proportion”, method = ”wald”, stratification = False)

To calculate the sample size, we need to provide the expected value through the argument target
and the desired precision half ci in SampleSize.calculate. If we are estimating a mean or a total then
the standard deviation, sigma, is required. We have:

SampleSize.calculate(target, half ci, sigma = None, deff = 1.0, resp rate = 1.0,
number strata = None, pop size = None, alpha = 0.05)

We can use this class to calculate the sample size for simple random sampling with replacement
when we estimate a proportion:

n0 =
(zα/2

e

)2
p(1− p),

where zα/2 is the quantile of order 1−α/2 of the N(0,1) distribution, p is the expected proportion, and
e is the margin of error. For example, let’s say we want to calculate the sample size to estimate a
proportion p = 0.5 with a margin of error e = 0.03, and for α = 0.05. We could use the following code
snippet:

import samplics

from samplics.sampling import SampleSize

size prop = SampleSize(parameter="proportion")

size prop.calculate(target=0.5, half ci=0.03)

size samp size

1068

The second line of the code above creates the object size prop. In the third line, we call the method
calculate() to compute the sample size and update the object size prop. To show the content of the
object size prop, we can print the members using size prop. dict .

samplics can also calculate the required sample size to conduct hypothesis testing. There are several
samplics classes for calculating sample size for testing proportions or means in the situation of one
or two samples.

The class SampleSizeMeanOneSample calculates the minimum required sample size for testing
mean with one sample. Let’s assume we have one sample and we are interested in the following
hypotheses H0 : µ = µ0 versus Ha : µ 6= µ0. The equation for the sample size needed to achieve
power 1 − β is n =

(zα/2+zβ)
2σ2

ε2
, where ε is the difference µ − µ0. For example, let’s assume that we

want to calculate sample size required to test the difference before and after a treatment. We have
that the average before treatment is 1.5 and the same average after treatment is 2. The standard

The Survey Statistician 33 July 2022

deviation is 1, and we assume 1−β = 0.8. We could calculate the sample size by using the following
code snippet for simple random sampling with replacement:

from samplics.sampling import SampleSizeMeanOneSample

mean equality = SampleSizeMeanOneSample()

mean equality.calculate(mean 0=1.5, mean 1=2, sigma=1)

mean equality.samp size

32

In a stratified design, the population is divided into H partitions or strata. The sample is selected
independently from each stratum. The above samplics APIs integrates the notion of stratification.
When instantiating the objects, we can indicate that it’s a stratified design using stratification = True.
The parameters should then be provided by stratum using Python dictionaries. For example, mean 0
= {”North”: 1.50, ”South”: 1.65, ”West”: 1.55, ”East”: 1.45} where North, South, West, and East are
the strata.

If more convenient, we can use the method to dataframe() to convert the output data dictionary to
a Pandas DataFrame, see McKinney (2010) to learn more about Pandas. Similarly, we can use
SampleSizePropOneSample for testing proportions with one sample. In the context of two samples,
we can use SampleSizeMeanTwoSample and SampleSizePropTwoSample.

3 Sample selection

The class SampleSelection implements several popular random selection methods such as simple
random sampling (SRS), systematic (SYS), several probability proportional to size (PPS) methods.
The available PPS algorithms for selecting samples with unequal probabilities of selection are sys-
tematic (method=”pps-sys”), Brewer (method=”pps-brewer”), Hanurav-Vijayan (method=”pps-hv”),
Murphy (method=”pps-murphy”), and Rao-Sampford (method=”pps-rs”) methods. Let’s assume that
we have a population of 100 units and we want to select 10 using the SRS method:

from samplics.sampling import SampleSelection

srs sampling = SampleSelection(method="srs")

srs sample, srs hits, srs probs = srs sampling.select(samp unit=range(1, 101),

samp size=10)

As shown in the above code snippet, the method select() returns a tuple of three numpy arrays, see
Harris et al. (2020). The first array provides the selection status of each unit in the population, the
second array provides the probabilities of selection, and the third array gives the number of hits/times
a unit was selected. If needed, the user may set to dataframe=True to convert the output data to a
pandas DataFrame from the tuple of three arrays. The resulting sample is now a Pandas DataFrame
with its first 5 observations shown below.

samp unit mos sample hits probs
0 1 1.0 False 0 0.1
1 2 1.0 False 0 0.1
2 3 1.0 False 0 0.1
3 4 1.0 False 0 0.1
4 5 1.0 False 0 0.1

The code above returns the entire population with the variable sample indicating the selected units.
We can use sample only=True to subset the returned data to only contain the sample. To illustrate
the PPS sample selection, we use the code below to randomly generate sizes (using the Unif(0,1)
distribution) associated with each of the 100 units in our population:

The Survey Statistician 34 July 2022

import random

mos = []

for in range(100):

mos.append(round(100 * random.random(), 0))

Now let’s select a sample of 2 units using the PPS Brewer method without replacement:

ss brewer = SampleSelection(method="pps-brewer", with replacement=False)

ss brewer sample = ss brewer.select(samp unit=range(1,101), samp size=2, mos=mos,

to dataframe=True, sample only=True)

ss brewer sample

samp unit mos sample hits probs
0 46 67.0 1 1 0.026677
1 50 93.0 1 1 0.037030

As discussed previously, for stratified designs, we provide the information using Python dictionaries
where the keys are the strata names and the values are the sample sizes. Then, we provide the
stratification variable to the method select() using the argument stratum.

4 Weighting

The samplics module weighting provides the algorithms for adjusting the sample weight for non-
response, post-stratification, and calibration. The main class is SampleWeight and the different type
of adjustments are conducted using its methods adjust(), poststratify(), and calibrate().

4.1 Design weight

The design weight calculation and subsequent weight adjustments are key steps to ensuring the
generalization of the sample results to the target population. The initial design weight, wi, is obtained
as the reciprocal of the probability of inclusion πi, for unit i in the population, wi = 1

πi
.

samplics has a module dataset which provides curated datasets for running the examples. With the
code below, we use the dataset module to load two datasets representing primary sampling units
(PSUs) and Secondary Sampling Units (SSUs) samples:

from samplics.datasets import load psu sample, load ssu sample

psu sample dict = load psu sample()

psu sample = psu sample dict["data"]

ssu sample dict = load ssu sample()

ssu sample = ssu sample dict["data"]

We combine the two datasets to form the final sample data and we calculate the inclusion probability
as the product of the two stage probabilities:

full sample = pd.merge(

left=psu sample[["cluster", "region", "psu prob"]],

right=ssu sample[["cluster", "household", "ssu prob"]],

on="cluster")

Hence, the design weight follows as the reciprocal of the inclusion probability.

full sample["inclusion prob"] = full sample["psu prob"] * full sample["ssu prob"]

full sample["design weight"] = 1 / full sample["inclusion prob"]

full sample.head()

The Survey Statistician 35 July 2022

cluster region psu prob household ssu prob inclusion prob design weight
0 7 North 0.187726 72 0.115385 0.021661 46.166667
1 7 North 0.187726 73 0.115385 0.021661 46.166667
2 7 North 0.187726 75 0.115385 0.021661 46.166667
3 7 North 0.187726 715 0.115385 0.021661 46.166667
4 7 North 0.187726 722 0.115385 0.021661 46.166667

4.2 Non-response adjustment

For the purpose of illustrating non-response adjustments, we add non-respondent households into
our example. That is, we simulate the non-response status and store it in the variable response status
which has four possible values: ineligible which indicates that the sampling unit is not eligible for the
survey, respondent which indicates that the sampling unit responded to the survey, non-respondent
which indicates that the sampling unit did not respond to the survey, and unknown means that we
are not able to infer the status of the sampling unit i.e. we do not know whether the sampling unit is
eligible or not for the survey.

np.random.seed(7)

full sample["response status"] = np.random.choice(["ineligible", "respondent",

"non-respondent", "unknown"], size=full sample.shape[0], p=(0.10, 0.70, 0.15, 0.05))

full sample[["cluster", "region", "design weight", "response status"]].head(5)

cluster region design weight response status
0 7 North 46.166667 ineligible.
1 7 North 46.166667 respondent.
2 7 North 46.166667 respondent.
3 7 North 46.166667 respondent.
4 7 North 46.166667 unknown.

In general, the sample weights are adjusted by redistributing the sample weights of all eligible units
for which there is no sufficient response (nonrespondents) to the sampling units that sufficiently re-
sponded to the survey (respondents). This adjustment is done within adjustment/response classes or
domains. Note that the determination of the response classes is outside of the scope of this module.

The method adjust() has a boolean argument unknown to inelig which controls how the sample
weights of the unknown are redistributed. By default, adjust() redistributes the sample weights of
the units with unknown eligibility to the ineligibles (unknown to inelig=True). If we do not wish to
redistribute the sample weights of the unknowns to the ineligibles, we set the flag to False.

status mapping = {"in": "ineligible", "rr": "respondent", "nr": "non-respondent",

"uk": "unknown" }

from samplics.weighting import SampleWeight

full sample["nr weight"] = SampleWeight().adjust(

samp weight=full sample["design weight"],

adjust class=full sample[["region", "cluster"]],

resp status=full sample["response status"],

resp dict=status mapping)

full sample[["cluster", "region", "design weight", "response status",

"nr weight"]].drop duplicates().head(10)

The Survey Statistician 36 July 2022

cluster region design weight response status nr weight
0 7 North 46.166667 ineligible 49.464286
1 7 North 46.166667 respondent 54.410714
4 7 North 46.166667 unknown 0.000000
11 7 North 46.166667 non-respondent 0.000000
15 10 North 50.783333 non-respondent 0.000000
16 10 North 50.783333 respondent 70.733929
19 10 North 50.783333 ineligible 54.410714
21 10 North 50.783333 unknown 0.000000
30 16 South 62.149123 respondent 66.588346
35 16 South 62.149123 non-respondent 0.000000

Important. The default call of adjust() expects the response status variable to have values of “in”,
“rr”, “nr”, or “uk” where “in” means ineligible, “rr” means respondent, “nr” means non-respondent, and
“uk” means unknown eligibility.

In the call above, if we omit the argument resp dict, then the code would fail with an assertion error
message. The current error message is the following: ”The response status must only contains
values in (‘in’, ‘rr’, ‘nr’, ‘uk’) or the mapping should be provided using response dict parameter”. For
the call to run without specifying resp dict, it is necessary that the response status takes only values
in the standard codes i.e. (“in”, “rr”, “nr”, “uk”).

4.3 Post-stratification

Post-stratification is useful to compensate for under-representation of the sample or to correct for
nonsampling error. Post-stratification classes can be formed using variables beyond the ones in-
volved in the sampling design. For example, socio-economic variables such as age group, gender,
race and education are often used to form post-stratification classes/cells.

Let’s assume that we have a reliable external source e.g. a recent census that provides the number
of households by region. The external source has the following control data: 3700 households for
East, 1500 for North, 2800 for South and 6500 for West. We use the method poststratify() to ensure
that the post-stratified sample weights (ps weight) sum to the know control totals by region. Note that
the control totals are provided using the Python dictionary census households.

census households = {"East": 3700, "North": 1500, "South": 2800, "West": 6500}
full sample["ps weight"] = SampleWeight().poststratify(samp weight

=full sample["nr weight"], control=census households, domain=full sample["region"])

full sample.head(7)

cluster region household design weight response status nr weight ps weight
0 7 North 72 46.166667 ineligible 49.464286 51.020408
1 7 North 73 46.166667 respondent 54.410714 56.122449
2 7 North 75 46.166667 respondent 54.410714 56.122449
3 7 North 715 46.166667 respondent 54.410714 56.122449
4 7 North 722 46.166667 unknown 0.000000 0.000000
5 7 North 724 46.166667 respondent 54.410714 56.122449
6 7 North 755 46.166667 respondent 54.410714 56.122449

In some surveys, there is interest in keeping relative distribution of strata to some known distribution.
For example, WHO EPI vaccination surveys, World Health Organization (2018), often poststratify
sample weights to ensure that relative sizes of strata reflect official statistics e.g. census data. As-
sume that according to census data that East contains 25% of the households, North contains 10%,
South contains 20% and West contains 45%. We can post-stratify using the snippet of code below.

known ratios = {"East": 0.25, "North": 0.10, "South": 0.20, "West": 0.45}
full sample["ps weight2"] = SampleWeight().poststratify(samp weight

=full sample["nr weight"], factor=known ratios, domain=full sample["region"])

The Survey Statistician 37 July 2022

4.4 Calibration weight

Calibration is a more general concept for adjusting sample weights to sum to known constants; see
Deville & Särndal (1992). In samplics, we implemented the generalized regression (GREG) class
of calibration. Assume that we have Ŷ =

∑
i∈swiyi and population totals X = (X1, ...,Xp)

T are
available. Working under the model Yi|xi = xTi β + εi, where β is the vector of parameters, and εi
are independent error terms, for any unit i in the population, the GREG estimator of the population
total is ŶGR = Ŷ + (X − X̂)T B̂ where B̂ is the weighted least squares estimate of β and X̂ is
the Horvitz-Thompson estimate of X. The essence of the GREG approach consists of, under the
regression model, finding the adjusted weights w∗i that are the closest to wi, by minimizing the chi-
square distance between them.

Let us simulate three auxiliary variables that are education, poverty and under five (number of chil-
dren under five in the household) and assume that we have a total number of under five children of
6300 in the East, 4000 in the North, 6500 in the South and 14000 in the West. Similarly, we have
the following number of households per poverty status (Yes: in poverty / No: not in poverty) and
education level (Low : less than secondary, medium: secondary completed, and high: more than
secondary):

np.random.seed(150)

full sample["education"] = np.random.choice(

("Low", "Medium", "High"), size=150, p=(0.40, 0.50, 0.10))

full sample["poverty"] = np.random.choice((0, 1), size=150, p=(0.70, 0.30))

full sample["under five"] = np.random.choice((0, 1, 2, 3, 4, 5), size=150,

p=(0.05, 0.35, 0.25, 0.20, 0.10, 0.05))

full sample[["cluster", "region", "household", "nr weight", "education", "poverty",

"under five"]].head()

cluster region household nr weight education poverty under five
0 7 North 72 49.464286 High 1 1
1 7 North 73 54.410714 Low 0 3
2 7 North 75 54.410714 Medium 0 2
3 7 North 715 54.410714 Medium 1 2
4 7 North 722 0.000000 Medium 0 2

We now will calibrate the nonresponse weight (nr weight) to ensure that the estimated number of
households in poverty is equal to 4,700 and the estimated total number of children under five is
30,800.

The class SampleWeight uses the method calibrate() to adjust the weight using the GREG approach.
The control values must be stored in a Python dictionary i.e. totals = {“poverty”: 4700, “under five”:
30800}. In this case, we have two numerical variables: poverty with values in 0, 1 and under five
with values in 0, 1, 2, 3, 4, 5. The argument aux vars represents the matrix of covariates.

totals = {"poverty": 4700, "under five": 30800}
full sample["calib weight"] = SampleWeight().calibrate(samp Weight =

full sample["nr weight"],

aux vars = full sample[["poverty", "under five"]], control = totals)

full sample[["cluster", "region", "household", "nr weight", "calib weight"]].head()

cluster region household nr weight calib weight
0 7 North 72 49.464286 50.432441
1 7 North 73 54.410714 57.233887
2 7 North 75 54.410714 56.292829
3 7 North 715 54.410714 56.416743
4 7 North 722 0.000000 0.000000

The Survey Statistician 38 July 2022

If we want to control by domain then we can do so using the argument domain from calibrate(). First
we update the Python dictionary holding the control values for each domain. Note that the dictionary
is now a nested dictionary where the higher level keys hold the domain values i.e. East, North, South
and West. Then the higher level values of the dictionary are the dictionaries providing mapping for
the auxiliary variables and the corresponding control values.

totals by domain = {
"East": "poverty": 1200, "under five": 6300,

"North": "poverty": 200, "under five": 4000,

"South": "poverty": 1100, "under five": 6500,

"West": "poverty": 2200, "under five": 14000,

}

full sample["calib weight d"] = SampleWeight().calibrate(

samp weight = full sample["nr weight"],

aux vars = full sample[["poverty", "under five"]],

control = totals by domain,

domain = full sample["region"])

full sample[["cluster", "region", "household", "nr weight", "calib weight",

"calib weight d"]].head()

cluster region household nr weight calib weight calib weight d
0 7 North 72 49.464286 50.432441 40.892864
1 7 North 73 54.410714 57.233887 61.852139
2 7 North 75 54.410714 56.292829 59.371664
3 7 North 715 54.410714 56.416743 47.462625
4 7 North 722 0.000000 0.000000 0.000000

Note that the GREG domain estimates above do not have the additive property. That is the GREG
domain estimates do not sum to the overall GREG estimate. To enforce the additive property of the
GREG estimates, we must use additive=True when calling calibrate().

4.5 Replicate weights

We can use samplics to create replicate weights. It is best to create the replicate weights from the
design weights and apply the weight adjustments to each replicate. The API for creating the replicate
weights is:

ReplicateWeight(method, stratification=True, number reps = 500, fay coef = 0.0,

random seed = None)

ReplicateWeight.replicate(samp weight, psu, stratum = None, rep coefs = False,

rep prefix = None, psu varname = " psu", str varname)

The user provides the sample weight to replicate with the sampling design information, namely the
PSU and stratification as applicable. In the case of the Fay ’s method, Dippo et al. (1984) and Fay
(1989) , the user may provide fay coef, the coefficient to adjust the original weights.

5 Population parameters estimation

The samplics estimation module has two main parts: linearization (Taylor series) and replication
based estimations.

The Survey Statistician 39 July 2022

5.1 Linearization (Taylor series)

The API for the Taylor-based estimation is as shown below and the argument parameter may take the
value mean, total, proportion, or ratio. The main method of this class is estimate() which calculates
the point estimates, the uncertainty measures, and other related statistics:

TaylorEstimator(parameter, alpha = 0.05, random seed = None, ciprop method = "logit")

TaylorEstimator.estimate(y, samp weight = None, x = None, stratum = None,

psu = None, ssu = None, domain = None, by = None, fpc = 1.0, deff = False,

coef variation = False, as factor = False, remove nan = False)

Some of the parameters of the method estimate() are : y is the variable of interest, samp weight is
the final sampling weight, x is the auxiliary variable in the case of the ratio estimation, domain is the
variable for the domain estimation (domain variable), and by is the variable to split the data; split the
data then produce estimates for each partition (not domain estimation).

We are going to download the NHANES dataset and use it to estimate the average level of zinc:

from samplics.datasets import load nhanes2

nhanes2 dict = load nhanes2()

nhanes2 = nhanes2 dict["data"]

Now we estimate the average level of zinc:

zinc mean str = TaylorEstimator("mean")

zinc mean str.estimate(y=nhanes2["zinc"], samp weight=nhanes2["finalwgt"],

stratum=nhanes2["stratid"], psu=nhanes2["psuid"], remove nan=True)

print(zinc mean str)

SAMPLICS - Estimation of Mean
Number of strata: 31
Number of psus: 62
Degree of freedom: 31

MEAN SE LCI UCI CV
87.182067 0.494483 86.173563 88.190571 0.005672

The results of the estimation are stored in the dictionary zinc mean str. The users can covert the main
estimation information into a pandas DataFrame by using the method to dataframe(). The method
to dataframe() is more useful for domain estimation by producing a table where which row is a level
of the domain of interest.

5.2 Replication

The class replicateEstimator provides the algorithms for the replication-based estimation. The argu-
ment method takes the value brr for the Balanced Random Replication (BRR) approach, McCarthy
(1966); bootstrap, Rao & Wu (1992); and jackknife, Krewski & Rao (1981). Note that the Fay ’s
method is a generalization of the BBR method. Instead of simply taking half-size samples, we use
the full sample every time but with unequal weighting: fay coef for units outside the half-sample and 2
- fay coef for units inside it (BRR is the case fay coef=0 or None). parameter takes the same values
as in the linearization case.

Let’s load the NHANES again and use it estimate the ratio of weight over height. We want to use the
BRR replicates weights.

The Survey Statistician 40 July 2022

from samplics.datasets import load nhanes2brr

nhanes2brr dict = load nhanes2brr()

nhanes2brr = nhanes2brr dict["data"]

Now we are going to estimate the ratio using the BRR replicates weights from the dataset.

from samplics.estimation import ReplicateEstimator

brr = ReplicateEstimator(method="brr", parameter="ratio")

ratio wgt hgt = brr.estimate(y=nhanes2brr["weight"],

samp weight=nhanes2brr["finalwgt"],

x=nhanes2brr["height"], rep weights=nhanes2brr.loc[:,

"brr 1":"brr 32"], remove nan=True)

print(ratio wgt hgt)

SAMPLICS - Estimation of Ratio

Number of strata: None
Number of psus: None
Degree of freedom: 16

RATIO SE LCI UCI CV
0.426082 0.00273 0.420295 0.43187 0.006407

6 Categorical data

With samplics, users can analyze categorical data by producing tabulations and conducting t-tests.

There are two main samplics classes for tabulation i.e. Tabulation for one-way tables and crossTab-
ulation for two-way tables. From the NHANES dataset downloaeded using load nhanes2(), let’s tab-
ulate the variables race and diabetes, we can use the tabulation class as follows:

diabetes nhanes = Tabulation("proportion")

diabetes nhanes.tabulate(vars=nhanes2[["race", "diabetes"]], samp weight=weight,

stratum=stratum, psu=psu, remove nan=True)

print(diabetes nhanes)

Tabulation of race
Number of strata: 31
Number of PSUs: 62
Number of observations: 10335
Degrees of freedom: 31.00

variable category proportion stderror lower ci upper ci
race 1.0 0.879016 0.016722 0.840568 0.909194
race 2.0 0.095615 0.012778 0.072541 0.125039
race 3.0 0.025369 0.010554 0.010781 0.058528
diabetes 0.0 0.965715 0.001820 0.961803 0.969238
diabetes 1.0 0.034285 0.001820 0.030762 0.038197

In the case of two-way tabulation, we use the crossTabulation class. The APIs for crossTabulation is
very similar to tabulation. Let’s crosstabulate race by diabetes. We can use the crossTabulation class
as follows:

crosstab nhanes = CrossTabulation("proportion")

crosstab nhanes.tabulate(vars=nhanes2[["race", "diabetes"]], samp weight=weight,

stratum=stratum, psu=psu, remove nan=True)

print(crosstab nhanes)

The Survey Statistician 41 July 2022

Cross-tabulation of race and diabetes
Number of strata: 31
Number of PSUs: 62
Number of observations: 10335
Degrees of freedom: 31.00

race diabetes proportion stderror lower ci upper ci
1 0.0 0.850866 0.015850 0.815577 0.880392
1 1.0 0.028123 0.001938 0.024430 0.032357
2 0.0 0.089991 0.012171 0.068062 0.118090
2 1.0 0.005646 0.000847 0.004157 0.007663
3 0.0 0.024858 0.010188 0.010702 0.056669
3 1.0 0.000516 0.000387 0.000112 0.002383

1

Pearson (with Rao-Scott adjustment):
Unadjusted - chi2(2): 21.2661 with p-value of 0.0000
Adjusted - F(1.52, 47.26): 14.9435 with p-value of 0.0000

Likelihood ratio (with Rao-Scott adjustment):
Unadjusted - chi2(2): 18.3925 with p-value of 0.0001
Adjusted - F(1.52, 47.26): 12.9242 with p-value of 0.0001.

With categorical data, users may want to compare groups. The class Ttest offers algorithms for
testing means and proportions from one or two samples.

When sample sizes are too small for areas to produce reliable and stable domain estimates, the small
area estimation (sae) techniques can help improve the precision of the estimates. The module sae
of samplics provides routines for producing small area estimates.

7 Conclusion

As with R, Python now provides an open-source library for the design and analysis of survey sam-
pling. The Python library samplics allows Python users to remain in the Python ecosystem when
designing and analyzing complex samples. Furthermore, we expect that samplics will help bring
more survey statisticians and official statistics producers to Python. Our ambition with samplics is to
create a robust, comprehensive, and easy to use ecosystem for survey sampling and the production
of official statistics.

References

Chow, S., Shao, J., Wang, H., Y, & Lokhnygina, Y. (2018). Sample Size Calculations in Clinical
Research, Third Edition. CRC Press, Taylor & Francis Group.

Deville, J. C. & Särndal, C. E. (1992). Calibration estimators in survey sampling. Journal of the
American Statistical Association, 87, 376–382.

Dippo, C. S., Fay, R. E., & Morganstein, D. H. (1984). Computing variances from complex samples
with replicate weights. In Proceedings of the Survey Research Methods Section, ASA (pp. 489–
494).

Fay, R. E. (1989). Theory and application of replicate weighting for variance calculations. In Proceed-
ings of the Survey Research Methods Section, ASA (pp. 212–217).

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., Fernandez del Rio, J., Wiebe, M., Peterson, P., Gerard-Marchant, P., Sheppard, K.,

The Survey Statistician 42 July 2022

Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., & Oliphant, T. E. (2020). Array programming
with NumPy. Nature, 585, 357–362.

Krewski, D. & Rao, J. N. K. (1981). Inference from stratified samples: Properties of the linearization,
jackknife and balanced repeated replication methods. The Annals of Statistics, 9, 1010–1019.

Lohr, S. L. (2022). Sampling: Design and Analysis, Third Edition. CRC Press, Taylor & Francis Group.

McCarthy, P. J. (1966). Replication: An Approach to the Analysis of Data from Complex Surveys.

McKinney, W. (2010). Data structures for statistical computing in python. In Proceedings of the 9th
Python in Science Conference (pp. 56–61).

Rao, J. N. K. & Wu, C. F. J. (1992). Resampling inference with complex survey data. Journal of the
American Statistical Association, 83, 231–241.

Ryan, T. P. (2013). Sample Size Determination and Power. Jonh Wiley & Sons, Inc.

World Health Organization (2018). World Health Organization vaccination coverage cluster surveys:
reference manual. https://apps.who.int/iris/handle/10665/272820.

The Survey Statistician 43 July 2022

