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Abstract 

In this article we answer the question on how to measure disclosure risk in microdata. We distinguish 

between two types of microdata: (1) microdata released from social surveys that have undergone 

statistical disclosure control methods; (2) synthetic microdata generated from statistical modelling. 

We define the types of disclosure risks and disclosure risk measures for each type of microdata.  
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1 Introduction 

Statistical data that are traditionally released by government agencies include microdata from social 

surveys and tabular data. For each of these traditional outputs, there have been decades of research 

on how to quantify disclosure risk, statistical disclosure control (SDC) methods and their impact on 

data utility. However, with increasing demands for new forms of data at higher resolution, in particular 

linked hierarchical data and ‘open’ data initiatives, there are even more pressures on government 

agencies to broaden access and to provide better solutions for the release of statistical data. 

Examples of solutions are to generate synthetic data based on models built from the original data or 

to provide access to data through flexible table builders and remote analysis servers. This has led 

to intensive research and collaboration between the computer science and statistical communities 

to develop more formal privacy guarantees under SDC and to adapt more perturbative techniques 

into the SDC tool-kit.  

Synthetic data generation has been proposed as an alternative to standard SDC methods for the 

release of microdata. Traditional SDC methods aim to suppress and perturb existing datasets and 

often lead to a large loss in utility and analytical power. Synthetic data takes a different approach as 

it creates a new dataset having the same statistical properties as the original data but containing no 

data that directly corresponds to real population units. The idea of synthetic data was first introduced 

by Rubin (1993), who proposed treating each observed data point as if it were missing and imputing 

it conditional on the other observed data points using a posterior predictive distribution. The data 

elements are replaced with synthetic values generated from an appropriate probability model.  
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Several samples are drawn from the population to take into account the uncertainty of the model and 

to obtain proper variance estimates. See also Raghunathan, Reiter and Rubin (2003), Reiter (2005a 

and 2005b), Drechsler (2011) and references therein for more details on generating synthetic data. 

The synthetic data can also be implemented on parts of data so that a mixture of real and synthetic 

data is released (Little and Liu 2003).  

Here we focus on calculating disclosure risk measures after the application of statistical disclosure 

control methods or the generation of synthetic data. This is in contrast to disclosure risk assessment 

in the Computer Science Literature where privacy guarantees are embedded in the perturbation 

method via a privacy model. These privacy models assume ‘attack’ scenarios which informs the 

parameterization of the privacy models according to thresholds. Examples of privacy models in the 

computer science literature are: 𝑘-anonymity, 𝑙-diversity and 𝑡-closeness where the parameters are 

𝑘, 𝑙 and 𝑡:  

𝑘-anonymity: The key identifying variables are coarsened within equivalence classes such that there 

are at least 𝑘 − 1 individuals in the equivalence class (Sweeney 2002). Equivalence classes are 

typically defined from quasi-identifying variables such as sex, age group, place of residence.  

𝑙-diversity: Determines how well-represented the values of a sensitive variable are within 

equivalence classes and that there are at least 𝑙 well-represented values of the variable.  

Entropy 𝑙-diversity (Machanavajjhala et al. 2006) is defined as follows: Let 𝑝(𝐸𝐶, 𝑐) be the probability 

that a record has a value 𝑐 for a categorical variable 𝐶 in equivalence class 𝐸𝐶. The entropy is: 

𝐻(𝐸𝐶) = −∑ 𝑝(𝐸𝐶, 𝑐)log⁡[𝑝(𝐸𝐶, 𝑐)]𝑐𝜖𝐶  

A dataset possesses entropy 𝑙-diversity if for each 𝐸𝐶 the entropy 𝐻(𝐸𝐶) ≥ log(𝑙).  

𝑡-closeness (Li, et al. 2007): Requires the distribution of values of a sensitive variable within 

equivalence classes to be close (up to 𝑡) compared to the univariate distribution of the sensitive 

variable in the whole dataset.  

More on these privacy models can also be found in Domingo-Ferrer, et al. (2008) and Xiao et al. 

(2010).  

Another privacy model gaining much traction in the statistical community is differential privacy 

(Dwork et al. 2006). A ‘worst case’ scenario is allowed for, in which the potential intruder has 

complete information about all the units in the database except for one unit of interest. The definition 

of a perturbation mechanism 𝑀⁡satisfies 𝜀-differential privacy if for all queries on neighbouring 

databases 𝑎 and 𝑎′ differing by one individual and for all possible outcomes defined as subsets 𝑆 ∈
𝑅𝑎𝑛𝑔𝑒(𝑀)⁡we have: 𝑝(𝑀(𝑎) ∈ 𝑆) ≤ 𝑒𝜀𝑝(𝑀(𝑎′) ∈ 𝑆). 

This means that observing a perturbed output 𝑆, little can be learnt (up to a degree of 𝑒𝜀) and the 

intruder is unable to decipher whether the output was generated from database 𝑎 or 𝑎′. In other 

words, the ratio 𝑝(𝑀(𝑎) ∈ 𝑆)/⁡𝑝(𝑀(𝑎′) ∈ 𝑆) is very small (at most 𝑒𝜀). The solution to guarantee 

differential privacy in the computer science literature is by adding noise/perturbation to the outputs 

of the queries under specific parameterizations based on the privacy budget 𝜀 and the sensitivity of 

the query, which is the maximum difference in the possible output of a query with and without the 

presence of a single individual. 

In Section 2, I discuss the types of disclosure risks for microdata. In Section 3, I describe how to 

estimate a disclosure risk measure to assess the risk of re-identification in disclosure-controlled 

survey microdata. In section 4, I describe disclosure risk measures that can be used after the 

generation of synthetic data to assess attribute and inferential disclosure. I close with a conclusion 

in section 5. 

2 Types of Disclosure Risks for Microdata 

In the SDC literature, we define the notion of an ‘intruder’ as someone who wants to attack statistical 

data for malicious intent and cause a breach in confidentiality. Two main disclosure risks are: (1) 
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identity disclosure where a statistical unit can be identified based on a set of cross-classified quasi-

identifying variables that are typically categorical, such as age, gender, occupation and place of 

residence; (2) attribute disclosure where new information can be learnt about an individual or a group 

of individuals. Disclosure risk scenarios form the basis of possible means of disclosure, for example, 

the ability of an intruder to match a dataset to an external public file based on a common set of quasi-

identifying variables; the ability of an intruder to identify unique individuals through visible and rare 

attributes; the ability of an intruder to difference nested tables and obtain small counts; and the ability 

of an intruder to form coalitions with other intruders. 

For the release of survey microdata that are disseminated from social surveys, the main concern is 

the risk of re-identification since this is a prerequisite for individual attribute disclosure where many 

sensitive variables such as income or health outcomes, can be revealed following an identification. 

Naturally, sampling from the population provides a priori protection since an intruder cannot be 

certain whether a sample unique, i.e. a unit that is unique in the sample with respect to some quasi-

identifying variables, is a population unique. Note there is an implicit assumption of no ‘response 

knowledge’ meaning that the intruder does not know who was drawn into the sample of the survey.  

Inferential disclosure is another type of disclosure risk that is becoming more prominent with the 

ongoing research and development into web-based interactive data dissemination. Inferential 

disclosure risk is the ability to learn new attributes with high probability and thus is a more general 

form of individual and group attribute disclosure and the terms are often used interchangeably. For 

example, datasets can be manipulated and combined in such a way that there is a high prediction 

power between variables in the dataset or combinations of data releases that can be differenced to 

reveal individual data points. Attribute disclosure and the more general inferential disclosure are 

particularly relevant for assessing disclosure risks in fully synthetic data. This is because there is a 

break in the link between quasi-identifying and sensitive variables in a fully synthetic dataset, but it 

may still be possible to disclose sensitive information about groups of individuals.  

3 Quantifying the Risk of Re-identification in Survey Microdata 

The basic definition of the risk of re-identification is the probability of correctly being able to match 

the survey microdata with a unit in the population. If the characteristics of the population are known, 

such as measured in a population register or census, this probability would be relatively straight-

forward to calculate. However, this is rarely the case since within government agencies, samples are 

often drawn from area or address-based sample frames. A statistical modelling framework is then 

needed to estimate the probability of re-identification. This probability is conditional on the released 

data and information available to the intruder and defined with respect to a probabilistic model and 

assumptions about how the data is generated (knowledge of the sampling process). The model is 

based on the set of quasi-identifiers available to the intruder and available in released data which, 

when cross-classified for the released data, form a contingency table that can be used to identify 

cells with small sample sizes, and we particularly focus on the sample uniques. The risk of re-

identification is based on the notion of population uniqueness in the contingency table: given an 

observed sample unique, what is the probability that the cell is also a population unique?  

The probabilistic modelling to estimate population uniqueness from the observed survey microdata 

was developed under two approaches: a fully model-based framework taking into account all of the 

information available to intruders and modelling their behaviour (Duncan and Lambert 1989, Lambert 

1993 and later Reiter 2005c) and a more simplified approach that restricts the information that would 

be known to intruders (Bethlehem, et al. 1990, Benedetti, et al. 1998, Skinner and Holmes 1998, 

Elamir and Skinner 2006).  

Individual per-record risk measures in the form of a probability of re-identification are estimated. 

These per-record risk measures are then aggregated to obtain global risk measures for the entire 

file. Denote by 𝐹𝑘 the population size in cell 𝑘 of a table spanned by quasi-identifying variables having 

𝐾 cells and by 𝑓𝑘 the sample size. We have ∑ 𝐹𝑘 = 𝑁𝑘  and ∑ 𝑓𝑘 = 𝑛𝑘  with 𝑁 the total population size 

and 𝑛 the size of the released sample. The set of sample uniques is defined as: 𝑆𝑈 = {𝑘: 𝑓𝑘 = 1} 
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since these are the potential high-risk records with the potential to be population uniques. Two global 

disclosure risk measures (where 𝐼 is the indicator function) are the following:  

Number of sample uniques that are population uniques: 𝜏1 = ∑ 𝐼(𝑓𝑘 = 1, 𝐹𝑘 = 1)𝑘  

Expected number of correct matches for sample uniques assuming a random assignment within cell 

𝑘 (the match probability) 𝜏2 = ∑ 𝐼(𝑓𝑘 = 1)⁡
1

𝐹𝑘
⁡𝑘   

We assume that the population frequencies 𝐹𝑘 are unknown and need to be estimated from a 

probabilistic model where the risk measures are then:  

𝜏̂1 = ∑ 𝐼(𝑓𝑘 = 1)𝑃̂(⁡𝐹𝑘 = 1|𝑓𝑘 = 1)𝑘  and 𝜏̂2 = ∑ 𝐼(𝑓𝑘 = 1)𝐸̂(⁡
1

𝐹𝑘
⁡|𝑓𝑘 = 1)𝑘      (1)  

Skinner and Holmes (1998) and Elamir and Skinner (2006) propose a Poisson distribution and a log-

linear model to estimate disclosure risk measures in (1). In this model, they assume that 𝐹𝑘~𝑃𝑜𝑖𝑠(𝜆𝑘) 

for each cell 𝑘. A sample is drawn by Poisson or Bernoulli sampling with a sampling fraction 𝜋𝑘 in 

cell 𝑘: 𝑓𝑘|𝐹𝑘~𝐵𝑖𝑛(𝐹𝑘, 𝜋𝑘). It follows that:  

𝑓𝑘~𝑃𝑜𝑖𝑠(𝜋𝑘𝜆𝑘) and 𝐹𝑘|𝑓𝑘~𝑃𝑜𝑖𝑠(𝜆𝑘(1 − 𝜋𝑘))⁡        (2) 

where the population cell counts 𝐹𝑘 are assumed independent given the sample cell counts 𝑓𝑘 . 

The parameters 𝜆𝑘⁡are estimated using log-linear modeling. The sample frequencies 𝑓𝑘 are 

independent Poisson distributed with a mean of 𝜇𝑘 = 𝜋𝑘𝜆𝑘. A log-linear model for the 𝜇𝑘 is expressed 

as: log(𝜇𝑘) = 𝑥𝑘′𝛃 where⁡𝑥𝑘 is a design vector which denotes the main effects and interactions of 

the model for the key variables. The maximum likelihood estimator 𝛃̂ for 𝛃 is obtained by solving the 

score equations: 

∑ (𝑘 𝑓𝑘 − 𝜋𝑘exp(𝑥𝑘
′ 𝛃))𝑥𝑘 = 0 ⁡          (3)  

The fitted values are then calculated by:⁡𝜇̂𝑘 = exp(𝑥𝑘
′ 𝛃̂) and 𝜆̂𝑘 = 𝜇̂𝑘/𝜋𝑘. Individual disclosure risk 

measures for cell 𝑘 are: 

𝑃(⁡𝐹𝑘 = 1|𝑓𝑘 = 1) = exp⁡(𝜆𝑘(1 − 𝜋𝑘)) and 𝐸(
1

𝐹𝑘
⁡|𝑓𝑘 = 1) = (1 − exp⁡(𝜆𝑘(1 − 𝜋𝑘)))/⁡(𝜆𝑘(1 − 𝜋𝑘))⁡ (4) 

Plugging 𝜆̂𝑘 for 𝜆𝑘 in (4) leads to the estimates 𝑃̂(⁡𝐹𝑘 = 1|𝑓𝑘 = 1) and 𝐸̂(
1

𝐹𝑘
⁡|𝑓𝑘 = 1) and then to 𝜏̂1 

and 𝜏̂2 of (1). Rinott and Shlomo (2007b) consider confidence intervals for these global risk 

measures. 

Skinner and Shlomo (2008) develop goodness-of-fit criteria for selecting the main effects and 

interactions of the quasi-identifying variables for the log-linear model based on estimating and 

(approximately) minimizing the bias of the risk estimates 𝜏̂1 and 𝜏̂2. In addition, they address the 

estimation of disclosure risk measures under complex survey designs with stratification, clustering 

and survey weights. While the method described assumes that all individuals within cell 𝑘 are 

selected independently using Bernoulli sampling, i.e. 𝑃(𝑓𝑘 = 1|𝐹𝑘) = 𝐹𝑘𝜋𝑘(1 − 𝜋𝑘)
𝐹𝑘−1, this may not 

be the case when sampling clusters (e.g. households). In practice, key variables typically include 

variables such as age, sex and occupation that tend to cut across clusters. Therefore, the above 

assumption holds in practice in most household surveys and does not cause bias in the estimation 

of the risk measures. Inclusion probabilities may vary across strata, the most common stratification 

is on geography. Strata indicators should always be included in the quasi-identifying variables to 

take into account differential inclusion probabilities in the log-linear model. Under complex sampling, 

the 𝜆𝑘 can be estimated consistently using pseudo-maximum likelihood estimation (Rao and Thomas 

2003), where the estimating equation in (3) is modified as:  

∑ (𝑘 𝐹̂𝑘 − exp(𝑥𝑘
′ 𝛃))𝑥𝑘 = 0 ⁡          (5)  
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and 𝐹̂𝑘 is obtained by summing the survey weights in cell 𝑘:⁡𝐹̂𝑘 = ∑ 𝑤𝑖𝑖∈𝑘 . The resulting estimates 𝜆𝑘 

are plugged into expressions in (4) and 𝜋𝑘 is replaced by the estimate 𝜋̂𝑘 = 𝑓𝑘/𝐹̂𝑘. The goodness-

of-fit criteria are also adapted to the pseudo-maximum likelihood approach.  

The probabilistic modelling presented here and in other related work in the literature assumes that 

there is no measurement error in the way the data is recorded. Besides typical errors in data capture, 

key variables can also purposely be perturbed as a means of masking the data, for example through 

record swapping or the post randomization method (PRAM) (Gouweleeuw, et al. 1998). Shlomo and 

Skinner (2010) adapt the estimation of the risk of re-identification to take into account measurement 

(perturbation) errors. We denote the cross-classified quasi-identifying variables in the population and 

the microdata as 𝑋 and assume that 𝑋 in the microdata have undergone some perturbation error 

denoted by the value 𝑋̃ and determined independently by a misclassification matrix 𝑀: 

𝑀𝑘𝑗 = 𝑃(𝑋̃ = 𝑘|𝑋 = 𝑗)           (6) 

Under small sampling fractions and small rates of perturbation as reflected in the misclassification 

matrix in (6), we can assume that only the diagonal of the misclassification matrix is needed, i.e. the 

probabilities of not being perturbed. The estimate of 𝜏̂2⁡in (1) can be obtained by the probabilistic 

modelling framework described above on the misclassified sample:  

𝜏̂2 = ∑ 𝐼(𝑓𝑘 = 1)⁡𝑀𝑘𝑘 ⁡𝐸̂(
1

𝐹̃𝑘
⁡ |𝑓𝑘⁡𝑘 )         (7)  

where 𝑓𝑘⁡are the observed perturbed counts and ⁡𝐹̃𝑘 represent population counts.  

There have been many other contributions extending the Poisson-log linear modelling framework for 

estimating the risk of re-identification in survey microdata. Ichim (2008) considers extensions by 

introducing the survey weights in the analysis of the contingency tables and also proposes a 

maximum penalized-likelihood approach to obtain smoother estimates of the risk of re-identification. 

Forster and Webb (2007) extend the log-linear modelling framework to a model averaging approach 

rather than requiring to choose a model a priori. They use a Bayesian model averaging technique 

according to several possible log-linear models but limit the models to decomposable geographical 

models. The posterior distribution under model uncertainty is hence obtained as a weighted average 

of the posterior distribution under the various models. Rinott and Shlomo (2006 and 2007a) 

generalize the probabilistic modelling using the Negative Binomial distribution rather than the 

Poisson distribution and implement the probabilistic modelling framework on local ‘neighbourhoods’ 

of the sample uniques. Manrique-Vallier and Reiter (2012) propose an alternative to log-linear 

models for datasets with sparse contingency tables according to the quasi-identifying variables using 

a Bayesian version of grade of membership models and they use a Markov Chain Monte Carlo 

algorithm for fitting the model. Carota, et al. (2015) applied a Bayesian semi-parametric version of 

log-linear models, specifically a mixed effects log-linear model with a Dirichlet process prior.  

A new direction is currently under development to measure the risk of re–identification for non-

probability data sources. More specifically, there are registers in the public domain where the 

membership of the register is not known and is sensitive. Examples of registers are of individuals 

with a medical condition, such as Cancer or HIV, or registers that include membership to a loyalty 

card scheme. Shlomo and Skinner (forthcoming) focus on this new setting by extending the 

framework of probabilistic modelling. The microdata from a random sample can still be used to 

estimate population parameters under the probabilistic modelling framework for estimating the risk 

of re-identification, however the complication is that another set of parameters needs to be 

estimated: the propensities of membership for the individuals in the register. This accounts for the 

selection bias in the register and the deviation from the general population.  

For partially synthetic data, assessing disclosure risk where some values of variables are not 

changed has been further shown in Reiter and Mitra (2009) and Drechsler and Reiter (2011). There, 

the authors assume that an intruder knows the values of a single target record and then searches 

the released data to identify the record. Other work on identity disclosure for fully synthetic data has 
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been shown in Reiter et al. (2014). The authors assume that an intruder has prior knowledge of the 

entire dataset except for one record and then attempts to quantify the risk of re-identification using 

Bayesian estimation to obtain the posterior distributions of confidential data given the released data. 

The intruder then evaluates the posterior distribution of possible original values for the one unknown 

record, given the released synthetic data and information about the data generation mechanism and 

uses values with high probability as reasonable guesses for the unknown true values. 

4 Quantifying the Risk of Attribute Disclosure for Synthetic Data 

Fully synthetic data should lead to a break between the identifying variables and the sensitive target 

variables, and hence the main focus for quantifying disclosure risk in fully synthetic data is to 

measure attribute disclosure (and more generally, inferential disclosure). This disclosure risk is 

based on being able to infer characteristics of individuals in the datasets, particularly groups of 

individuals.  

With respect to developing disclosure risk measures after the generation of the data, one measure 

that can be used to identify skewness in the distribution of categories 𝑐 of a variable 𝐶 in equivalence 

class⁡𝐸𝐶⁡is the entropy. The entropy of the distribution obtains a maximum value if the distribution of 

the categories is uniform and a minimum value if the distribution is degenerate (there is only one 

category represented). We can transform the entropy defined in Section 1 to the 𝐸 measure so that 

we obtain a value between 0 and 1 as follows: 𝐸 = 1 −𝐻(𝐸𝐶)/ log(𝐾) where 𝐾 is the number of 

categories of the variable (Antal et al. 2014). We also define the 𝐿⁡measure which measures the 

percentage of the number of categories of the sensitive variable similar to the principle of 𝑙-diversity.  

We can develop distance metrics that compare the overall distributions in the original data versus 

synthetic data for a particular variable and more specifically within equivalence classes 𝐸𝐶. Distance 

metrics include Kullback-Leibler distance, the Total Variation (𝑇𝑉) and Hellinger’s Distance (𝐻𝐷). 

For a categorical variable 𝐶 in equivalence class 𝐸𝐶, the Hellinger’s Distance is equal to:  

𝐻𝐷𝐸𝐶(𝑃, 𝑄) =
1

√2
√∑ (√𝑝(𝐸𝐶, 𝑐) − √𝑞(𝐸𝐶, 𝑐))2𝑐𝜖𝐶  where 𝑝(𝐸𝐶, 𝑐) is the distribution of 𝐶 in the original 

data and 𝑞(𝐸𝐶, 𝑐) is the distribution of 𝐶 in the synthetic data. The Total Variation is equal to: 

𝑇𝑉𝐸𝐶(𝑃, 𝑄) =
1

2
∑ |𝑝(𝐸𝐶, 𝑐) − 𝑞(𝐸𝐶, 𝑐)|𝑐𝜖𝐶 . 

Note that these distance metrics can also be used for utility measures, i.e. measures that express 

the usefulness of the data for statistical analysis, and hence we blur the lines about what constitutes 

measures of disclosure risk and what measures utility. 

Similar to the privacy model of 𝑡-closeness, we can use distance metrics comparing the distribution 

in the synthetic data for variable 𝐶 in an equivalence class 𝐸𝐶 with the overall univariate distribution 

in the original data, denoted 𝑄(𝑐). In this case, the Total Variation is 𝑇𝑉(𝑃, 𝑄) =
1

2
∑ |𝑝(𝐸𝐶, 𝑐) −𝑐∈𝐶

𝑄(𝑐)|.  

Elliot (2014) and Taub et al. (2018) defined the Differential Correct Attribution Probability (𝐷𝐶𝐴𝑃) 

framework. It assumes that the intruder has access to the synthetic data 𝑠 and has knowledge of an 

equivalence class denoted 𝐸𝐶𝑜,𝑖 for individual 𝑖 in the original dataset 𝑜 and wants to learn the value 

of a sensitive variable 𝑇𝑠,𝑖. The intruder then identifies all the records that match on 𝐸𝐶𝑜  in the 

synthetic data 𝑠. If the proportion of records in the equivalence class on {𝐸𝐶𝑠 , 𝑇𝑠} is high then the 

intruder can infer the value 𝑇𝑠,𝑖 for 𝑇𝑜,𝑖. In summary, 𝐷𝐶𝐴𝑃 measures the proportion of records for 

equivalence class 𝐸𝐶𝑜  that have the same target value in the synthetic data as the original value. 

More formally, define 𝐷𝑜 the original data composed of equivalence classes 𝐸𝐶𝑜  and sensitive 

variables 𝑇𝑜: 𝐷𝑜 = {𝐸𝐶𝑜 , 𝑇𝑜} and similarly, the synthetic data is defined as: 𝐷𝑠 = {𝐸𝐶𝑠 , 𝑇𝑠} . For each 

individual 𝑖 we define: 𝐷𝐶𝐴𝑃𝑜,𝑖 = ∑ 𝐼(𝑇𝑜𝑖 =⁡𝑇𝑠𝑖 ⁡and⁡
𝑁
𝑖=1 𝐸𝐶𝑜𝑖 = 𝐸𝐶𝑠𝑖)/∑ 𝐼(𝐸𝐶𝑜𝑖 = 𝐸𝐶𝑠𝑖)

𝑁
𝑖=1 ⁡where 𝑁 is 

the size of the dataset (assumes the same 𝑁 in the synthetic and original data) and 𝐼 is the indicator 

function taking a value of 1 if the condition is satisfied, otherwise 0. Similarly calculate⁡𝐷𝐶𝐴𝑃𝑠,𝑖 in the 
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synthetic data. Note that it is possible that the denominator in 𝐷𝐶𝐴𝑃𝑠,𝑖 can be 0 and may be 

undefined. In that case, we can define the measure as 0. The baseline is: 𝐷𝐶𝐴𝑃𝑏,𝑖 =
1

𝑁
∑ 𝐼(𝑇𝑜𝑖 = 𝑇𝑠𝑖).
𝑁
𝑖=1  The original and baseline measures serve as bounds for comparing the 𝐷𝐶𝐴𝑃𝑠,𝑖 

and ensuring that it is sufficiently reduced. 

Chen et al. (2019) noted that this original measure of 𝐷𝐶𝐴𝑃 is similar to the distance-based utility 

measures and proposed to adapt the 𝐷𝐶𝐴𝑃 framework to only those records that are unique in the 

synthetic data in the 𝐸𝐶. The risk measure is defined as Targeted Correct Attribution Probability 

(𝑇𝐶𝐴𝑃). 

We can see that there is a clear connection between 𝐷𝐶𝐴𝑃 and the 𝑙-diversity privacy model as the 

less diverse the sensitive variables in the synthetic data, the higher risk of discovering a sensitive 

attribute.  

5 Conclusion 

The framework for measuring the risk of re-identification as discussed in Section 3 based on 

estimating the probability of population uniqueness is well established although many different 

approaches have been proposed in the SDC literature to estimate these disclosure risk measures. 

However, as can be seen in Section 4, disclosure risk measures for synthetic data after its generation 

are still ad-hoc and a more formal framework is needed for measuring the risk of attribute disclosure. 

In addition, appropriate software needs to be developed which will enable the framework to be 

embedded in the SDC tool-kit at government agencies. 
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