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Abstract

This article provides a systematic review of data integration techniques for combining a prob-
ability sample with a non-probability sample when the study variable is observed in the non-
probability sample only. We discuss a wide range of integration methods such as mass impu-
tation, propensity score method, calibration weighting, and doubly robust estimation methods.
Finally, we highlight important questions for future research.

Keywords: big data, calibration weighting, doubly robust estimation, mass imputation, propen-
sity score.

1 Introduction

Probability sampling is regarded as the gold-standard in survey statistics for finite population
inference. Because probability samples are selected under known sampling designs, they
are representative of the target population. Because the selection probability is known, the
subsequent inference from a probability sample is often design-based and respects the way
in which the data were collected; see |Sarndal et al.| (2003); |(Cochran| (1977); [Fuller| (2009)
for textbook discussions. |Kalton| (2019) provided a comprehensive overview of the survey
sampling research in the last 60 years.

On the other hand, statistical analysis of non-probability survey samples faces many chal-
lenges as documented by Baker et al.| (2013). Non-probability samples have unknown se-
lection/inclusion mechanisms and typically do not represent the target population. A popular
framework in dealing with the biased non-probability samples is to assume that auxiliary vari-
able information on the same population is available from an existing probability survey sample.
This framework was first used by [Rivers| (2007) and followed by a number of other authors in-
cluding \Vavreck and Rivers| (2008), Lee and Valliant (2009), \Valliant and Dever| (2011),
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Elliott and Valliant (2017) and (Chen et al. (2020), among others. Combining the up-to-date
information from a probability sample can be viewed as data integration. |Rao| (2021) and
Yang and Kim| (2020) provide comprehensive reviews for data integration for finite population
inference.

One can view data integration as a missing data problem, and apply the statistical techniques
for handling missing data. Specifically, we consider the following setup for data integration. Let
A be a probability sample with observations on auxiliary variable X; let B be the non-probability
sample with information on both the study variable Y and the auxiliary variables X. Table
presents the general setup of the two sample structure for data integration. As indicated in
Table 1] sample B is not representative of the target population.

Table 1: Data Structure for Two Samples

Sample Type X Y Representative?
A Probability Sample v Yes
B Non-probability Sample | v Vv No

Under the data structure in Table [1, we wish to develop methods for combining information
from two samples. To develop statistical methods for data integration, we may require some
assumptions on the outcome model or on the sampling mechanism for sample B.

2 Setup and assumptions

Let X € RP be a vector of auxiliary variables (including an intercept) that are available from
two data sources, and let Y € R be the study variable of interest. We consider combining a
probability sample with X, referred to as sample A, and a non-probability sample with (X,Y),
referred to as sample B, to estimate ., the population mean of Y. We focus on the case
where the study variable Y is observed in sample B only, but the other auxiliary variables
are commonly observed in both datasets. The sampling mechanism for sample B is often
unknown, and we cannot compute the first-order inclusion probability for Horvitz-Thompson
estimation. The naive estimators constructed without adjusting for the sampling process are
subject to selection biases. On the other hand, although the probability sample with design
weights represents the finite population, it does not contain the study variable. We wish to
develop data integration methods that leverage the advantages of both sources.

Let f(Y | X) be the conditional distribution of Y given X in the superpopulation model ¢ that
generates the finite population. Let 9; = 1if i € B and §; = 0 otherwise. We make the following
assumption.

Assumption 1 (i) The sampling indicator § of sample B and the study variable Y are condi-
tionally independent given X;ie. P(6 =1 | X,Y) =P =1]| X);and (i) rpg(X) =P(d=1|
X)>0forall X.

Assumption [1] (i) and (ii) constitute the strong ignorability condition (Rosenbaum and Rubinj;
1983). This assumption holds if the set of covariates contains all predictors for the outcome
that affect the possibility of being selected in sample B. Assumption|1|(i) states the ignorability
of the selection mechanism to sample B conditional upon the covariates. Under Assumption
(i), E(Y | X) = E(Y | X,6 = 1) can be estimated based on sample B. Assumption([f](ii) implies
that the support of X in sample B is the same as that in the finite population. Assumption
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(i) does not hold if certain units would never be included in the non-probability sample. The
plausibility of Assumption 1 (ii) can be checked by comparing the marginal distributions of the
auxiliary variables in sample B with those in sample A.

Under the sampling ignorability assumption, there are two main approaches: i) the weighting
approach of constructing weights for sample B to improve the representativeness of sample B;
ii) the imputation approach of creating mass imputation for sample A using the observations in
sample B. There is considerable interest in bridging the findings from a randomized clinical trial
to the target population. This problem has been termed as generalizability (Cole and Stuart;
2010; Stuart et al.; 2011, 2015}, [Keiding and Louis|; 2016)), external validity (Rothwell; [2005) or
transportability (Pearl and Bareinboim|;2011; /Rudolph and van der Laan;|2017) in the statistics
literature.

3 Mass imputation

In mass imputation, we view the probability sample as having 100% missing values for the
study variable. We can then use the non-probability sample as training data to develop an
imputation model and construct a synthetic dataset for the probability sample. Mass imputation
was originally developed in the context of two-phase sampling (Breidt et al.; 1996} |Kim and
Rao; 2012) to create synthetic data for the probability sample. Rivers| (2007), [Kim et al.| (2021),
and (Chen et al.| (2021) develop mass imputation for a probability sample using observations
from a non-probability sample. Even though the observations in the non-probability sample
are not necessarily representative of the target population, the relationships among variables
in the non-probability sample can be used to develop a predictive model for mass imputation.
Thus, the non-probability sample can be used as training data for developing a model for mass
imputation.

We use x and y to denote the realized value of X and Y in the sample, respectively. In a
parametric approach, let m(x; 3) be the posited model for m(x) = E(Y | x), where 3 € RP is
the unknown parameter. Under Assumption (1] a consistent estimator of 3 can be obtained by
fitting the model to sample B. Thus, we can estimate 3 by finding the minimizer of

QB) = {yi — m(xi; )} /v(xi:8) =0

i€B

for some v(x;8) = V(Y | x;8). Thus, we use the observations in sample B to obtain 3 and

construct y; = m(x;; 3) for all i € A.

o~

Using ; = m(x;; B) for all i € A, we can construct

=N dab;
icA

as the mass imputation estimator of u = N~' S 4, where da; is the design weight of
unit ¢ for sample A. The justification for ji; relies on correct specification of m(x;3) and the
consistency of B For variance estimation, either linearization method or bootstrap method can
be used. See [Kim et al.| (2021) for more details.

Instead of using parametric mass imputation with a parametric model, we can develop non-
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parametric mass imputation using nonparametric models. |Rivers (2007) first proposed using
nearest neighbor imputation for mass imputation and its asymptotic theory is rigorously dis-
cussed by Yang et al.| (2021).

4 Propensity Score Method

Under Assumption 1, we can further build a model for P(6 = 1 | x) and use it to construct the
propensity score weights for sample B. Suppose that 7(x) = P(6 = 1 | x) has a parametric
form such that 7(x) = 7(x; ¢) for some ¢. The population log-likelihood function for ¢ can be

written as
N

1(¢) =) [0ilogm(xi; ¢) + (1 — 6;) log{1 — (x5 0)}]

=1

Thus, the (population-based) maximum likelihood estimator of ¢ can be obtained by solving

N

- R 2 VN
5,002 Y { st = s betio) o,

=1

which is equivalent to solving

N N
> Gih(xiz¢) = > w(xi; $)h(xi; 6) (1)
i=1 i=1

for ¢, where

m(xi; O){1 — m(xi;0) }
and 7(x; ¢) = On(x;¢)/0¢. The left side of (1) can be constructed from sample B. Thus, we
have only to estimate the right side of (1). Using the sampling weights, we can use

N
> Gih(xiz¢) = daim(xi; ¢)h(xi; 8), (2)
=1

€A

which does not require identification of the elements in both samples. |Chen et al.| (2020) first

proposed estimation using for propensity score method for voluntary samples. The final

propensity score (PS) estimator for 1 is

Zi ﬁflyz‘

LH, (3)
>ien

where #; = m(x;; ¢). lf ng = | B| is small compared with N, then the estimated probability 7 (x;)

can take small values, and the resulting PS estimator in (3) can be unstable.

fips =

Elliott and Valliant (2017) proposed a different approach of propensity score method for data
integration. Note that

P(é—l]x)ocP(IA—lx)-]m,
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where 14 is the sample inclusion indicator function for sample A. Thus,

1 fxIa=1)
PIy=1 AR il . S/ : .

xAPUa =1 x)} - S s = 060 - R0

Elliott and Valliant| (2017) proposed estimating two terms separately. To estimate the first term

w(x;), using

1
PG =1x)

1

E(w; | xi, 14, =1) = Plas=1]%)
g = i

one can apply regression of w; on x; from sample A. To estimate the second term, [Elliott and
Valliant/ (2017) proposed using

f(X‘IA:D P(IAZI‘X,IA—F(SZI)
fx[6=1) © PE=1[x1Ia+6>1)

R(x)

One can apply a suitable classification method from the combined sample to estimate R(z).
The final pseudo weight for sample B is then

Rafei et al.[(2020) uses Bayesian Additive Regression Trees (BART) to estimate the two com-
ponents in the pseudo weights for voluntary big data sample.

5 Calibration weighting

The second weighting strategy is calibration weighting, or benchmarking weighting (Deville and
Sarndal;|1992; |Kott; 2006; Breidt and Opsomer;; 2017). This technique can be used to calibrate
auxiliary information in the non-probability sample with that in the probability sample, so that
after calibration the non-probability sample is similar to the target population (Lee and Valliant;
2009).

Instead of estimating the propensity score model and inverting the propensity score to cor-
rect for the selection bias of the non-probability sample, the calibration strategy estimates the
weights directly. Toward this end, we assign a weight wp ; to each unit ¢ in the sample B so

that
ZWB,in‘ = Z daix;, (4)
1€EB €A
where » ., da;x; is a design-weighted estimate of the population total of X from the prob-
ability sample. Constraint is referred to as the covariate balancing constraint (Imai and
Ratkovic} [2014), and weights Op = {wp, : i € B} satisfying (4) are the calibration weights.
The balancing constraint calibrates the covariate distribution of the non-probability sample
to the target population in terms of X. Instead of calibrating each X, one can use model
calibration (Wu and Sitter; |2001). In this approach, one can posit a parametric model for
E(Y | x) = m(x; 3) and estimate the unknown parameter 3 from sample B. The model-based
calibration specifies the constraints for Qp as

> wpim(xi; B) =D daim(xi; B). (5)

i€B €A
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Suppose that the finite population follows the following superpopulation model:
yi = m(x;) + e (6)

with E(e; | x;) = 0 and V(e; | x;) = o?. If we can express m(x) = Zﬁzl Brbr(x) for some
Bk, k=1,2,---, L, thatis m(x) € span{b;(x),--- ,br(x)}, then we may use

ZWB,i [b1(xi), - - Z dai[b1(xi), -, br(xi)] (7)
i€B €A
in the calibration estimation. As long as m(x) € span{b;(x),---,br(x)} holds, the calibration

weights in (7) satisfy (5) without estimating 3. The dimension L may increase with the sample
size. In this case, some regularization method can be used to choose L. For example, Mon-
tanari and Ranalli (2005) used neural network models and Breidt et al. (2005) used penalized
Spline models for nonparametric calibration estimation.

Writing fi, = N™1' Y, c s wi,iyi, We can express

N
fo — p = N_I{ZWB,im(Xi)—Z (x; }+N_ {Zszez Zez}
i€B =1 1€B
= C+D.

Since E(D) = 0 by model (6), we may require E(C) = 0 to get unbiased estimation. A
sufficient condition for E(C) = 0 under model (6) is the model calibration condition in (5)
or (7). To find the optimal calibration estimator that minimizes variance of /i, in the class of
unbiased estimators under model (6), we have only to minimize £(D?) subject to the calibration
constraints. Note that

N
E(D?) = var {N1 Z((Sin»i - 1)@1}

N
= Z (biwpi —1)%0* = o N2 Z(wB’i —1)% 4 constant.
i=1 i€B
Thus, we can formulate the calibration weighting problem as finding the minimizer of Qy(wpg) =
> iep(wsi — 1)? subject to (4) or (7) with wp = {wp,;i € B}. However, using Qo(wp) as the
objective function for the calibration problem can lead to negative calibration weights.

To avoid negative calibration weights, following Hainmueller (2012), we may consider the en-
tropy divergence

= ZWB,i log(wg.i) (8)

ieB

as the objective function for optimization. Thus, we find the minimizer of Q(wp) subject to
wp; >0, foralli € B; Y, pwp; = N, and the balancing constraint (4) or (7). This optimization
problem can be solved using convex optimization with a Lagrange multiplier. Other objective
functions can also be considered. By introducing Lagrange multiplier A, the objective function

becomes
wBa Zszlongz_)\ {ZszXz ZdAzxz}- (9)

i€B i€EB €A
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Thus, by minimizing (9), the estimated weights are

N exp <3\,xi)
wp; = wp(Xi A) = N =
Y icB €Xp </\ xi)

I

where X solves
U = Zexp (Xxi) {xi — Nt Z dA,Z-XZ} =0. (10)
i€EB i€EA

Finally, the calibration weighting estimator is

- 1
Feal = 37 ZWB,iyi~ (11)
i€EB
Variance estimation of fi.,; can be obtained by the standard M-estimation theory by treating A
as the nuisance parameter and as the corresponding estimating equation.

Chan et al| (2016) generalize the calibration idea further to develop a general calibration
weighting method that satisfies the covariate balancing property with increasing dimensions of
the control variables for m(x). |Zhao| (2019) developed a unified approach of covariate balanc-
ing method using Tailored loss functions. The regularization techniques using penalty terms in
the loss function can be incorporated into the framework. The covariate balancing condition,
or calibration condition, in , can be relaxed using soft calibration (Rao and Singh;; (1997
Guggemos and Tille; [2010). Wong and Chan| (2018) used the theory of reproducing Kernel
Hilbert space to develop a uniform approximate balance for covariate functions.

6 Doubly robust estimation

To improve the robustness against model misspecification, one can consider combining the
weighting and imputation approaches (Kim and Haziza; 2014). The doubly robust (DR) esti-
mator employs both the propensity score and the outcome models, which is given by

N

. PPN 0; - -~

Hdr = :udr(aaﬁ) = i Z [wB(xa){‘% - m(Xi;ﬂ)} =+ IA,idA,im(Xi§,3) . (12)
i=1 19

The estimator 74, is doubly robust in the sense that it is consistent if either the propensity
score model or the outcome model is correctly specified, not necessarily both. Moreover, it
is locally efficient if both models are correctly specified (Bang and Robins|; 2005} Cao et al.;
2009). Let figr = N ! > ica da,y: be the Horvitz—Thompson estimator that could be used if y;
were observed in sample A. Note that

N

~ ~ 1 1 ~

Hdr — UHT = N 21 {IA,idA,i —oi{mp(xi; )} 1} €i,
1=

where ¢; = y; — m(x;; 3). To show the double robustness of ji4,, we consider two scenarios. In
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the first scenario, if mp(x; ) is correctly specified, then

E (figr — finr | Fn) = =) daiei+ Y &
i€A iU

which is design-unbiased for zero. In the second scenario, if m(x;3) is correctly specified,
then E(e;) = 0. In both cases, jiq;: — it is unbiased for zero and therefore iy, is unbiased for
1y Asymptotic expansion of the DR estimator is simplified if the model parameters satisfy the
orthogonality condition of Randles|(1982). That is, if

0

2 ioe(eB) = 0 and (e, B) = 0 (19)

B

~

at (a, B) = (&, 3), then we can safely ignore the uncertainty of estimating («, 3) in the final DR
estimation. We can impose in constructing the estimating equation for model parameters.

Yang et al.[ (2019) extended DR estimation to the high dimensional covariate problem. If both
the outcome model and the propensity score model are nonparametric, then the estimator of
the form (12) is no longer doubly robust. In this case, estimation using sample splitting can be
considered. See [Chernozhukov et al.| (2017) for details.

7 Discussion

Data integration is a new field of study with a wide range of prospective research subjects. We
have considered the situation of merging data from two samples, one from probability sampling
and the other from non-probability sampling, where the probability sample lacks the study vari-
able of interest. As a result, information bias affects the probability sample, whereas selection
bias affects the non-probability sample. We can adjust for selection bias in the non-probability
sample or adjust for information bias in the probability sample using statistical procedures for
handling missing data. The majority of data integration methods are based on the unverifiable
assumption that the sampling mechanism for the non-probability sample is non-informative.
Suppose the non-probability sample is big data. In that case, we can develop the dual frame
estimator approach as in|Kim and Tam|(2021)), and the non-informativeness assumption of the
sampling mechanism is unnecessary.

Even when the non-informativeness assumption (Assumption 1) is true, the proposed data in-
tegration methods employ explicit assumptions for the outcome regression model or sample
selection model. Modest model misspecification does not necessarily lead to biased point es-
timation, but may increase the variance. In this case, the proposed variance estimators based
on the assumed model may underestimate the true variance of the data integration estimators.
Achieving robustness and assessing uncertainty under modest model misspecification is an
important future research topic.

If the sampling mechanism is informative, imputation techniques can be developed under the
strong model assumptions for the sampling mechanism (Morikawa and Kim|;2020). As in the
non-informative sampling case, the informative sampling assumptions are unverifiable. Thus,
sensitivity analysis is recommended to evaluate the robustness of the study conclusions to
unverifiable assumptions. Or, if budget is allowed, a follow-up subsampling can be used to
build a realistic model for the informative sampling mechanism. Developing tools for data
integration under informative sampling is another important research topic.
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