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Abstract

Representing a collection of relevant units by a graph allows one to incorporate the connections (or
links) among the units in addition to the units themselves. One may be interested in the structure
of the connections, or the links may provide effectively access to those units that are the primary
interest. Either way, graph sampling provides a statistical approach to study real graphs. Just like
sampling from finite populations, it is based on exploring the variation over all possible sample graphs,
which can be taken from the given population graph according to a specified method of probability
sampling, and design-based inference using a suitable graph sampling strategy is valid “whatever the
unknown properties” (Neyman, 1934) of the population graph.
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1 Sampling from real graphs

Birnbaum and Sirken (1965) consider ‘indirect sampling’ of patients via an initial sample of medical
centres. Since any in-scope patient may receive treatment at multiple places, not all of which are
among the actual sample of medical centres, additional knowledge of all the out-of-sample treatment
places of each sampled patient needs to be collected in order to calculate the patient’s sample inclu-
sion probability. In addition to the Horvitz-Thompson estimator (HTE, Horvitz and Thompson, 1952),
Birnbaum and Sirken (1965) propose 2 unbiased estimators in this unusual situation.

Zhang (2020b) considers sampling to estimate the prevalence of an epidemic in a given population
U, where one would like to increase the sample yield of cases, i.e. persons with y; = 1 in contrast to
noncases with y; = 0, in order to improve the design efficiency. Let sy be an initial sample from U, with
inclusion probability m; = Pr(i € sg). Since the virus is transmitted via personal contacts, consider
adaptive network tracing, where all the contacts of each case i in sy are included, and the procedure
is repeated for them, and so on until no more cases can be added in this way. Let 7(;) = Pr(i € s),
where s is the final sample. Since any case i that is in contact with other cases can be included in s
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by adaptive network tracing, even when it is not selected in s initially, we achieve ;) > ;. This is a
special case of adaptive cluster sampling (ACS, Thompson, 1990) with binary ;.

Zhang and Oguz-Alper (2020) develop the theory, which enables one to represent both the situa-
tions above as sampling from a bipartite incidence graph (BIG). Patone and Zhang (2020) develop
generally the incidence weighting estimator (IWE) under BIG sampling (BIGS), which encompasses
all the estimators considered by Birnbaum and Sirken (1965). BIGS and the associated IWE form a
flexible graph sampling strategy, which extends the finite-population (FP) sampling strategy consist-
ing of a probability sampling design and the associated HTE. The BIGS-IWE strategy is applicable to
many unconventional probability sampling techniques, which “are not explicitly stated as graph prob-
lems but which can be given such formulations” (Frank, 1977), including indirect sampling (Birnbaum
and Sirken 1965; Lavallee, 2007), network sampling (Sirken, 1970; 2005), adaptive cluster sampling
(Thompson, 1990, 1991) and line-intercept sampling (Becker, 1992; Thompson, 2012). See Zhang
and Oguz-Alper (2020) and Patone and Zhang (2020) for the relevant discussions.

As Zhang and Patone (2017) point out, in all the aforementioned situations, one is interested — rather
conventionally — in some finite population total (or mean), where the connections (or links) among
the relevant population elements and sampling units — more or less unconventionally — provide the
access to the target population, which otherwise would have been ineffective or impractical to sample.
Meanwhile, in sampling from arbitrary graphs generally, one is typically interested in the structure of
the links themselves, often expressed in terms of a particular motif, which may simply be defined as
a subgraph of specific characteristics. An early example is snowball sampling by Goodman (1961),
where the motif of interest is ‘pair with mutual relationships’ in a special graph where all the nodes
have out-degree one. In a series of work spanning over several decades (e.g. Frank, 1971, 1977,
1978, 1979, 1980, 1981, 2011), Ove Frank studies from this perspective graph sampling of motifs
defined for nodes, dyads, triads (star, triangle), components, etc. Zhang and Patone (2017) provide
a structure of graph totals of various motifs, to reflect the extended scope of investigation.

Thus taken together, representing a population of relevant units by a graph allows one to incorporate
the connections (or links) among the units in addition to the units themselves. One may be either
interested in the characteristics of the graph, or the links may provide effectively access to those
units that are the primary interest. Either way, graph sampling provides a statistical approach to study
real graphs. Just like sampling from finite populations, it is based on exploring the variation over all
possible sample graphs, which can be taken from the given population graph according to a specified
method of probability sampling, and design-based inference using a suitable graph sampling strategy
is valid “whatever the unknown properties” (Neyman, 1934) of the population graph.

As much as graph sampling is versatile, it can be intricate when it comes to the formulation of graph
sampling strategy in various situations. Below are three key elements in any case.

I. Definition of sample graph. Zhang and Patone (2017) define sample graph, where the specified
sample observation procedure makes use of incident edges. Other observation procedures are
conceivable which, in particular, may involve random jumps or teleporting to non-adjacent nodes.
Tweaks of the definition of sample graph are needed accordingly.

Il. Basis of inference. Zhang and Patone (2017) synthesise the existing graph sampling theory,
where inference is based on the sample graph inclusion probabilities of the motif of interest.
The IWE makes more extensive use of the same basis of inference, allowing for many unbiased
estimators in addition to the HTE. More generally, inference can be based on other avaiable
sampling probabilities associated with the given graph sampling method, as e.g. will be discussed
for random walk sampling, which call for principally different strategies.
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lll. Eligible sample motifs. A motif that is observed in the sample graph is nevertheless ‘ineligible’ for
estimation, if the required probabilities for inference cannot be calculated. Eligibility of a particular
sample motif depends on the availability of the knowledge of its ancestry (Zhang and Patone,
2017). Essentially, apart form the actual way by which a motif is sampled, one needs to know
how else it could have been sampled under the given sampling method. The concept of ancestry
under graph sampling generalises the concept of multiplicity defined by Birnbaum and Sirken
(1965), where it amounts to the knowledge of the out-of-sample medical centres for each sampled
patient. Identification of eligible sample motifs is the key to any feasible graph sampling strategy.

In the rest of the paper, examples will be given to elaborate the points above. For the details that may
be necessary for a fuller comprehension the reader is kindly referred to the relevant sources.

2 BIGS-IWE generalises FP-sampling and HT-estimation

Denote by B = (F,Q; H) a population BIG, where the node set is bipartitioned into F' and €2, such
that (directed) edges exist only from F' to Q, denoted by (ix) € H, iff the selection of i € s9 C F
leads to that of x from Q. As explained and illustrated below, the strategy BIGS-IWE generalises the
familiar strategy of ‘FP-sampling and HT-estimation’.

Denote by U = {1,..., N} a population of size N. Let y; be a constant associated with each k € U,
with population total & =, ;; yx. Denote by s a sample from U, according to a method of probability
sampling, where the sample inclusion probability Pr(k € s) is either known in advance or can be
calculated for the sample units afterwards. The HTE of 6 is 0y = > kes Uk/Pr(k € s).

For element sampling, let FF = Q = U, where (i) € H iff i and « refer to the same population
element. The correspond BIGS representation is given to the left in Figure (1l For cluster sampling,
illustrated to the right in Figure [1} let F' consist of the clusters (of which there are M in total) and
Q = U the elements that are nested in the clusters, where (ix) € H iff element « belongs to cluster i.
Clearly, the strategy BIGS-HTE suffices for these familiar FP-sampling situations.

Hl /€2 PR HN Hl K2 PR /€N
i1 io in i1 in

Figure 1: BIGS representation of finite-population sampling of elements (left) or clusters (right).

For indirect sampling of Birnbaum and Sirken (1965), let F' consist of the medical centres and (2 the
patients of interest, where (ix) € H iff patient x receives treatment at centre i. The BIG is illustrated in
Figure[2, where the mapping from F to 2 can be many-many, instead of simply one-one or one-many
as in Figure[l] Let us consider the elements | - lII, in order to arrive at the strategy BIGS-IWE.

<IN 1

Figure 2: BIGS in general

M

|. Following the definition of Zhang and Patone (2017), the sample graph under BIGS from B is
generally given as follows. Let sy be an initial sample from F, with sample inclusion probabilities ;,
mi;, etc. Apply the incident forward observation procedure, by which all the out-edges from s, are
included in the sample of edges, denoted by H, = {(ix) : (ix) € H,i € so}. The sample nodes are
the union of sp and those incident to the edges in H, i.e. so U Qs, where Q; = a(sg) = Ujes, i, and
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a; = {k: (ik) € H} are the successors of i in B. The sample graph under BIGS is given by

Bs = (307 Qs; Hs)

[l. The inference is based on the sample inclusion probabilities. The fact that each « in Qg can
possibly be accessed via multiple sampling units in F' calls for the concept of ancestry under graph
sampling. For instance, suppose i1 € sy but not i, or i5. To calculate the inclusion probability of the
patient k2 € «;,, one must collect the information that it receives treatment at i and i3 as well, i.e.
how else it could have been sampled under BIGS here.

lll. The ancestry knowledge of x < €2 is secured and it is eligible for estimation of 6 = >, _, ys,
where y,, is a constant associated with each « € , provided the observation of 3, \ sg, where
B = {i € F: (ir) € H} are the predecessors of « in B, although 5, \ sy are not part of the sample
graph B;. It follows that all the nodes in € are eligible, provided the observation of 3(a(sg)) \ so in
addition to Bs, where 3(a(s0)) = Uyea(so)Br-

Let W;,. be the incidence weight associated with each edge (ix) € Hs. The IWE of 6 is given by

b= w2 (1)

(ik)€Hs !

(Patone and Zhang, 2020), where m; = Pr(i € sp) is also the probability that (i) is included in
Bs under BIGS. While the HTE is defined for €, the IWE is defined for the sample BIG edge set
H(Bs) = H,, where each (ix) in Hy is incident to i in so and « in Q. Patone and Zhang (2020)
show that the IWE encompasses all the estimators considered by Birnbaum and Sirken (1965). In
particular, the HTE is a special case, where W, varies according to s, = so N («, subjected to the
condition that ensures unbiased estimation of # over repeated sampling: for any « € €2,

Z E(Wm‘l € 80) =1.
€6k

This generalises the result of Birnbaum and Sirken (1965) for constant weights, denoted by w;, for
distinction, which requires Zieﬁm wix = 1 forany k € Q, including w;,, = 1/m,, and m,, = |Bx|.

3 BIGS-IWE for unconventional sampling: ACS as an example

3.1 ACS with binary outcome variable

Let U be the population of size N and u = 6/N the prevalence of interest. Adaptive network tracing
requires the population U to be represented by the population graph G = (U, A) where, in addition
to the node set U, the edge set A contains all the relevant contacts. We shall treat the graph as
undirected and simple, where (ij), (ji) € A if persons i and j are in-contact, and there is only one
edge either way regardless of the frequency or intensity of the contact between i and ;.

O * * O °

7 |

O * O °

Figure 3: Cases %, noncase edge nodes (), other noncases o

Figure [Q)illustrates a part of such a population graph G, with stars for cases and circles for noncases.
In particular, all the cases are partitioned into case networks, where those in the same network all
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have y; = 1 and are connected to each other in G; two case networks are shown in Figure 3 Next, a
(network) edge node is a noncase that is adjacent to at least one case network; the four edges nodes
in Figure[3|are shown as bigger circles than the other noncases.

ACS from G employs contact tracing starting from an initial sample sy from U, which is adaptive
because tracing is only applied to the contacts of % but not () or o. The final sample s by ACS can
be divided into three parts: (i) a set of case networks, (ii) the edge nodes, and (iii) the remaining
noncase nodes in the initial sample sy which do not belong to (i) and (ii). Zhang (2020b) considers
the efficacy of several ACS designs for cross-sectional as well as change estimation of prevalence.
These graph sampling methods allow one to unite tracing for combating the disease and sampling
for estimating the prevalence during an epidemic outbreak.

IFAT 1T
* * O * O o °
Figure 4: BIGS representation of ACS from G with binary outcome variable

Following Zhang and Oguz-Alper (2020), one can apply the BIGS-IWE strategy to ACS from G above,
thereby allow other unbiased estimators in addition to the HTE. Let F = Q = U in B, and let H
contain the incident observation relationships among the nodes in G under adaptive network tracing.
For instance, let the two leftmost % in Figure [4be the two in the same network in Figure 3} and let O
next to them in Figure [4] be one of their edge nodes in Figure 3] Under ACS from G, the selection of
either % in so leads to all the three of them to be included in the sample s, yielding the corresponding
edges from these two % in 5. Meanwhile, selecting any (O in sy does not lead on to any adjacent
case network, such that () has only an edge to itself in B. Similarly, the other two edge nodes in
Figure [3|can be included in B, which are omitted here to avoid cluttering the figure visually.

Thus, the sample graph under BIGS from B is the same as that by ACS from G. The inference basis
is still the relevant sample inclusion probabilities. Since each sample case is observed together with
its network under ACS, the knowledge of its ancestry is secured for the BIGS representation with 5
defined above. But ancestry is generally unclear for any edge node () in Figure |4} since we would
not observe any of its %-ancestors in a case network unless that network happens to intersect s.
However, this does not matter here, since a noncase «x in Q2 with y,, = 0 contributes nothing to the
IWE regardless its inclusion probability. Thus, using only the sample case nodes as the eligible
motifs in 2, the BIGS-IWE is a feasible strategy for ACS from G with binary outcome variable.

3.2 ACS with continuous outcome variable

Simply ignoring the edge nodes would not be valid for ACS with continuous outcome variable, where
an edge node generally has a non-zero value below the threshold chosen for adaptive sampling.
Thompson (1990) proposes an inferential approach, where one modifies two of the estimators of
Birnbaum and Sirken (1965). Zhang and Oguz-Alper (2020) develop the BIGS-IWE strategy. Let us
illustrate their approach here using the example of Thompson (1990).

The population U consists of N = 5 spatial grids, with associated yy = {1,0,2,10,1000} for the
amount of species of interest. Each grid has either one or two neighbours which are adjacent in the
undirected graph G = (U, A) below, where we simply denote each grid (or node) by its y-value as
Thompson (1990). This is a valued graph where G is known but the associated y;; are unknown.

G: 1 0 2 10 1000

Figure 5: Graph for ACS (Thompson, 1990)
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Given an initial sample s of size 2 by simple random sampling (SRS) from U, one would survey all
the adjacent grids (in both directions if possible) of a sample grid i if y; exceeds the threshold value
5 but not otherwise, and so on. A network in G may consist of one or more connected nodes all with
y-values above the threshold such as {10, 1000} here, or it may be a single node with y-value up to
the threshold, some of which are edge nodes such as node 2 here. The interest is to estimate the
mean amount of species per node, denoted by 1 = 6/N, where § = >, _;; vi.

Since the sample inclusion probability of any edge node is generally unknown under ACS from G,
Thompson proposes to modify the HTE, such that an edge node i is used for estimation (i.e. eligible)
only when i € sq directly, the probability of which is m; = Pr(i € s9) = n/N under SRS of sy. Similar
modification can be applied to the 2nd estimator of Brinbaum and Sirken (1965), which is referred to
as the Hansen-Hurvitz (HH) type estimator by Thompson (1990).

Zhang and Oguz-Alper (2020) denote the strategy of Thompson (1990) by (B, é}{T) when the modified
HTE is used as the estimator, where the population 5 has F = Q = U and the edge set H contains
all the observational links under ACS from G. They observe that it is as well possible to modify the
sampling when constructing a feasible strategy, say, (ACS*, HT) or (ACS*, HH). In particular, they use
BIGS as ACS*, in which case the IWE would unify and generalise the HTE and HH-type estimator.

For a generally feasible strategy with BIGS one can use instead B* = (U,U; H*) in Figure [6| The
observational links (10, 2) and (1000, 2) under ACS from G are removed to ensure ancestral observa-
tion in B*. For instance, given sy = {0, 2}, the observation procedure of ACS means 10 and 1000 are
not observed, as in B* where 2 in 2(B*) has only itself as the ancestor in F'(5*). One can now use
the unmodified HTE under BIGS from B*, as a special case of IWE, denoted by (B*, éy).

B*: 1 0 2 10 1000
[ |
1 0 2 10 1000

Figure 6: A feasible BIGS-IWE strategy for ACS

The two strategies (B, éj‘qT) and (B*, éy) lead to the same estimator, since the eligible sample nodes
in Q¢ are the same under both. The difference is that applying the Rao-Blackwell method does not
change 6, under BIGS from B*, whereas it changes 8%, under BIGS from 5.

Another possible strategy using BIGS in this particular setting is to make an edge node ineligible, if
itself is selected in sy but not its neighbouring above-threshold network, with B in Figure Denote
this strategy by (8", éy). It is feasible here because the egde node 2 has only one above-threshold
neighbouring network in G, i.e. {10, 1000}; but it would be infeasible generally provided an edge node
has two or more such networks in G.

Bt . 1 0 2 10 1000

BN

0 2 10 1000
Figure 7: Another BIGS-IWE strategy for ACS

The BIGS-IWE strategy extends the inferential approach to ACS pioneered by Thompson (1990),
where one can modify either part of a standard strategy (sampling, estimator) when it is otherwise
infeasible in a given situation. For the example discussed above, Table[{]taken from Zhang and Oguz-
Alper (2020) provides the numerical details of the three strategies (B, 0%,1.), (3*,6,) and (B',4,,).
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Table 1: Strategies using BIGS for ACSfrom G : 1 —0—2— 10 — 1000.

(B.07rr) (B".0,) (B'.0,)
50 0 P | S fly | s fly
1,0 1,0 0.500 | 1,0 0.500 | 1,0 0.500
1,2 1,2 1.500 | 1,2 1.500 | 1 0.500
0,2 0,2 1.000 | 0,2 1.000 | O 0.000
1,10 1,10,2,1000 289.071 | 1,10,1000 289.071 | 1,10,2,1000 289.643
1,1000 1,1000,2,10 289.071 | 1,1000,10 289.071 | 1,1000,2,10 289.643
0,10 0,10,2,1000 288.571 | 0,10,1000 288.571 | 0,10,2,1000 289.143
0,1000 0,1000,2,10 288.571 | 0,1000,10 288.571 | 0,1000,2,10 289.143
2,10 2,10,1000 289.571 | 2,10,1000 289.571 | 2,10,1000 289.143
2,1000 2,1000,10 289.571 | 2,1000,10 289.571 | 2,1000,10 289.143
10,1000 | 10,1000,2 288.571 | 10,1000 288.571 | 10,1000,2 289.143
Variance 17418.4 17418.4 17533.7

4 Graph sampling: On to general theory

Sampling from arbitrary graph G = (U, A) involves a number of conceptual generalisations of BIG
sampling discussed above. Given limited space, we focus our discussion here on the following.

» So far we have only seen examples of motifs defined for the nodes of G. Zhang and Patone
(2017) define generally motifs and their graph total, i.e. instead of population total over U.

» There are many observation procedures in a graph, which make use of the edges incident to an
initial sample of nodes. Zhang and Patone (2017) discuss induced and incident procedures.

* Repeating an incident observation procedure leads to multiwave sampling. T-wave snowball
sampling (T-SBS, Zhang and Patone, 2017) is the probabilistic version of breath-first search in
graphs, and targeted random walk (TRW) is that of depth-first search.

» Zhang and Patone (2017) consider inference based on the graph sample inclusion probabilities.
Depending on the observation procedure, other sampling probabilities may be necessary.

Definitions Let G = (U, A) consist of nodes U and edges A. Let A;; contain the edges from i to
J, and a;; = |A;;|. Attaching values to U or A yields a valued graph. One may consider a graph to
be the structure of a valued graph. We do not consider separately sampling from graphs or value
graphs. Generally speaking, a graph sampling method may depend on the values associated with G,
and the values associated with the sample graph G, are observed together with G.

Let M be a subset of U. Let G(M) be the subgraph induced by M, whose edge set is given by
{Ai; : (i,7) € M}. A subgraph G(M) with specific characteristics is called a motif, denoted by [M].
For example, [i : a;+ = 3] is a motif of node with out-degree 3, [i,j : a;ja;; = 1] of a node pair with
mutual simple relationship, and [i, j : a;; + a;; = 0] of @ non-adjacent node pair.

Let y(G(M)), or simply y(M), be a function of G(M). Let Q contain all the relevant M. Let

0= Z y(M) (2)

MeQ

be the graph total over Q. It is said to be the k-th order, it |M| = k for all M € Q. Although It is
possible to let Q in be the set of motifs of interest directly, and let y,. be a function of motif «,
it can be convenient if the summation is over all the relevant node sets. For instance, the motifs
4,7 : ajja;; = 1] can be enumerated over Q = {(i,5) : i # j € U}, with y(4, j) as the corresponding
counter. If Q is the set of these motifs, then writing § = |(2| is more natural than 0 = >, 1.
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Zhang and Patone (2017) consider induced or incident observation procedure given an initial sample
of nodes, denoted by so. Take G: a b — ¢ — d for example. Let sg = {b,d}. We observe none of
the edges if the observation procedure is induced, or the edge (bc) if it is incident forward, or (cd) if
incident backward, or both (bc) and (cd) if incident reciprocal.

Ove Frank studies sampling of node sets or motifs using such observation procedures, where a sam-
ple of motifs from the population of motifs is conceived in analogy to a sample s from the population
U. Zhang and Patone (2017) define the sample graph G = (Us, As) as a subgraph of G.

Initial sample of nodes sy C U, with p(so), m;, m;j, etc.

Application of the specified observation procedure, starting from s.

Specify the reference set s, C U x U, such that A; = AN spef
» Let Us = sp U Inc(As), where Inc(Ay) denotes the nodes incident to the edges in As.

Compared to sampling from finite populations, a defining feature of sampling from graphs is that one
uses the edges. The definition of sample graph above includes the situation, where the initial node
sample sq is given as the nodes that are incident to a sample of edges directly selected from A. Direct
sampling of edges may be useful e.g. if G is known but is too large to be counted. It is then possible
for the observation procedure to specify that no additional edges need to be sampled.

It is convenient to specify the sample edges A, via s.f, Which explicates the parts of the adjacency
matrix [a;;] that are observed given s, and the observation procedure. Takeagain G: a b —c—d
for example. Let the rows and columns of [a;;] be arranged in the order a, b, c,d. The set s, given
so = {b,d} and the various observation procedures are shown in below.

00 0 0 0 0 0 0 0 [o] o [o] o 0] o [0
0 0 1[0 o] [o] [1] [o] 0 [0] 1 [o] @@@
00 0 1 0 0 0 1 0 [0] o o] o [1]
0 [o] o o o] [o] [o] [o] 0 [o] o [o] @@@@

Induced Incident forward Incident backward Incident reciprocal

T-SBS To keep focus, let incident OP stand for incident forward observation procedure from now
on. Note that in undirected graphs, incident is the same as incident reciprocal. Given an initial seed
sample sy from U, let s; = a(sp) \ so be the 1st-wave seed sample. Repeat the incident OP for s,
which may or may not result in a non-empty 2nd-wave seed sample s2 = a(s1) \ (so U s1). Carry on

this way yields the seed samples ss, ..., sp. The seed sample of T-SBS is given by s = Uf;ol Spe

The reference set s 0f T-SBS is s x U in directed graphs or s x U U U x s in undirected graphs. A
motif [M] is observed in the sample graph G; iff M x M € s, Frank and Snijders (1994) consider
1-SBS for node (1st-order) graph totals. Zhang and Patone (2017) develop the HTE for finite-order
graph totals under T-SBS. The basis of inference is the graph sample inclusion probabilities.

a 1 j c

NI

b h l
Figure 8: An example of 4-cycle [h, 1, j,]

However, not all the motifs observed in G are eligible for estimation. Consider the 4-cycle motif [M]
with M = {h, i, 4,1} in Figure[8l We need two waves to observe a 4-cycle, starting from any node in
M, so that it is observed under 3-SBS starting from any of a, b, c. If only a is selected in sy, then we
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would observe this 4-cycle under 3-SBS, as well as b as another of its ancestors, but not ¢, so that its
sample inclusion probability under 3-SBS cannot be calculated and it remains ineligible.

Zhang and Oguz-Alper (2020) develop the theory for eligible sample motifs under T-SBS. One could
carry on SBS further, until one has obtained all the ancestors of the sample motifs observed under
T-SBS. One could use only the eligible sample motifs under T-SBS, in a manner resembling the
modified HTE that excludes the edge notes under ACS. As explained earlier, it is also possible to
modify the sampling to allow for the unmodified HTE. Zhang and Oguz-Alper (2020) develop feasible
BIGS representation for T-SBS with given 7. One can then apply the IWE instead of only the HTE
using this BIGS-IWE strategy, tailored to the number of waves when sampling is terminated.

Targeted random walk One can envisage a discrete-time walk in a graph as travelling from one
city to another via the existing roads that connect the cities. In a random walk, one takes randomly
one of the possible roads out of the current city, repeat the same at the next city, and so on. A walk
reaches gradually its equilibrium, if the chance that one visits a given city at a given time depends
less and less on the particular starting point. The stationary probability that a walk takes one to a
given city is the fraction of times the city is visited when the walk is at equilibrium.

Random walk in large and possibly dynamic graphs has been used in many disciplines (Masuda et
al., 2017), including Google PageRank (Brin and Page, 1998), especially if the walk is fast-moving.
For a connected undirected graph, the stationary probabilities of a random walk, denoted by =; for
i € U, are known up to a proportional constant for the nodes visited, but not the ones yet to be visited.
Thompson (2006a) applies the Metropolis-Hastings acceptance mechanism to the proposed moves,
in order to achieve other targeted stationary probabilities, such as «; « degree+1. This requires one
to observe all the neighbours of all the adjacent nodes of the current one, which may be impractical.
Avrachenkov et al. (2010) devise an elegant random walk that requires only the knowledge of the
adjacent nodes at each step time, for which the stationary probabilities at equilibrium is known up to
a proportional constant for undirected graphs. The disconnected components are accommodated by
random jumps via an imaginary node. We refer to it as targeted random walk (TRW).

The random-walk inclusion probability of a node is intractable. Insofar as the stationary probability
m; IS the same for a given node i at any time step for a random walk at equilibrium, and =; is only
known up to a proportional constant, approximately unbiased estimation is possible, e.g. for the ratio
between two node totals using the generalised ratio estimator (Thompson, 2006a).

For other finite-order graph totals generally, Zhang (2020a) demonstrates that inference can be based
on the stationary successive sampling probability (S3P) of any subsequence from the TRW states
{Xo, X1,..., X7}. For example, suppose (X;, X¢+1) = (¢,7) where a;; = 1. As long as both X; and
X1 belong to the seed sample s of the TRW, following the same definition of seed sample of T-SBS
above, one can observe e.g. all the triangles (i, 7, h) in the graph. The S3P of the actual sampling se-
quence (X, Xv11) = (4,7) is mipi;, where p;; is the corresponding transition probability. Moreover, all
the possible (X, X;+1) that lead to the observation of the same triangle (i, j, 1) are called the equiv-
alent successive sampling sequences (ES3), including (X, Xi+1) = (4,4), (h, 1), (¢, h), (h, ), (j, h) in
addition to (i, 7). The ES3 of a motif [M] constitutes its multiplicity under TRW sampling sequence-
by-sequence. A motif [M] is eligible for estimation, if its ES3 is observed under the TRW. This yields
a BIGS representation of TRW, with the motifs of interest in Q2 and their ES3s in F'. By this develop-
ment, BIGS-IWE becomes a feasible strategy for any function of finte-order graph totals under TRW,
as long as the function is invariant towards the unknown proportional constant in ;.
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5 Some topics for future research

Graph sampling is clearly the future of sampling. We have provided a brief introduction to it mainly
by examples. The references contain many details that may be helpful for further reading.

A topic for future research is other possible bases of inference in various graph sampling situations.
For instance, Thompson (2006b) considers adaptive web sampling where, at each wave, a subset of
the already sampled nodes are used as the seeds for random walks from them. The wave-by-wave
conditional sampling probabilities are used for estimation of node totals, together with all the seed
sample selection probabilities. A theory is needed for other finite-order graph totals.

It is intriguing to consider other parameters than graph totals and functions of them. Newman
(2010) is an excellent source of candidates, many of which can be characterised as ‘a local parameter
dependent on the whole graph’. For example, the in-degree of a node i is a local parameter that only
depends on its in-edges, but not the rest of the graph. The betweenness of a node provides an
example of what we have in mind. As can be seen below, the shortest-path (SP) betweenness of %
is 0, which is defined as the fraction of SPs between pairs of nodes in a graph passing through it,
because it is always ‘short-circuited’ by the two O nodes. Whereas % has a high random-walk (RW)
betweenness (Newman, 2005), which is defined as the fraction of RWs between pairs of nodes in a
graph passing through it. How would a sampling strategy look like for such parameters?

O\O/*\O/O

Figure 9: An example for betweenness

Graph sampling poses not least an enormous opportunity for computation. Efficient sample motif
counting algorithms are obviously critical in applications, and their availability can influence the theory
in return. For instance, Frank (1971) considers ‘telepathy-like’ observation of whether two nodes are
connected, without explicating any path between them. One can envisage the possibility the relevant
algorithm is so fast that it is virtually instant when the graph is known, e.g. depending on the data
structure implemented. However, the graph may be so large or dynamic that sampling is still needed
for ‘graph compression’. The availability of such remote observation procedures could easily lead to
other possibilities of sample graph, basis of inference and graph sampling strategy.
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