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Abstract 

There is a growing interest in National Statistical Offices to produce Official Statistics using non-

probability sample data, such as big data or data from a volunteer web survey, either alone or in 

combination with probability sample data. The main motivation for using non-probability samples is 

their low cost and respondent burden, and quick turnaround since they allow for producing estimates 

shortly after the information needs have been identified. However, non-probability samples are not 

a panacea. They are well known to produce estimates that may be fraught with significant selection 

bias. We first discuss this important limitation, along with an illustration, and then describe some 

remedies through inverse probability weighting or mass imputation. We also discuss how to integrate 

data from probability and non-probability samples through the Fay-Herriot model used in Small Area 

Estimation. We conclude with a few remarks on some challenges that statisticians are facing when 

implementing data integration methods. 

Key words: Big data, Inverse probability weighting, Mass imputation, Selection bias, Small area 

estimation. 

1 Introduction 

Large-scale sample surveys, based on properly designed probability samples, have long been used 

to obtain reliable estimates of population totals, means and other descriptive parameters. Repeated 

sampling (or design-based approach) is widely employed for this purpose ever since the landmark 

paper by Neyman (1934) laid the theoretical foundations of the design-based approach to inference. 

Attractive features of this approach include design-consistent estimation of the parameters and 

associated mean squared errors, and normal theory confidence intervals on the parameters, that are 

valid, at least for large enough samples, “whatever the unknown properties of the finite population” 

(Neyman, 1934). 

Efficient sampling designs minimizing cost subject to specified precision of estimators and “optimal” 

estimation of parameters taking advantage of supplementary information, such as censuses and 

administrative data, were proposed. Methods for combining two or more independent probability 

samples were also developed to increase the efficiency of estimators for a given cost. Many 
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important large-scale surveys conducted by official statistical agencies, such as labor force, 

business, and agricultural surveys, continue to follow the traditional approach. 

In the early days of probability sampling evolution, surveys were generally much simpler than they 

are nowadays, and data were largely collected through personal interviews or through mail 

questionnaires followed by personal interviews of nonrespondents. Physical measurements were 

also used. Data collection issues received much attention in recent years to control costs and 

maintain response rates using new modes of data collection adapted to technological changes. 

Despite those efforts to collect designed data under probability sampling, response rates are 

decreasing, and costs and response burden are increasing. On the other hand, largely due to 

technological innovations, large amounts of inexpensive data, called big data or organic data, and 

data from nonprobability samples (especially self-selection web surveys) are now accessible. Big 

data include transaction data, social media data, scrape data from websites, sensor data and satellite 

images. Such data have the potential of providing estimates in near real time, unlike traditional 

designed data collected from probability samples. 

Statistical agencies publishing official statistics are now undertaking modernization initiatives by 

finding new ways to integrate data from a variety of sources and produce “reliable” official statistics 

quickly. However, naïve use of data from nonprobability samples or big data can lead to serious 

selection bias problems. Without using suitable adjustments to account for selection bias, it can lead 

to the big data paradox: the bigger the data, the surer we fool ourselves, as demonstrated in Section 

3 (Meng, 2018) and in the illustration in Section 4. We discuss some remedies in Section 5 to reduce 

the pitfalls arising from making inferences from nonprobability samples or big data. We show that 

the methods designed for making inferences from probability samples can be adapted for 

nonprobability samples. In Section 6, we discuss how small area estimation techniques can be used 

to integrate data from probability and non-probability samples. We provide a few concluding remarks 

in the last section on some of the practical challenges that require further thinking. 

2 Probability sampling 

2.1 Design-based approach 

A distinctive feature of a probability sample A  is that it ensures every unit i  in the finite population 

U has a known nonzero inclusion probability i , leading to design weights 
1

i id  −=  and a basic 

design-unbiased expansion estimator ˆ
i ii A

Y d y


=  of the finite population total ii U
Y y


=  of a 

variable of interest y . Extensive research was conducted to improve the efficiency of the expansion 

estimator through the use of auxiliary variables x  with known population totals X . This is 

accomplished at the design stage through probability proportional to size sampling and stratification 

or at the estimation stage through ratio or regression estimation or both. The resulting improved 

estimators are not necessarily design-unbiased, but they are design-consistent in large samples. A 

well-known example is the ratio estimator ˆ ˆ ˆ( / )rY Y X X=  extensively used in practice, where X̂  is 

the expansion estimator of the known total X . The ratio estimator may be expressed as a calibration 

estimator ˆr i ii A
Y w y


=  with calibration weights ˆ( / )i iw X X d=  that ensure the calibration property 

i ii A
w x X


= . This property ensures that the ratio estimator agrees with the known total X  when 

iy  is replaced by ix . 

Extensive research has been undertaken to extend calibration estimation to a vector of auxiliary 

variables x  with known totals X . A simple way of constructing calibration weights is to minimize a 

chi-squared distance measure between id  and iw  for i A  with respect to iw  subject to calibration 

constraints i ii A
w


= x X . Post-stratification is an important special case which occurs when all 
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elements of ix  but one is equal to 0. Calibration estimation has attracted the attention of users due 

to its model-free property and its ability to produce a common set of weights not depending on the 

study variable. Van den Brakel and Bethlehem (2008) note that the calibration weights are “very 

attractive to produce timely official statistics in a regular production environment”. The calibration 

approach  has the potential to adjust for selection bias of non-probability samples,  as noted in 

Section 5. 

Design-consistent variance estimation under probability sampling applicable to general descriptive 

parameters, leading to normal theory confidence intervals on the parameters, also received a lot of 

attention. Methods proposed include Taylor linearization and replication methods, such as the 

jackknife and the bootstrap, taking account of the design features. 

2.2 Unit nonresponse 

Bias due to unit nonresponse in a probability sample received considerable attention, and promising 

remedies were proposed under a random response model. Under this model, the units in the 

population are assumed to respond independently if selected in the sample with unknown 

probabilities iq , i U . Suppose we select a simple random sample (SRS) of size n  and use the 

sample mean of respondent values as the estimator of the population mean Y . Then, under the 

above design-model set up, the bias of the naïve estimator is approximately equal to qB =

( ) /qy q yR S S Q , where qyR is the finite population correlation between the study variable and the 

response probability, qS  and yS denote the standard deviations of the response probabilities iq  and 

values iy  of the study variable, and Q  is the population mean of the response probabilities 

(Bethlehem, 2020). It follows from the above bias expression that the bias increases with qyR , qS  

and decreasing response rate, Q  . The bias disappears if the response probabilities are identical (

0qS = ) or nonresponse is not selective ( 0qyR = ). The latter case, called missing completely at 

random (MCAR), seldom holds in practice. 

Success of any adjustment for nonresponse bias depends on the availability of auxiliary variables z  

for all the sampled units that are closely related to the study variable y . In, for instance, 

Scandinavian countries, population registers are often used to extract z  for all the units in the 

sample. Missing at random (MAR) assumption plays a dominant role in estimating the response 

probabilities (propensities) iq . Under MAR, ( , )i iq q= z α  for a specified function (.)q  depending only 

on the observed iz  and a parameter α . A bias-adjusted expansion estimator of the total Y  under 

MAR is constructed as 
( )

ˆ ˆ( / )q i i ii A r
Y d q y


= , where ( )A r is the sample of respondents and 

ˆˆ ( , )i iq q= z α  is the estimated response probability. The parameter α  is estimated from the sample 

data {( , ), }i i i A z , where i  is the response indicator. Logistic regression models, 

log{ / (1 )}i i iq q − = z α , are commonly used for this purpose. The bias-adjusted estimator ˆ
qY  is 

design-model consistent, provided the response propensity model is correctly specified. The 

estimator ˆ
qY  becomes unstable when some of the estimated response propensities become small. 

To avoid this problem, weighting classes can be formed, based on quantiles of the estimated 

response probabilities, and then use a post-stratified estimator by assuming uniform response 

probabilities within classes. 
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3 Non-probability samples: selection bias 

Consider a non-probability sample B  of known size 
BN  with data {( , ), }ii y i B  and a participation 

indicator 
i  taking the value 1 if the population unit i  belongs to B  and 0  otherwise. In the absence 

of auxiliary information z , the estimator of Y  is taken as the sample mean 
1

B B i ii U
y N y−


=  . T0he 

estimation error By Y−  may be expressed as the product of three terms: (1) ,( , ) ycorr y R = , called 

data quality, (2) square root of (1 ) /B Bf f−  with /B Bf N N= , called data quantity and (3) square 

root of the population variance 2

yS , called problem difficulty (Meng, 2018). The data quality term 

plays the key role in determining the estimation error and it is approximately zero on the average 

under SRS. Note that we have not used a random participation mechanism that assumes the 

participation indicators 
i  are random and independent with non-zero participation probabilities 

( 1)i iq P = = ; for simplicity, we use the same notation for response propensities and participation 

probabilities. Under the random participation model, the bias of By  given by ( )BE y Y −  has the 

same expression as in the case of nonresponse. The subscript   indicates that the expectation is 

taken with respect to the participation model. However, Bethlehem (2020) notes that in practical 

situations the two values can be substantially different. He gives an example from Netherlands where 

Q  is around 60%  for probability surveys compared to 1.5%  for self-selection web surveys, even 

though 170,000 people completed the questionnaire in the web survey. This example suggest that 

self-selection surveys can suffer from the risk of a much larger bias. 

The model mean squared error ( )BMSE y conditional on the sample size BN  may be expressed as 

the product of three terms: (1) 2

,( )yE R 
, called the data defect index, (2) drop-out odds (1 ) /B Bf f−  

and (3) degree of uncertainty 2

yS . Note that MSE is affected by the sampling fraction Bf  and not the 

sample size BN . As a result, a relatively small simple random sample of size n  can achieve the 

same MSE. For example, suppose BN  is five million and N  is ten million leading to 1/ 2Bf = , and 

the average correlation ,( )yE R   is as small as 0.05. Then the “effective” sample size of the big data 

is less than 400. Moreover, the confidence interval, treating the big data as a simple random sample, 

has a small chance of covering the true mean Y  because it is centered at a wrong value due to the 

induced bias. We know this phenomenon under probability sampling when the ratio of bias to 

standard error is large. For a design-consistent estimator, such as a ratio estimator, the bias ratio 

goes to zero as the sample size increases. 

For simplicity, we assumed the absence of measurement errors in the nonprobability sample B . 

This is often not the case with found data from online sources, such as Facebook, where people 

may actively lie, and the expected bias due to measurement errors could be large. Biemer (2019) 

extended Meng’s model to show that the bias due to measurement errors could significantly inflate 

the total MSE. 

Unlike in the case of nonresponse in a probability sample A , auxiliary variables z  attached to the 

units not participating in the nonprobability sample B  are seldom available. As a result, it is not 

possible to estimate participation probabilities from sample B  alone and make bias adjustments. In 

Section 5 we study some methods of estimating participation probabilities by supplementing the data 

{( , ), }ii i Bz  with the data {( , ), }ii i Az  obtained from an independent probability sample A  

observing z  and possibly different study variables. This set up has received a lot of attention in the 

recent literature, but we focus on a pseudo-likelihood method proposed by Chen, Li and Wu (2019) 

and a mass imputation method of Rivers (2007). 
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4 An illustration using real data 

After the beginning of the COVID-19 lockdown in March 2020, Statistics Canada conducted a series 

of crowdsourcing experiments to respond to urgent information needs about the life of the Canadian 

population. A crowdsourcing sample can be defined as any non-probability sample of volunteers, 

who typically provide information through an online application. Statistics Canada’s crowdsourcing 

data were collected by posting questionnaires on its website on different topics at regular intervals. 

The main advantages of crowdsourcing are its low cost and quick turnaround since estimates can 

be released within a couple of weeks after the information needs have been determined. This 

timeliness was deeply needed in a pandemic time. The first crowdsourcing experiment was viewed 

as a success considering that around 240,000 persons participated. However, the number of 

participants in the subsequent crowdsourcing experiments was smaller, but often reached over 

30,000 participants. As pointed out in Section 3, ignoring possible measurement errors, the main 

drawback of non-probability surveys of volunteers is the selection bias, also called participation bias. 

To account for this bias, it was decided to apply post-stratification weighting with post-strata defined 

by the cross-classification of province, age group and sex. Renaud and Beaumont (2020) provide 

greater detail on crowdsourcing experiments conducted by Statistics Canada. 

In parallel, Statistics Canada also started a shorter series of probability web panel surveys: the 

Canadian Perspective Survey Series (CPSS). The CPSS sample is obtained from past rotation 

groups of the Labour Force Survey (LFS), which is the most important social survey conducted by 

Statistics Canada except for the Census. The CPSS initial probability sample is relatively large with 

over 30 000 selected persons but the overall recruitment/response rate is usually quite low at around 

15%, and the resulting number of respondents is just slightly over 4,000. Greater detail on the CPSS 

can be found in Baribeau (2020). 

In June 2020, some participants from previous crowdsourcing experiments were randomly chosen 

and sent the same questionnaire as CPSS respondents. This allowed for a comparison of estimates 

from both the CPSS probability sample and this crowdsourcing non-probability sample. We provide 

some results for the variable education as this variable is also available in the LFS, which has 

generally a response rate around 80%, and is treated as our gold standard. The June 2020 CPSS 

contained 4,209 respondents whereas the corresponding crowdsourcing sample had 31,505 

participants, and the LFS had 87,970 respondents. We computed LFS, CPSS and crowdsourcing 

estimates of proportions in different education categories (see Table 1 for the description of 

categories) for Canada (see Figure 1) and for a province of Canada (see Figure 2). Normal 95% 

confidence intervals were also computed for the LFS and CPSS. We considered two versions of 

crowdsourcing estimates: unadjusted and post-stratified. The unadjusted crowdsourcing estimates 

were obtained using an estimation weight equal to 1 for every participant, and the post-stratified 

crowdsourcing estimates were obtained by using a post-stratification weight with post-strata defined 

by the cross-classification of province, age group and sex. Three main conclusions can be drawn 

from Figure 1: 

i) The crowdsourcing sample seems to significantly over-represent those with a university 

degree. 

ii) Post-stratification by province, age group and sex have little impact on the estimates, and 

thereby on the selection bias. 

iii) The CPSS estimates are closer to LFS estimates although with larger confidence intervals due 

to the smaller sample size. 

The same conclusions can be drawn with the provincial estimates in Figure 2, the main difference 

being that confidence intervals are wider. For the province considered, the number of respondents 

in the LFS and CPSS are 4,734 and 231, respectively, and the number of crowdsourcing participants 

is 1,716. 
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Table 1: Categories of education 

Education categories Description 

0 Grade 8 or lower 

1 Grade 9 - 10 

2 Grade 11 - 13, non graduate 

3 Grade 11 - 13, graduate 

4 Some post-secondary education 

5 Trades certificate or diploma 

6 Community college, CEGEP, etc. 

7 University certificate below Bachelor's 

8 Bachelor's degree 

9 Above Bachelor’s degree 

A caveat must be mentioned about conclusion (iii): nonresponse weighting in the CPSS used the 

study variable, education, as one of the auxiliary variables. This may explain the small difference 

between the CPSS and LFS estimates for that variable, especially at Canada level. Ideally, 

nonresponse weighting would be done again by omitting the auxiliary variable education. This would 

better allow us to appreciate the accuracy of the CPSS probability sample. Unfortunately, this could 

not be done before the publication of this paper. 

Conclusion (ii) indicates that province, age and sex are insufficient for significantly reducing the 

selection bias. More powerful auxiliary variables are needed for this purpose with possibly more 

sophisticated methods such as propensity score weighting (Chen, Li and Wu, 2019) or sample 

matching (Rivers, 2007) discussed in Section 5. In practice, the variable education itself can be used 

to reduce the selection bias for other study variables. Preliminary results suggest that it is a powerful 

auxiliary variable although insufficient for entirely removing the selection bias. 

 

Figure 1: Estimates of proportions in different education categories for Canada from different 

sources: a large probability survey (LFS), a small probability survey (CPSS), a non-probability survey 

(Crowd-Unadj) and a non-probability survey with post-stratification weighting by province, age group 

and sex (Crowd-PostStrat) 



 

The Survey Statistician 17 January 2021 

 

Figure 2: Estimates of proportions in different education categories for a Canadian province from 

different sources: a large probability survey (LFS), a small probability survey (CPSS), a non-

probability survey (Crowd-Unadj) and a non-probability survey with post-stratification weighting by 

province, age group and sex (Crowd-PostStrat) 

5 Methods for adjusting selection bias 

Our data for estimating participation probabilities consist of the common auxiliary variables z  

observed in both samples A  and B . We assume a model for the participation probabilities 

( , )i iq q= z α  for specified (.)q  under the MAR assumption. Chen, Li and Wu (2019) estimate the 

population log-likelihood ( )l α  based on the sample B  by using the data {( , ), }ii i Az  and 

associated design weights ,id i A , leading to a pseudo-likelihood ˆ( )l α . For the commonly used 

logistic regression model log{ / (1 )}i i iq q − = z α , the corresponding pseudo-score equation reduces 

to 

 ˆ ( ) ( , )i i i ii B i A
d q

 
= − = U α z z α z 0 . (1) 

Equation (1) is solved using the Newton-Raphson iteration procedure with a starting value 
(0) 0=α , 

leading to an estimator α̂  and corresponding estimated probability ˆˆ ( , )i iq q= z α . The resulting 

inverse probability weighted (IPW) estimator of the mean is , /B q i i ii B i B
y y 

 
=  , where 

1ˆ
i iq −= . The corresponding ratio estimator of the total is , ,

ˆ
B q B qY Ny= , but the population size N  

may not be known in practice unless the probability sample is drawn from a list frame. Conventional 

calibration estimation can also be used to estimate α  by solving 

 1[ ( , )]i i i ii B i A
q d−

 
= z α z z . (2) 

A drawback of the IPW estimator is that it is sensitive to misspecification of the participation 

probability model, especially when some of the ˆ , ,iq i A  are small. One way to achieve some 

robustness is to use a double robust (DR) estimator that requires modeling each study variable y . 

Suppose we assume a working population model, ( | ) ( , ),m i i iE y m i U= x x β , where mE denotes 

model expectation. The choice of auxiliary variables ix  may include the common variables iz  and 

other available auxiliary variables in the sample B  that are predictive of the study variable iy . We 

further assume the population model holds for the sample B . Using the data from the sample B  we 
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obtain an estimator β̂  which is consistent for β  under the assumed model. Then a DR estimator of 

the total is given by 

 
.

ˆ ˆ ˆ( )DR q i i i i ii B i A
Y y m d m

 
= − +   , (3) 

where ˆˆ ( , )i im m= x β  denote the predicted values under the model. The estimator (3) is DR in the 

sense it is consistent if either the model for the participation probabilities or the model for the study 

variable is correctly specified. The DR estimator of the mean is given by , ,
ˆ ˆ/DR q DR q qy Y N= , where 

ˆ
q ii B
N 


=  is the IPW estimator of the population size N . DR estimators have been used in the 

context of nonresponse in a probability sample (Kim and Haziza, 2014). 

Chen, Li and Wu (2019) provided asymptotically valid variance estimators of the DR estimator and 

the IPW estimator under the assumed models. They also conducted a limited simulation study on 

IPW, DR and some alternative estimators of the mean. As expected, the DR estimator performed 

well in terms of relative bias (RB) and MSE when either the assumed model for participation 

probabilities or the model on the study variable is correctly specified. On the other hand, the IPW 

estimator performs poorly when the model on the participation probabilities is incorrectly specified. 

Chen, Li and Wu (2019) did not study the case when both models are incorrectly specified. It would 

be interesting to develop multiple robust (MR) estimators, along the lines of Chen and Haziza (2017) 

in the context of unit nonresponse, by specifying multiple models on the study variable and multiple 

models for the participation probability. Under this set up, an estimator is MR if it performs well when 

at least one of the candidate models is correctly specified. Simulation results in the context of 

nonresponse indicated that MR estimators tend to perform well even when the candidate models 

are all incorrectly specified. It would be interesting to study MR estimation in the context of 

nonprobability samples. 

A popular method is based on non-parametric mass imputation that avoids the specification of the 

mean function ( | )m i iE y z  based on common auxiliary variables iz  (Rivers, 2007). In this method, 

for each unit i A , a nearest neighbor (NN) to the associated iz  is found from the donor set 

{( , ), }ii i Bz , say ( , )ll z , and the corresponding ly  is used as the imputed value 
* ( )i ly y= . 

Euclidean distance is commonly used to find the NN. The mass imputed estimator of the total is then 

given by 

 *

,
ˆ
d I i ii A
Y d y


= . (4) 

The estimator (4) is based on real donor values. However, it is not exactly model-design unbiased 

unless 
*( | ) ( | )m i i m i iE y E y=z z  for i A . The NN estimator of the mean is given by , ,

ˆ ˆ/d I d I dy Y N= , 

where ˆ
d ii A
N d


=  is the design-unbiased estimator of the total. Under certain regularity conditions, 

including smoothness of the mean function and MAR assumption, Yang and Kim (2020) showed that 

the NN estimator (4) behaves asymptotically similar to the design-unbiased estimator with the 

imputed values in (4) replaced by the unobserved true values iy  of the units i A . 

An advantage of the estimator (4) is that it can be readily implemented when non-probability samples 

are observed frequently over time leading to time-varying values of the study variable, provided the 

common auxiliary variables do not vary over time. We simply find the NN for the units in the 

probability sample from the current donor set and calculate (4). 

6 Small Area Estimation 

Data integration methods in Section 5 can be applied in the scenario where the study variable y  is 

observed in the non-probability sample B , but completely missing in the probability sample A . The 
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reduction of the selection bias relies on the availability of a vector of auxiliary variables z  observed 

in both samples. In this section, we study a different scenario. We consider the case where the study 

variable is observed in the probability sample A , and the non-probability sample contains a vector 

of auxiliary variables associated with y , such as a proxy for y , or perhaps even y  itself. Design-

unbiased estimators of finite population parameters can be obtained by ignoring all non-probability 

sample data. Therefore, the selection bias is not an issue in this context. The objective is to take 

advantage of the information contained in the non-probability sample to improve the efficiency of 

design-unbiased estimators through model assumptions that link data from both samples. This is the 

scope of Small Area Estimation (SAE) techniques (Rao and Molina, 2015). We focus below on the 

area level model of Fay and Herriot (1979). Unit level models are also used in SAE but require the 

auxiliary variables to be observed in the probability sample, possibly through record linkage, and this 

may not be feasible. 

Suppose that we are interested in estimating J  population parameters, j , 1,...,j J= , where the 

subscript j  refers to J  disjoint population domains of interest. For instance, j  could be the 

unemployment rate in a certain area j . Let us denote by ˆ
j , a design-unbiased estimator of j  

obtained from the probability sample A . From this design-unbiasedness property, we can write the 

so-called sampling model as 

ˆ
j j je = + , 

where je  is the sampling error such that ( ) 0p jE e = , ( )varp j ie =  and i  is the design variance 

of ˆ
j . The subscript p  indicates that the expectation and variance are taken with respect to the 

probability sampling design. In practice, ˆ
j  is rarely exactly design-unbiased but is assumed to be 

at least approximately design-unbiased. The sampling errors are also assumed to be normally 

distributed and mutually independent even when the design strata do not coincide with the domains. 

The above sampling model is complemented with a linking model that relates the population 

parameter j  to a vector of auxiliary variables ,B jz . This vector of auxiliary variables may come 

from many different sources; in practice, they are often administrative sources. Here, we focus on 

the use of a non-probability sample as the source of auxiliary information. For instance, a proxy for 

j  could be computed from the non-probability sample B , if a variable similar to y  is observed, and 

used as one component of ,B jz . The following linking model is often used:  

,j B j j jb v = +z β , 

where jb  are constant to account for possible heteroscedasticity, jv  are mutually independent errors 

that follow the normal distribution with ( ) 0m jE v =  and ( ) 2varm j vv = , and β  and 2
v  are 

unknown model parameters. The subscript m  indicates that the expectation and variance are taken 

with respect to the model, treating the vectors ,B jz  as fixed. 

The Fay-Herriot model is obtained by combining the sampling and linking model as  

,
ˆ
j B j ja = +z β , 

where j j j ja b v e= + .It is straightforward to show that ( ) 0mp jE a =  and ( ) 2 2varmp j j v ja b  = + , 

where ( )j m jE =  is called the smooth design variance of ˆ
j  (Hidiroglou, Beaumont and Yung, 

2019). The Empirical Best (EB) predictor of j  under the Fay-Herriot model is  
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( ) ,
ˆ ˆ ˆˆ ˆ1EB
j j j j B j    = + − z β , 

where ( )2 2 2 2 ˆˆ ˆ ˆ
j j v j v jb b   = + , and β̂ , 2ˆ

v  and ˆ
j  are estimators of β , 2

v  and j , 

respectively. The vector β  is typically estimated by generalized least squares and a number of 

methods exist for the estimation of 2
v  (see Rao and Molina, 2015), the most common being 

restricted maximum likelihood. Hidiroglou, Beaumont and Yung (2019) use a log-linear smoothing 

model and a method of moments for the estimation of j . 

Chatrchi, Gauvin and Ding (2020) recently applied the Fay-Herriot model to the estimation of trip 

spending by visitors to Canada for 242 domains defined by the cross-classification of region and the 

country of origin of visitors. The direct estimator ˆ
j  is obtained from the Visitor Travel Survey (VTS) 

and a proxy for j  is obtained from payment processors’ data. These data are subject to coverage 

issues and are conceptually different from the y  variable measured in the VTS. Yet, they were able 

to observe significant precision improvements by using the Fay-Herriot model, especially for the 

smallest domains. Their initial analyses showed the evidence of a nonlinear relationship between 

ˆ
j  and the proxy for j . A piecewise linear model appears to have addressed this issue 

satisfactorily. Rao (2020) describes other SAE applications, where authors have used non-

probability data and big data as a source of auxiliary information in a SAE model. 

7 Concluding remarks 

National Statistical Offices have been increasingly considering big data and volunteer web surveys 

in recent years as an alternative to conducting probability surveys. The main advantages of these 

non-probability samples over probability samples are their low cost and respondent burden, as well 

as their quick turnaround, i.e., the gap between the determination of information needs and the 

release of estimates is quite small for non-probability samples. 

It is well known that the use of a non-probability sample alone may lead to biased estimates of finite 

population parameters due to measurement errors and selection bias (e.g., Rao, 2020; Beaumont, 

2020). As a result, it does not seem advisable to use non-probability data to produce official statistics 

without complementing them with probability survey data. In Section 5, we discussed data integration 

methods that reduce the bias by combining non-probability and probability survey data. Although 

these methods are useful to achieve bias reductions, they rely strongly on the MAR assumption. 

Practically speaking, this assumption implies that the participation indicator is independent of the 

study variable y  after conditioning on z . A powerful set of auxiliary variables, associated with both 

the participation indicator and the study variable, is key to make this assumption plausible. Before 

probability and non-probability surveys are conducted, it is thus useful to give some thoughts on the 

inclusion of proper variables to be collected in both surveys for the purpose of making the MAR 

assumption more realistic and dampening the selection bias. Of course, it is not always possible to 

do so when the non-probability sample is not managed by the same agency as the probability 

sample. In some cases, there may be many auxiliary variables available for adjusting estimates from 

the non-probability sample. Variable selection techniques can be useful for selecting relevant 

auxiliary variables but need to be adapted to this data integration context. This problem is currently 

being investigated at Statistics Canada. 

Quality indicators for estimates based on integrated data is a topic that requires further research. 

The model variance of those estimators can be estimated, often using standard techniques, but the 

resulting variance estimates fail to account for the selection bias, which may not be negligible. 

Sensitivity analysis may provide a useful complement to variance estimates. It allows for assessing 

the effect of omitting a relevant auxiliary variable on the conclusions drawn from the available data. 
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Ding and VanderWeele (2016) is a recent paper on the topic that is currently being investigated at 

Statistics Canada. 

In some cases, depending on the users’ objectives, evidence will suggest that estimates from 

integrated data are not appropriate for the intended uses. Still, it might be desired to take advantage 

as much as possible of the available non-probability sample data. Small Area Estimation is one 

possible avenue that combines probability and non-probability sample data through models. 

Although the Fay-Herriot model discussed in Section 6 relies on the validity of model assumptions, 

the resulting inferences are not as dependent on the model as inferences based on methods 

discussed in Section 5. First, diagnostics can be used to assess the model adequacy (e.g., 

Hidiroglou, Beaumont and Yung, 2019). Also, when the probability sample size is large in a domain, 

the small area estimates are usually quite close to the reliable direct estimates. However, SAE is 

only feasible when the variable of interest is observed in the probability sample. Another alternative 

to make use of non-probability sample data is to use dual frame weighting methods (e.g., Kim and 

Tam, 2020; Rao, 2020; Beaumont, 2020). The advantage of this approach is that it remains design-

based, thereby not dependent on any model assumptions. 

We have not discussed other practical issues related to the use of big data and non-probability 

samples, such as privacy, access, and transparency. A report by the U. S. National Academies of 

Sciences, Engineering and Medicine (2017) extensively treats the privacy issue, in addition to 

methodology for integrating data from multiple sources. 
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