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Letter from the Editors 

Dear Readers, happy New Year 2021! 
  
Last year we wished you health but unfortunately, our wish did not materialize for the whole world. 
Now we would like to wish you to resist to the disasters and to continue your activities in the best 
possible adapted way. In this vein, the current issue of TSS presents papers on ways to adapt the 
statistical work to changes in the world: Dealing with rising non-probability samples from large 
amounts of data and their integration with probability samples; finding a balance between high quality 
statistical results and data confidentiality; performing graph sampling using graphs which may reflect 
current spread of the virus. 
  
The country reports present the work of statistical offices under pandemic conditions: Population 
census in Argentina; visualization of statistical results in Australia; use of machine learning 
techniques for statistical production in Canada; recent and upcoming surveys in Fiji; and a Covid-19 
data portal in New Zealand. The issue presents information about the forthcoming conferences 
including the 63rd World Statistics Congress online and the contents of journals of interest to survey 
statisticians. 
  
We would like to thank everyone who has provided inputs to this issue, all authors of the articles, 
and all people who worked in the preparation of the current issue. James Chipperfield is now 
responsible for the New and Emerging Methods section. Please let James 
(james.chipperfield@abs.gov.au) know if you would like to contribute to the New and Emerging 
Methods section in the future. Also, if you have any question which you would like to see answered 
by an expert, please send it to the new Ask the Experts section editor Ton de Waal from Statistics 
Netherlands (t.dewaal@cbs.nl). If you are interested in writing a book or software review or suggesting 
a source to be reviewed, please get in touch with the Book & Software Review section editor Emilio 
López Escobar from the Quantos Investigación Cuantitativa in Mexico (emilio@quantos.mx). Finally, 
the country reports should be sent to Peter Wright from Statistics Canada (peter.wright2@canada.ca). 
If you have any information about conferences, events or just ideas you would like to share with 
other statisticians – please do go ahead and contact any member of the editorial board of the 
newsletter. 
  
The Survey Statistician is available for downloading from the IASS website at  
http://isi-iass.org/home/services/the-survey-statistician/. 

  
Danutė Krapavickaitė (danute.krapavickaite@vilniustech.lt) 

Eric Rancourt (eric.rancourt@canada.ca) 

 

 

 

mailto:peter.wright2@canada.ca
http://isi-iass.org/home/services/the-survey-statistician/
mailto:danute.krapavickaite@vilniustech.lt
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The Survey Statistician 4 January 2021 

 

 

Letter from the President 

Dear IASS members! 

We are starting 2021 still facing many challenges and adapting to the new circumstances presented 

to all of us in 2020. Even though, I keep in mind the message of a Brazilian journalist who wrote: 

“whoever had the idea to cut time into slices, called the year, was a brilliant individual. Industrialized 

hope, making it work at the limit of exhaustion. Twelve months is enough for any human being to get 

tired and retreat”. Then “… comes the miracle of renewal and it all starts again, with another number 

and another desire to believe that from now on everything will be different”. So, being positive about 

2021, I would like to highlight IASS successful actions and activities during the last semester of 2020 

and compliment the IASS community members who contributed to the good news. 

As planned, the IASS webinars, launched in June, became a successful regular activity. Overall, the 

webinar series was composed of four IASS webinars plus one joint IAOS-IASS webinar, celebrating 

the World Statistics Day and fostering collaboration between the associations. I thank the organisers, 

speakers, attendees, and the ISI PO for making it happen. These webinars were part of the ISI and 

Associations’ Webinar programme and, with financial support from the World Bank (WB) Trust for 

Capacity Building, all videos are available at https://www.isi-web.org/webinars. The IASS ones can 

also be found in our website. Besides the webinars, IASS organised a virtual short course in Spanish 

on Survey Sampling and Survey Methods Topics in R for Latin American attendees. I express my 

gratitude to Pedro Silva and Guilherme Jacob, course instructors, and Leonardo Trujillo, course 

organiser. The News and Announcements session contains more information about this course. In 

addition, Marcel Vieira prepared a short course in English about the same topic that will be available 

as a self-learning material soon. 

For the first time, in August, we held a virtual IASS Annual General Assembly. This was possible 

since the ISI have been given an exception (in Dutch law) for such meetings to occur virtually in 

2020, even if this is not included in the articles of association. In the occasion, an amendment of the 

IASS Statutes was approved to allow a meeting of the General Assembly of the association to be 

held at each ISI biennial World Statistics Congress, at another conference or in virtual form. We 

thank all members who could attend the meeting for their inputs and support. A special thank you 

goes to Gordon Brackstone (IASS President 2005-2007) who responded to our call to complete 

information about past council members. Please have a look at (http://isi-iass.org/home/past-

committees/). 

Last semester was also marked by preparations for the World Statistics Congress 2021 (WSC2021) 

and the announcement of the 2021 Cochran-Hansen Prize (http://isi-iass.org/home/cochran-hansen-

prize/). We ask the members to advertise the award, motivating young statisticians to join the 

competition. IASS vice-president Isabel Molina is the chair of the C-H Prize Committee. Also, if you 

have submitted an invited session proposal to the WSC2021, please let Monica Pratesi (IASS 

representative in the WSC2021 Scientific Programme Committee) and James Chipperfield know 

about it. 

Although 2020 was a difficult year, many people devoted their time to our association.  I will not list 

all of them here, but I would like to acknowledge that for every IASS initiative, committee, webinar, 

course, its website and each TSS page, there is someone keen to contribute. This is great and it 

https://www.isi-web.org/webinars
http://isi-iass.org/home/past-committees/
http://isi-iass.org/home/past-committees/
http://isi-iass.org/home/cochran-hansen-prize/
http://isi-iass.org/home/cochran-hansen-prize/
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means that IASS matters for all of us. Let us keep this collaborative environment for the sustained 

development of IASS. 

I wish you and your families a year with health, peace, harmony, and that you may be engaged in 

many gratifying professional projects in 2021. 

With my best wishes, 

Denise Silva 

denisebritz@gmail.com 

mailto:denisebritz@gmail.com
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Report from the Scientific Secretary 

It has again been a busy 6 months for me in the role of Scientific Secretary. In this report I introduce 

the article in the New and Emerging Methods section of the Survey Statistician, mention IASS-

sponsored webinars that are available for you to watch, mention three invited session proposals for 

the World Statistics Conference that are sponsored by the IASS, advertise the Cochran-Hansen 

Prize 2021 and the Waksberg 2022 awards, and list upcoming conferences. 

I encourage you to share your views on the functions of the Scientific Secretary with me. 

New and Emerging Methods 

Professor Li-Chun Zhang gives a thought-provoking account of sampling from a graph, defined as a 

population of units and connections between them. The concept of connections is applicable to the 

modern world (e.g., spread of disease and social networks) and it’s great that statisticians are 

working on frameworks for incorporating them in sampling. 

The format of The New and Emerging Methods articles is 8-10 pages and should cover the 

presenting challenge, the methods and their application, and the relevance to the development of 

survey methods. Please contact me if you are interested in writing such an article for future editions 

of The Survey Statistician. 

Webinars 

At time of writing, the IASS EC has held five webinars during 2020. Three were in response to the 

Covid-19 pandemic, one on population size estimation, and another to celebrate 2020 World 

Statistics Day. They are popular, attracting an audience of between 60 and 100. All of these are 

available on the IASS website (see http://isi-iass.org/home/webinars/). If you would like to contribute 

to the webinar series or would like to suggest a topic, please contact me. 

IASS Website 

We are very proud of the IASS website and we encourage you to check it out. It has monthly IASS 

newsletters, links to IASS webinars and much more! Thanks to Harry Raymond, Australian Bureau 

of Statistics and IASS Webmaster, for posting the information to our website. 

Invited Session Proposals for the WSC 2021 Supported by IASS 

If you are an IASS member and have submitted an ISP, please let me and Monica Pratesi 

(monica.pratesi@unipi.it) know. We are trying to keep track of them. The IASS EC has assisted the 

UNSD Inter-secretariat Working Group on Household Surveys on their ISP submission called Big 

Data for Official Statistics - Tips, Tricks and Techniques. I am aware of three ISPs for the WSC 2021 

that are supported by the IASS. For your interest, the session’s titles and contributors are listed 

below. Additional information about the sessions will be available in the IASS Newsletter for 

December 2020. 

• Session: Women in survey sampling research and practice 

o Organiser: Alina Matei (University of Neuchatel) 

o Chair: Giovanna Ranalli (University of Perugia) 

o Discussant: Monica Pratesi (University of Pisa) 

o Speakers: Frauke Kreuter (University of Maryland), Claudia Rivera Rodriguez (University 

of Auckland, New Zealand), and Anne Ruiz-Gazen (University of Toulouse 1) 

http://isi-iass.org/home/webinars/
mailto:monica.pratesi@unipi.it
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• Session: Counting People with Administrative Data instead of a Traditional Census 

o Chair: Prof. James Brown, (University Technology Sydney) 

o Discussant: Prof. Li-Chun Zhang (Southampton University) 

o Speakers:  Ms Alison Whitworth (Office of National Statistics), Ms. Nicoletta Cibella 

(National Institute of Statistics), Ms. Antonella Bernardini (National Institute of Statistics), 

Dr. Ahmad Hleihel (Israel Central Bureau of Statistics) 

• Session: The Evolution of the 21st Century Census of Population and Housing 

o Chair: Dr. James Chipperfield (Australian Bureau of Statistics) 

o Discussant: Prof. James Brown (University Technology Sydney) 

o Speakers: Ms. Gemma Van Halderen, (United Nations), Ms. Ms Valérie Roux (INSEE), 

Mr. Gary Dunnet (Statistics New Zealand) 

Invitation to apply for Prizes and Awards 

Cochran-Hansen Prize 2021: In celebration of its 25th anniversary in 1999, the International 

Association of Survey Statisticians (IASS) established the Cochran-Hansen Prize, which is awarded 

every two years for the best paper on survey research methods submitted by a young statistician 

from a developing or transition country. In the 2021 edition, the Cochran-Hansen Prize consists of 

research expenses in a total of €1500 to be executed until 15 February 2023. For details see 

http://isi-iass.org/home/cochran-hansen-prize/cochran-hansen-prize-2021/. 

2022 Waksberg Award: The journal Survey Methodology has established an annual invited paper 

series in honour of the late Joseph Waksberg to recognize his outstanding contributions to survey 

statistics and methodology. Each year a prominent survey statistician is chosen to write a paper that 

reviews the development and current state of an important topic in the field of survey statistics and 

methodology. The paper reflects the mixture of theory and practice that characterized Joseph 

Waksberg’s work. For more details see http://isi-iass.org/home/waksberg-award/. 

WB capacity Building Fund for Analysis of survey data using R short course 

The IASS was funded by the World Bank to organise the delivery of courses on Analysis of survey 

data using R during 2020 to developing countries. We are pleased to announce that the IASS has 

arranged two such courses. Marcel Vieira from Brazil has prepared a short course (video and slides) 

in English that can be used as a self-learning activity and will be available on the ISI webinar. Prof. 

Pedro Luis do Nascimento Silva, with support from teaching assistant Guilherme Anthony Pinheiro 

Jacob, also delivered a course in Spanish. 

Conferences 

If you would like to advertise a conference, workshop, or course that would be of interest to IASS 

members please let me know. 

James Chipperfield 

James.chipperfield@abs.gov.au 

IASS Scientific Secretary 

http://isi-iass.org/home/cochran-hansen-prize/cochran-hansen-prize-2021/
http://isi-iass.org/home/waksberg-award/
mailto:James.chipperfield@abs.gov.au
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News and Announcements 

 

 

ISI World Statistics Congress 2021 goes VIRTUAL! 

The International Statistical Institute’s biennial ‘World Statistics 

Congress 2021 - The Hague’ (https://isi2021.org/), will be held 

virtually in July 2021. 

This is an opportunity for the ISI to host a more inclusive 

conference than ever before. It will allow us to have the greatest 

ever participation, reaching out to a wide diversity of members who would not otherwise be able to 

afford to attend an international conference, at lower costs, and with a lower carbon footprint. We 

hope to see a large number of first-time participants, including many early career statisticians and 

students along with colleagues from developing countries. 

Holding a WSC in 2021 will maintain the continuity of WSCs. There will still be a strong link with The 

Hague, the original venue, in the virtual conference. The ISI will take the opportunity to develop new 

formats and harness new technology to modernise our meeting. 

Please visit the website for information on the scientific programme (https://isi2021.org/scientific-

programme.html), including the timetable, and for registration (https://isi2021.org/registration.html) 

categories and fees. 

ISI World Statistics Congress 2023: OTTAWA is chosen! 

The ISI is (also) pleased to announce that the World Statistics Congress 2023 will be held in Ottawa, 

Canada. The Congress will be held from 15 to 20 July, in the Shaw Centre (https://www.shaw-

centre.com/), in the heart of the city. 

The venue was chosen after competitive bids from a number of venues in Canada were assessed.  

We are grateful to the Statistical Society of Canada and to Statistics Canada for their support. We 

are confident that the Congress will build on the experience of WSC 2021 and will include a virtual 

element. 

We look forward to meeting up with colleagues and friends again in Canada! 

Announcement: New editor of Survey Methodology 

Statistics Canada is pleased to announce the appointment of Jean-François Beaumont, senior 

statistical advisor at Statistics Canada, as the new Editor of Survey Methodology, effective January 

1st, 2021. Jean-François Beaumont has been associated with the Journal for 20 years; he first 

served as assistant editor from 2000-2010, and then as associate editor from 2010-2020. He 

published several papers in a number of peer-reviewed journals, including nine in Survey 

Methodology. 

Jean-François Beaumont succeeds Dr. Wesley Yung, who has been the Editor of Survey 

Methodology since 2015. Dr. Yung will remain a member of the Management Board and will continue 

to contribute to the Journal as associate editor. We deeply thank him for his valuable contributions 

as editor over the past five years. Amongst other achievements, he steered the journal into 

publishing more than 80 papers. He also led the journal in publishing a special issue as part of a 

https://isi2021.org/
https://isi2021.org/scientific-programme.html
https://isi2021.org/scientific-programme.html
https://isi2021.org/registration.html
https://www.shaw-centre.com/
https://www.shaw-centre.com/
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collaboration with the International Statistical Review in honour of Prof. J.N.K. Rao's contributions. 

Dr. Yung was also instrumental in the implementation of the ScholarOne online manuscripts 

submission system in 2019. 

Survey Methodology has evolved tremendously over the past 45 years under the leadership of the 

previous editors, starting with Dr. M.P. Singh (1975-2005), and then John Kovar (2006-2009), Dr. 

Michel Hidiroglou (2010-2015) and recently Dr. Wesley Yung (2016-2020). In the first years after its 

creation, the Journal published papers mainly from Statistics Canada’s authors, but it soon acquired 

the worldwide reputation of a high-quality journal for survey statisticians and methodologists under 

the dedicated editorship of Dr. M.P. Singh. Survey Methodology continued to thrive under the 

subsequent editors to become the journal we know today. It nowadays publishes innovative 

theoretical or applied statistical research papers from international authors on issues relevant to the 

activities of National Statistical Offices. 

While the contributions of previous editors were invaluable in making Survey Methodology a journal 

with international stature, we look forward to see where Jean-François Beaumont will take the 

Journal in the years to come. There is a new publication landscape with many players in the field 

and authors have heighten expectations in terms of review expediencies. While navigating this new 

ecosystem, we are confident that Survey Methodology will continue to flourish under the editorship 

of Jean-François Beaumont and that it will keep its same essential core value of scientific rigour. 

Survey Methodology is available for free at www.statcan.gc.ca/SurveyMethodology. 

Analysis of survey data using R short course 

The short course on ‘Analysis of survey data using R’ (Análisis de datos de encuestas usando R) 

was held in six remote sessions of 3 hours each, on November 13, 14, 20, 21, 27 and 28. The course 

was taught by Prof. Pedro Luis do Nascimento Silva, with support from teaching assistant Guilherme 

Anthony Pinheiro Jacob. Teaching was carried out in Spanish, with course notes and all other 

relevant material (R code, data sets, references etc.) provided to the participants. 

A total of 47 participants completed the course, with 1 from Panama, 4 from Peru and 42 from 

Colombia. 

The course was hosted by the Universidad Nacional de Colombia, sede Bogotá, under the 

leadership of Prof. Leonardo Trujillo Oyola. It had support from several scientific and professional 

organizations, namely: 

• International Statistical Institute (ISI) – Statistical Capacity Building Committee; 

• International Association of Survey Statisticians (IASS); 

• Instituto InterAmericano de Estadística (IASI); 

• Sociedad Colombiana de Estadística; 

• Escola Nacional de Ciências Estatísticas (ENCE/IBGE). 

The course covered aimed to develop participants’ capacity to analyse complex sample survey data 

using modern methods and tools available in the R statistical software, including tools for weighting 

survey data, computing point and standard error estimates, model fitting, selection and diagnostics. 

Numerous examples using real survey data were provided and formed an integral part of the training. 

Pedro Luis do Nascimento Silva 

December 2020 

 

 

 

 

http://www.statcan.gc.ca/SurveyMethodology


 

The Survey Statistician 10 January 2021 

A tribute to Ken Brewer 

Ken Brewer, one of the giants of survey sampling, passed away peacefully in the early hours of 3 

January, 2021 in Canberra. 

Ken was a great scholar, very wise and showed interests in many areas of statistical applications, 

on which he published extensively.  He had also published two books and over 100 papers on survey 

sampling, many of which were highly cited. 

Apart from his academic achievements, Ken was also a very kind man.  He never stopped sharing 

his insights and knowledge on statistics with the more junior colleagues.  He also generously offered 

help to many others in the different stages of their career - I was one of those who benefitted from 

his advice to settle in Canberra in the mid 1980’s as a new immigrant and, since that time, learned 

a lot from working alongside with him. 

Summarising one of Ken’s most noticeable contributions very well when, announcing Ken’s passing 

away to the subscribers of the Survey Research Methodology Section of the American Statistician, 

Phil Knot said: 

 “One of Ken Brewer’s most remarkable achievements was a paper effectively summarizing over 20 

years of the design-based vs model-based debate, which ranged from Richard Royall’s infamous 

1970 Biometrika paper till the model-assisted synthesis coined and described in Sӓrndal, Swensson, 

and Wretman’s 1992 Book.  Ken published this paper in the Journal of Australian Statistics in 1963.” 

In many areas of research, Ken was ahead of his time. 

Ken was an excellent researcher, colleague, friend and teacher to many of us. Ken will be sorely 

missed. 

Siu-Ming Tam 

Honorary Professorial Fellow, University of Wollongong 
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Ask the Experts 

 

 

Pitfalls of making inferences from non-probability samples: Can data 

integration through probability samples provide remedies? 

Jean-Francois Beaumont
1
 and J. N. K. Rao

2
 

 
1
Statistics Canada, jean-francois.beaumont@canada.ca 

2
Carleton University, jrao@math.carleton.ca 

Abstract 

There is a growing interest in National Statistical Offices to produce Official Statistics using non-

probability sample data, such as big data or data from a volunteer web survey, either alone or in 

combination with probability sample data. The main motivation for using non-probability samples is 

their low cost and respondent burden, and quick turnaround since they allow for producing estimates 

shortly after the information needs have been identified. However, non-probability samples are not 

a panacea. They are well known to produce estimates that may be fraught with significant selection 

bias. We first discuss this important limitation, along with an illustration, and then describe some 

remedies through inverse probability weighting or mass imputation. We also discuss how to integrate 

data from probability and non-probability samples through the Fay-Herriot model used in Small Area 

Estimation. We conclude with a few remarks on some challenges that statisticians are facing when 

implementing data integration methods. 

Key words: Big data, Inverse probability weighting, Mass imputation, Selection bias, Small area 

estimation. 

1 Introduction 

Large-scale sample surveys, based on properly designed probability samples, have long been used 

to obtain reliable estimates of population totals, means and other descriptive parameters. Repeated 

sampling (or design-based approach) is widely employed for this purpose ever since the landmark 

paper by Neyman (1934) laid the theoretical foundations of the design-based approach to inference. 

Attractive features of this approach include design-consistent estimation of the parameters and 

associated mean squared errors, and normal theory confidence intervals on the parameters, that are 

valid, at least for large enough samples, “whatever the unknown properties of the finite population” 

(Neyman, 1934). 

Efficient sampling designs minimizing cost subject to specified precision of estimators and “optimal” 

estimation of parameters taking advantage of supplementary information, such as censuses and 

administrative data, were proposed. Methods for combining two or more independent probability 

samples were also developed to increase the efficiency of estimators for a given cost. Many 

Copyright © 2021 Jean-Francois Beaumont, J. N. K. Rao. Published by International Association of Survey 

Statisticians. This is an Open Access article distributed under the terms of the Creative Commons Attribution 

Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 

and source are credited. 

The Survey Statistician, 2021, Vol. 83, 11.-22. 

mailto:jean-francois.beaumont@canada.ca
mailto:jrao@math.carleton.ca
http://isi-iass.org/home/services/the-survey-statistician/
http://isi-iass.org/home/services/the-survey-statistician/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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important large-scale surveys conducted by official statistical agencies, such as labor force, 

business, and agricultural surveys, continue to follow the traditional approach. 

In the early days of probability sampling evolution, surveys were generally much simpler than they 

are nowadays, and data were largely collected through personal interviews or through mail 

questionnaires followed by personal interviews of nonrespondents. Physical measurements were 

also used. Data collection issues received much attention in recent years to control costs and 

maintain response rates using new modes of data collection adapted to technological changes. 

Despite those efforts to collect designed data under probability sampling, response rates are 

decreasing, and costs and response burden are increasing. On the other hand, largely due to 

technological innovations, large amounts of inexpensive data, called big data or organic data, and 

data from nonprobability samples (especially self-selection web surveys) are now accessible. Big 

data include transaction data, social media data, scrape data from websites, sensor data and satellite 

images. Such data have the potential of providing estimates in near real time, unlike traditional 

designed data collected from probability samples. 

Statistical agencies publishing official statistics are now undertaking modernization initiatives by 

finding new ways to integrate data from a variety of sources and produce “reliable” official statistics 

quickly. However, naïve use of data from nonprobability samples or big data can lead to serious 

selection bias problems. Without using suitable adjustments to account for selection bias, it can lead 

to the big data paradox: the bigger the data, the surer we fool ourselves, as demonstrated in Section 

3 (Meng, 2018) and in the illustration in Section 4. We discuss some remedies in Section 5 to reduce 

the pitfalls arising from making inferences from nonprobability samples or big data. We show that 

the methods designed for making inferences from probability samples can be adapted for 

nonprobability samples. In Section 6, we discuss how small area estimation techniques can be used 

to integrate data from probability and non-probability samples. We provide a few concluding remarks 

in the last section on some of the practical challenges that require further thinking. 

2 Probability sampling 

2.1 Design-based approach 

A distinctive feature of a probability sample A  is that it ensures every unit i  in the finite population 

U has a known nonzero inclusion probability i , leading to design weights 
1

i id  −=  and a basic 

design-unbiased expansion estimator ˆ
i ii A

Y d y


=  of the finite population total ii U
Y y


=  of a 

variable of interest y . Extensive research was conducted to improve the efficiency of the expansion 

estimator through the use of auxiliary variables x  with known population totals X . This is 

accomplished at the design stage through probability proportional to size sampling and stratification 

or at the estimation stage through ratio or regression estimation or both. The resulting improved 

estimators are not necessarily design-unbiased, but they are design-consistent in large samples. A 

well-known example is the ratio estimator ˆ ˆ ˆ( / )rY Y X X=  extensively used in practice, where X̂  is 

the expansion estimator of the known total X . The ratio estimator may be expressed as a calibration 

estimator ˆr i ii A
Y w y


=  with calibration weights ˆ( / )i iw X X d=  that ensure the calibration property 

i ii A
w x X


= . This property ensures that the ratio estimator agrees with the known total X  when 

iy  is replaced by ix . 

Extensive research has been undertaken to extend calibration estimation to a vector of auxiliary 

variables x  with known totals X . A simple way of constructing calibration weights is to minimize a 

chi-squared distance measure between id  and iw  for i A  with respect to iw  subject to calibration 

constraints i ii A
w


= x X . Post-stratification is an important special case which occurs when all 
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elements of ix  but one is equal to 0. Calibration estimation has attracted the attention of users due 

to its model-free property and its ability to produce a common set of weights not depending on the 

study variable. Van den Brakel and Bethlehem (2008) note that the calibration weights are “very 

attractive to produce timely official statistics in a regular production environment”. The calibration 

approach  has the potential to adjust for selection bias of non-probability samples,  as noted in 

Section 5. 

Design-consistent variance estimation under probability sampling applicable to general descriptive 

parameters, leading to normal theory confidence intervals on the parameters, also received a lot of 

attention. Methods proposed include Taylor linearization and replication methods, such as the 

jackknife and the bootstrap, taking account of the design features. 

2.2 Unit nonresponse 

Bias due to unit nonresponse in a probability sample received considerable attention, and promising 

remedies were proposed under a random response model. Under this model, the units in the 

population are assumed to respond independently if selected in the sample with unknown 

probabilities iq , i U . Suppose we select a simple random sample (SRS) of size n  and use the 

sample mean of respondent values as the estimator of the population mean Y . Then, under the 

above design-model set up, the bias of the naïve estimator is approximately equal to qB =

( ) /qy q yR S S Q , where qyR is the finite population correlation between the study variable and the 

response probability, qS  and yS denote the standard deviations of the response probabilities iq  and 

values iy  of the study variable, and Q  is the population mean of the response probabilities 

(Bethlehem, 2020). It follows from the above bias expression that the bias increases with qyR , qS  

and decreasing response rate, Q  . The bias disappears if the response probabilities are identical (

0qS = ) or nonresponse is not selective ( 0qyR = ). The latter case, called missing completely at 

random (MCAR), seldom holds in practice. 

Success of any adjustment for nonresponse bias depends on the availability of auxiliary variables z  

for all the sampled units that are closely related to the study variable y . In, for instance, 

Scandinavian countries, population registers are often used to extract z  for all the units in the 

sample. Missing at random (MAR) assumption plays a dominant role in estimating the response 

probabilities (propensities) iq . Under MAR, ( , )i iq q= z α  for a specified function (.)q  depending only 

on the observed iz  and a parameter α . A bias-adjusted expansion estimator of the total Y  under 

MAR is constructed as 
( )

ˆ ˆ( / )q i i ii A r
Y d q y


= , where ( )A r is the sample of respondents and 

ˆˆ ( , )i iq q= z α  is the estimated response probability. The parameter α  is estimated from the sample 

data {( , ), }i i i A z , where i  is the response indicator. Logistic regression models, 

log{ / (1 )}i i iq q − = z α , are commonly used for this purpose. The bias-adjusted estimator ˆ
qY  is 

design-model consistent, provided the response propensity model is correctly specified. The 

estimator ˆ
qY  becomes unstable when some of the estimated response propensities become small. 

To avoid this problem, weighting classes can be formed, based on quantiles of the estimated 

response probabilities, and then use a post-stratified estimator by assuming uniform response 

probabilities within classes. 
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3 Non-probability samples: selection bias 

Consider a non-probability sample B  of known size 
BN  with data {( , ), }ii y i B  and a participation 

indicator 
i  taking the value 1 if the population unit i  belongs to B  and 0  otherwise. In the absence 

of auxiliary information z , the estimator of Y  is taken as the sample mean 
1

B B i ii U
y N y−


=  . T0he 

estimation error By Y−  may be expressed as the product of three terms: (1) ,( , ) ycorr y R = , called 

data quality, (2) square root of (1 ) /B Bf f−  with /B Bf N N= , called data quantity and (3) square 

root of the population variance 2

yS , called problem difficulty (Meng, 2018). The data quality term 

plays the key role in determining the estimation error and it is approximately zero on the average 

under SRS. Note that we have not used a random participation mechanism that assumes the 

participation indicators 
i  are random and independent with non-zero participation probabilities 

( 1)i iq P = = ; for simplicity, we use the same notation for response propensities and participation 

probabilities. Under the random participation model, the bias of By  given by ( )BE y Y −  has the 

same expression as in the case of nonresponse. The subscript   indicates that the expectation is 

taken with respect to the participation model. However, Bethlehem (2020) notes that in practical 

situations the two values can be substantially different. He gives an example from Netherlands where 

Q  is around 60%  for probability surveys compared to 1.5%  for self-selection web surveys, even 

though 170,000 people completed the questionnaire in the web survey. This example suggest that 

self-selection surveys can suffer from the risk of a much larger bias. 

The model mean squared error ( )BMSE y conditional on the sample size BN  may be expressed as 

the product of three terms: (1) 2

,( )yE R 
, called the data defect index, (2) drop-out odds (1 ) /B Bf f−  

and (3) degree of uncertainty 2

yS . Note that MSE is affected by the sampling fraction Bf  and not the 

sample size BN . As a result, a relatively small simple random sample of size n  can achieve the 

same MSE. For example, suppose BN  is five million and N  is ten million leading to 1/ 2Bf = , and 

the average correlation ,( )yE R   is as small as 0.05. Then the “effective” sample size of the big data 

is less than 400. Moreover, the confidence interval, treating the big data as a simple random sample, 

has a small chance of covering the true mean Y  because it is centered at a wrong value due to the 

induced bias. We know this phenomenon under probability sampling when the ratio of bias to 

standard error is large. For a design-consistent estimator, such as a ratio estimator, the bias ratio 

goes to zero as the sample size increases. 

For simplicity, we assumed the absence of measurement errors in the nonprobability sample B . 

This is often not the case with found data from online sources, such as Facebook, where people 

may actively lie, and the expected bias due to measurement errors could be large. Biemer (2019) 

extended Meng’s model to show that the bias due to measurement errors could significantly inflate 

the total MSE. 

Unlike in the case of nonresponse in a probability sample A , auxiliary variables z  attached to the 

units not participating in the nonprobability sample B  are seldom available. As a result, it is not 

possible to estimate participation probabilities from sample B  alone and make bias adjustments. In 

Section 5 we study some methods of estimating participation probabilities by supplementing the data 

{( , ), }ii i Bz  with the data {( , ), }ii i Az  obtained from an independent probability sample A  

observing z  and possibly different study variables. This set up has received a lot of attention in the 

recent literature, but we focus on a pseudo-likelihood method proposed by Chen, Li and Wu (2019) 

and a mass imputation method of Rivers (2007). 
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4 An illustration using real data 

After the beginning of the COVID-19 lockdown in March 2020, Statistics Canada conducted a series 

of crowdsourcing experiments to respond to urgent information needs about the life of the Canadian 

population. A crowdsourcing sample can be defined as any non-probability sample of volunteers, 

who typically provide information through an online application. Statistics Canada’s crowdsourcing 

data were collected by posting questionnaires on its website on different topics at regular intervals. 

The main advantages of crowdsourcing are its low cost and quick turnaround since estimates can 

be released within a couple of weeks after the information needs have been determined. This 

timeliness was deeply needed in a pandemic time. The first crowdsourcing experiment was viewed 

as a success considering that around 240,000 persons participated. However, the number of 

participants in the subsequent crowdsourcing experiments was smaller, but often reached over 

30,000 participants. As pointed out in Section 3, ignoring possible measurement errors, the main 

drawback of non-probability surveys of volunteers is the selection bias, also called participation bias. 

To account for this bias, it was decided to apply post-stratification weighting with post-strata defined 

by the cross-classification of province, age group and sex. Renaud and Beaumont (2020) provide 

greater detail on crowdsourcing experiments conducted by Statistics Canada. 

In parallel, Statistics Canada also started a shorter series of probability web panel surveys: the 

Canadian Perspective Survey Series (CPSS). The CPSS sample is obtained from past rotation 

groups of the Labour Force Survey (LFS), which is the most important social survey conducted by 

Statistics Canada except for the Census. The CPSS initial probability sample is relatively large with 

over 30 000 selected persons but the overall recruitment/response rate is usually quite low at around 

15%, and the resulting number of respondents is just slightly over 4,000. Greater detail on the CPSS 

can be found in Baribeau (2020). 

In June 2020, some participants from previous crowdsourcing experiments were randomly chosen 

and sent the same questionnaire as CPSS respondents. This allowed for a comparison of estimates 

from both the CPSS probability sample and this crowdsourcing non-probability sample. We provide 

some results for the variable education as this variable is also available in the LFS, which has 

generally a response rate around 80%, and is treated as our gold standard. The June 2020 CPSS 

contained 4,209 respondents whereas the corresponding crowdsourcing sample had 31,505 

participants, and the LFS had 87,970 respondents. We computed LFS, CPSS and crowdsourcing 

estimates of proportions in different education categories (see Table 1 for the description of 

categories) for Canada (see Figure 1) and for a province of Canada (see Figure 2). Normal 95% 

confidence intervals were also computed for the LFS and CPSS. We considered two versions of 

crowdsourcing estimates: unadjusted and post-stratified. The unadjusted crowdsourcing estimates 

were obtained using an estimation weight equal to 1 for every participant, and the post-stratified 

crowdsourcing estimates were obtained by using a post-stratification weight with post-strata defined 

by the cross-classification of province, age group and sex. Three main conclusions can be drawn 

from Figure 1: 

i) The crowdsourcing sample seems to significantly over-represent those with a university 

degree. 

ii) Post-stratification by province, age group and sex have little impact on the estimates, and 

thereby on the selection bias. 

iii) The CPSS estimates are closer to LFS estimates although with larger confidence intervals due 

to the smaller sample size. 

The same conclusions can be drawn with the provincial estimates in Figure 2, the main difference 

being that confidence intervals are wider. For the province considered, the number of respondents 

in the LFS and CPSS are 4,734 and 231, respectively, and the number of crowdsourcing participants 

is 1,716. 
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Table 1: Categories of education 

Education categories Description 

0 Grade 8 or lower 

1 Grade 9 - 10 

2 Grade 11 - 13, non graduate 

3 Grade 11 - 13, graduate 

4 Some post-secondary education 

5 Trades certificate or diploma 

6 Community college, CEGEP, etc. 

7 University certificate below Bachelor's 

8 Bachelor's degree 

9 Above Bachelor’s degree 

A caveat must be mentioned about conclusion (iii): nonresponse weighting in the CPSS used the 

study variable, education, as one of the auxiliary variables. This may explain the small difference 

between the CPSS and LFS estimates for that variable, especially at Canada level. Ideally, 

nonresponse weighting would be done again by omitting the auxiliary variable education. This would 

better allow us to appreciate the accuracy of the CPSS probability sample. Unfortunately, this could 

not be done before the publication of this paper. 

Conclusion (ii) indicates that province, age and sex are insufficient for significantly reducing the 

selection bias. More powerful auxiliary variables are needed for this purpose with possibly more 

sophisticated methods such as propensity score weighting (Chen, Li and Wu, 2019) or sample 

matching (Rivers, 2007) discussed in Section 5. In practice, the variable education itself can be used 

to reduce the selection bias for other study variables. Preliminary results suggest that it is a powerful 

auxiliary variable although insufficient for entirely removing the selection bias. 

 

Figure 1: Estimates of proportions in different education categories for Canada from different 

sources: a large probability survey (LFS), a small probability survey (CPSS), a non-probability survey 

(Crowd-Unadj) and a non-probability survey with post-stratification weighting by province, age group 

and sex (Crowd-PostStrat) 
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Figure 2: Estimates of proportions in different education categories for a Canadian province from 

different sources: a large probability survey (LFS), a small probability survey (CPSS), a non-

probability survey (Crowd-Unadj) and a non-probability survey with post-stratification weighting by 

province, age group and sex (Crowd-PostStrat) 

5 Methods for adjusting selection bias 

Our data for estimating participation probabilities consist of the common auxiliary variables z  

observed in both samples A  and B . We assume a model for the participation probabilities 

( , )i iq q= z α  for specified (.)q  under the MAR assumption. Chen, Li and Wu (2019) estimate the 

population log-likelihood ( )l α  based on the sample B  by using the data {( , ), }ii i Az  and 

associated design weights ,id i A , leading to a pseudo-likelihood ˆ( )l α . For the commonly used 

logistic regression model log{ / (1 )}i i iq q − = z α , the corresponding pseudo-score equation reduces 

to 

 ˆ ( ) ( , )i i i ii B i A
d q

 
= − = U α z z α z 0 . (1) 

Equation (1) is solved using the Newton-Raphson iteration procedure with a starting value 
(0) 0=α , 

leading to an estimator α̂  and corresponding estimated probability ˆˆ ( , )i iq q= z α . The resulting 

inverse probability weighted (IPW) estimator of the mean is , /B q i i ii B i B
y y 

 
=  , where 

1ˆ
i iq −= . The corresponding ratio estimator of the total is , ,

ˆ
B q B qY Ny= , but the population size N  

may not be known in practice unless the probability sample is drawn from a list frame. Conventional 

calibration estimation can also be used to estimate α  by solving 

 1[ ( , )]i i i ii B i A
q d−

 
= z α z z . (2) 

A drawback of the IPW estimator is that it is sensitive to misspecification of the participation 

probability model, especially when some of the ˆ , ,iq i A  are small. One way to achieve some 

robustness is to use a double robust (DR) estimator that requires modeling each study variable y . 

Suppose we assume a working population model, ( | ) ( , ),m i i iE y m i U= x x β , where mE denotes 

model expectation. The choice of auxiliary variables ix  may include the common variables iz  and 

other available auxiliary variables in the sample B  that are predictive of the study variable iy . We 

further assume the population model holds for the sample B . Using the data from the sample B  we 
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obtain an estimator β̂  which is consistent for β  under the assumed model. Then a DR estimator of 

the total is given by 

 
.

ˆ ˆ ˆ( )DR q i i i i ii B i A
Y y m d m

 
= − +   , (3) 

where ˆˆ ( , )i im m= x β  denote the predicted values under the model. The estimator (3) is DR in the 

sense it is consistent if either the model for the participation probabilities or the model for the study 

variable is correctly specified. The DR estimator of the mean is given by , ,
ˆ ˆ/DR q DR q qy Y N= , where 

ˆ
q ii B
N 


=  is the IPW estimator of the population size N . DR estimators have been used in the 

context of nonresponse in a probability sample (Kim and Haziza, 2014). 

Chen, Li and Wu (2019) provided asymptotically valid variance estimators of the DR estimator and 

the IPW estimator under the assumed models. They also conducted a limited simulation study on 

IPW, DR and some alternative estimators of the mean. As expected, the DR estimator performed 

well in terms of relative bias (RB) and MSE when either the assumed model for participation 

probabilities or the model on the study variable is correctly specified. On the other hand, the IPW 

estimator performs poorly when the model on the participation probabilities is incorrectly specified. 

Chen, Li and Wu (2019) did not study the case when both models are incorrectly specified. It would 

be interesting to develop multiple robust (MR) estimators, along the lines of Chen and Haziza (2017) 

in the context of unit nonresponse, by specifying multiple models on the study variable and multiple 

models for the participation probability. Under this set up, an estimator is MR if it performs well when 

at least one of the candidate models is correctly specified. Simulation results in the context of 

nonresponse indicated that MR estimators tend to perform well even when the candidate models 

are all incorrectly specified. It would be interesting to study MR estimation in the context of 

nonprobability samples. 

A popular method is based on non-parametric mass imputation that avoids the specification of the 

mean function ( | )m i iE y z  based on common auxiliary variables iz  (Rivers, 2007). In this method, 

for each unit i A , a nearest neighbor (NN) to the associated iz  is found from the donor set 

{( , ), }ii i Bz , say ( , )ll z , and the corresponding ly  is used as the imputed value 
* ( )i ly y= . 

Euclidean distance is commonly used to find the NN. The mass imputed estimator of the total is then 

given by 

 *

,
ˆ
d I i ii A
Y d y


= . (4) 

The estimator (4) is based on real donor values. However, it is not exactly model-design unbiased 

unless 
*( | ) ( | )m i i m i iE y E y=z z  for i A . The NN estimator of the mean is given by , ,

ˆ ˆ/d I d I dy Y N= , 

where ˆ
d ii A
N d


=  is the design-unbiased estimator of the total. Under certain regularity conditions, 

including smoothness of the mean function and MAR assumption, Yang and Kim (2020) showed that 

the NN estimator (4) behaves asymptotically similar to the design-unbiased estimator with the 

imputed values in (4) replaced by the unobserved true values iy  of the units i A . 

An advantage of the estimator (4) is that it can be readily implemented when non-probability samples 

are observed frequently over time leading to time-varying values of the study variable, provided the 

common auxiliary variables do not vary over time. We simply find the NN for the units in the 

probability sample from the current donor set and calculate (4). 

6 Small Area Estimation 

Data integration methods in Section 5 can be applied in the scenario where the study variable y  is 

observed in the non-probability sample B , but completely missing in the probability sample A . The 
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reduction of the selection bias relies on the availability of a vector of auxiliary variables z  observed 

in both samples. In this section, we study a different scenario. We consider the case where the study 

variable is observed in the probability sample A , and the non-probability sample contains a vector 

of auxiliary variables associated with y , such as a proxy for y , or perhaps even y  itself. Design-

unbiased estimators of finite population parameters can be obtained by ignoring all non-probability 

sample data. Therefore, the selection bias is not an issue in this context. The objective is to take 

advantage of the information contained in the non-probability sample to improve the efficiency of 

design-unbiased estimators through model assumptions that link data from both samples. This is the 

scope of Small Area Estimation (SAE) techniques (Rao and Molina, 2015). We focus below on the 

area level model of Fay and Herriot (1979). Unit level models are also used in SAE but require the 

auxiliary variables to be observed in the probability sample, possibly through record linkage, and this 

may not be feasible. 

Suppose that we are interested in estimating J  population parameters, j , 1,...,j J= , where the 

subscript j  refers to J  disjoint population domains of interest. For instance, j  could be the 

unemployment rate in a certain area j . Let us denote by ˆ
j , a design-unbiased estimator of j  

obtained from the probability sample A . From this design-unbiasedness property, we can write the 

so-called sampling model as 

ˆ
j j je = + , 

where je  is the sampling error such that ( ) 0p jE e = , ( )varp j ie =  and i  is the design variance 

of ˆ
j . The subscript p  indicates that the expectation and variance are taken with respect to the 

probability sampling design. In practice, ˆ
j  is rarely exactly design-unbiased but is assumed to be 

at least approximately design-unbiased. The sampling errors are also assumed to be normally 

distributed and mutually independent even when the design strata do not coincide with the domains. 

The above sampling model is complemented with a linking model that relates the population 

parameter j  to a vector of auxiliary variables ,B jz . This vector of auxiliary variables may come 

from many different sources; in practice, they are often administrative sources. Here, we focus on 

the use of a non-probability sample as the source of auxiliary information. For instance, a proxy for 

j  could be computed from the non-probability sample B , if a variable similar to y  is observed, and 

used as one component of ,B jz . The following linking model is often used:  

,j B j j jb v = +z β , 

where jb  are constant to account for possible heteroscedasticity, jv  are mutually independent errors 

that follow the normal distribution with ( ) 0m jE v =  and ( ) 2varm j vv = , and β  and 2
v  are 

unknown model parameters. The subscript m  indicates that the expectation and variance are taken 

with respect to the model, treating the vectors ,B jz  as fixed. 

The Fay-Herriot model is obtained by combining the sampling and linking model as  

,
ˆ
j B j ja = +z β , 

where j j j ja b v e= + .It is straightforward to show that ( ) 0mp jE a =  and ( ) 2 2varmp j j v ja b  = + , 

where ( )j m jE =  is called the smooth design variance of ˆ
j  (Hidiroglou, Beaumont and Yung, 

2019). The Empirical Best (EB) predictor of j  under the Fay-Herriot model is  
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( ) ,
ˆ ˆ ˆˆ ˆ1EB
j j j j B j    = + − z β , 

where ( )2 2 2 2 ˆˆ ˆ ˆ
j j v j v jb b   = + , and β̂ , 2ˆ

v  and ˆ
j  are estimators of β , 2

v  and j , 

respectively. The vector β  is typically estimated by generalized least squares and a number of 

methods exist for the estimation of 2
v  (see Rao and Molina, 2015), the most common being 

restricted maximum likelihood. Hidiroglou, Beaumont and Yung (2019) use a log-linear smoothing 

model and a method of moments for the estimation of j . 

Chatrchi, Gauvin and Ding (2020) recently applied the Fay-Herriot model to the estimation of trip 

spending by visitors to Canada for 242 domains defined by the cross-classification of region and the 

country of origin of visitors. The direct estimator ˆ
j  is obtained from the Visitor Travel Survey (VTS) 

and a proxy for j  is obtained from payment processors’ data. These data are subject to coverage 

issues and are conceptually different from the y  variable measured in the VTS. Yet, they were able 

to observe significant precision improvements by using the Fay-Herriot model, especially for the 

smallest domains. Their initial analyses showed the evidence of a nonlinear relationship between 

ˆ
j  and the proxy for j . A piecewise linear model appears to have addressed this issue 

satisfactorily. Rao (2020) describes other SAE applications, where authors have used non-

probability data and big data as a source of auxiliary information in a SAE model. 

7 Concluding remarks 

National Statistical Offices have been increasingly considering big data and volunteer web surveys 

in recent years as an alternative to conducting probability surveys. The main advantages of these 

non-probability samples over probability samples are their low cost and respondent burden, as well 

as their quick turnaround, i.e., the gap between the determination of information needs and the 

release of estimates is quite small for non-probability samples. 

It is well known that the use of a non-probability sample alone may lead to biased estimates of finite 

population parameters due to measurement errors and selection bias (e.g., Rao, 2020; Beaumont, 

2020). As a result, it does not seem advisable to use non-probability data to produce official statistics 

without complementing them with probability survey data. In Section 5, we discussed data integration 

methods that reduce the bias by combining non-probability and probability survey data. Although 

these methods are useful to achieve bias reductions, they rely strongly on the MAR assumption. 

Practically speaking, this assumption implies that the participation indicator is independent of the 

study variable y  after conditioning on z . A powerful set of auxiliary variables, associated with both 

the participation indicator and the study variable, is key to make this assumption plausible. Before 

probability and non-probability surveys are conducted, it is thus useful to give some thoughts on the 

inclusion of proper variables to be collected in both surveys for the purpose of making the MAR 

assumption more realistic and dampening the selection bias. Of course, it is not always possible to 

do so when the non-probability sample is not managed by the same agency as the probability 

sample. In some cases, there may be many auxiliary variables available for adjusting estimates from 

the non-probability sample. Variable selection techniques can be useful for selecting relevant 

auxiliary variables but need to be adapted to this data integration context. This problem is currently 

being investigated at Statistics Canada. 

Quality indicators for estimates based on integrated data is a topic that requires further research. 

The model variance of those estimators can be estimated, often using standard techniques, but the 

resulting variance estimates fail to account for the selection bias, which may not be negligible. 

Sensitivity analysis may provide a useful complement to variance estimates. It allows for assessing 

the effect of omitting a relevant auxiliary variable on the conclusions drawn from the available data. 
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Ding and VanderWeele (2016) is a recent paper on the topic that is currently being investigated at 

Statistics Canada. 

In some cases, depending on the users’ objectives, evidence will suggest that estimates from 

integrated data are not appropriate for the intended uses. Still, it might be desired to take advantage 

as much as possible of the available non-probability sample data. Small Area Estimation is one 

possible avenue that combines probability and non-probability sample data through models. 

Although the Fay-Herriot model discussed in Section 6 relies on the validity of model assumptions, 

the resulting inferences are not as dependent on the model as inferences based on methods 

discussed in Section 5. First, diagnostics can be used to assess the model adequacy (e.g., 

Hidiroglou, Beaumont and Yung, 2019). Also, when the probability sample size is large in a domain, 

the small area estimates are usually quite close to the reliable direct estimates. However, SAE is 

only feasible when the variable of interest is observed in the probability sample. Another alternative 

to make use of non-probability sample data is to use dual frame weighting methods (e.g., Kim and 

Tam, 2020; Rao, 2020; Beaumont, 2020). The advantage of this approach is that it remains design-

based, thereby not dependent on any model assumptions. 

We have not discussed other practical issues related to the use of big data and non-probability 

samples, such as privacy, access, and transparency. A report by the U. S. National Academies of 

Sciences, Engineering and Medicine (2017) extensively treats the privacy issue, in addition to 

methodology for integrating data from multiple sources. 
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Abstract 

This paper discusses the challenging problem of balancing the competing interests of access to 

high-quality statistical data and privacy protection. The paper argues that an optimal choice must 

account for the preferences of data users and providers, and that technology developed by 

cryptographers, such as differential privacy, may help us find efficient algorithms for implementing 

such an optimal choice. 

Keywords: confidentiality, privacy, data quality, data access 

There are many stakeholders in the conversation about the appropriate response to heightened 

privacy risk. In the United States, the American Statistical Association, the Committee on National 

Statistics (a standing committee of the National Academy of Sciences), and the Chief Statistician of 

the U.S. (in the Office of Management and Budget), have all furthered the discussions of privacy 

protection. Statistical agency experts and directors that I have briefed over the course of the last four 

years, since I took this job at the Census Bureau, have also provided their frank and illuminating 

discussion of the issues that they face in attempting to modernize their disclosure avoidance 

methods. 

Data users, including those from academia, research organizations, industry, and inside the Census 

Bureau, have also joined the discussion. Serious data users understand why it is worth multiple 

billions of dollars to conduct a population census. They know that conducting a quality census is 

more than just a statement by the statistical agency for public relations. They know that census data 

in the U.S. allocate at least six hundred and seventy-five billion dollars of federal funds every year 

with some estimates placing the annual value closer to one and a half trillion dollars. They know that 

the U.S. House of Representatives is apportioned based on data from the census, reminding us that 

it is important to conduct our censuses and surveys in a manner that maintains the integrity of those 

data and that allows the user community to have faith in their fitness for use. This is part of the U.S. 

Census Bureau’s dual mandate. 

The other part of that dual mandate is to protect the confidentiality of the respondents and the data 

that they provided. This is a challenging problem, and we all have to acknowledge that both sides of 

this discussion – really the entire continuum within this discussion – bring legitimate viewpoints to 

the table that must be respected and considered before making final decisions. It is important for me 

to acknowledge that, and I think most statisticians and researchers reading this article would not find 

anything controversial in that acknowledgement. 

Traditional statistical disclosure limitation is broken. That does not mean it usually fails. It does not 

usually fail. It does have significant vulnerabilities exposed by the cryptographers who migrated from 
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computer science into safe data publication. We must now address those vulnerabilities. They are 

real. They are documented in thousands of carefully-prepared, well peer-reviewed scientific papers 

that explain what the vulnerabilities mean and why the traditional methods are so exposed—not in 

an extreme sense, but vulnerable in precisely the sense that computer scientists have properly 

defined. 

There is a very steep learning curve for the official statistics community to climb, because these 

methods come from a different scientific tradition and involve very different methodologies. 

Extremely talented mathematical statisticians – well versed in the theory that underlies our statistical 

analyses – in particular, estimation based on complex multi-stage probability samples – were not 

exposed to the mathematical reasoning that underlies differential privacy and formal privacy 

systems. That is just a fact – not a statement of incompetence on anyone’s part. My own 

mathematical background also did not include most of the tools necessary to understand the 

arguments that the cryptographers were making. But, we do need to face up to those vulnerabilities 

– we need to rethink how we approach confidentiality protection, and we need to do it so that our 

future disclosure limitation systems can deliver the same promise of quality and confidentiality 

protection that they delivered when they were originally conceptualized, primarily by mathematical 

statisticians in the 1970s. So now, let’s dive into it. 

Privacy protection is an economic problem. It is not a computer science problem; it is not a statistics 

problem; it is an economic problem. It is about the allocation of a scarce resource – the information 

in the confidential data that statistical agencies collected – between two competing uses: public data 

products and privacy protection. The confidential data are a scarce resource because they are finite. 

If finite, that must mean that the published data products can fully consume the information leaving 

no privacy protection, if we are not careful. That is precisely what the economic analysis of 

confidentiality protection teaches us: computer science informs the technology for transforming 

confidential data into useful information products, and making the publication algorithms produce 

accurate, fit-for-use information products that also protect confidentiality is a function of using good 

computer science. 

Computer science has thus defined the production possibility frontier between privacy protection and 

accuracy of publications just the same way as the toy examples in your Introductory Microeconomics 

class defined the guns and butter production possibility frontier: if you consume more guns, you will 

have less butter. If we consume more accuracy, we will have less privacy – that is a mathematical 

fact. If we do it carelessly, then we will inefficiently spend privacy-loss, as I prefer to call it, and not 

get as much accuracy as we could. If we do it carefully, then we will use algorithms that are on that 

production possibility frontier – algorithms that are efficient. But if you claim that you can get more 

accuracy than an efficient privacy-enhancing data publishing technique, you are claiming something 

that is mathematically false. The comparable claim that traditional statistical disclosure limitation can 

be more accurate and just as privacy-preserving is also mathematically false. The traditional 

methods are Pareto dominated, in the economic sense, by the formally private methods, of which 

differential privacy is the leading example. That means the traditional methods are on the interior of 

the production possibility frontier – you can improve the accuracy, reduce the privacy loss or both at 

no cost by moving to the efficient frontier. The technology that cryptographers brought to data 

publication describes the efficient frontier. It is not constant. It changes every day with new research. 

This research can, and does, make the algorithms more efficient. It pushes the production possibility 

frontier outwards. That is the technology side. 

What does it mean to have an optimal balance of accuracy relative to privacy protection? Answering 

this question requires more than technology. An optimal choice must account for the preferences of 

data users and providers. It must summarize the extraordinarily heterogeneous costs to the providers 

in terms of their privacy loss and the equally heterogeneous benefits to the users in terms of the 

accuracy of the publications for their intended uses. In short, we have to balance the social 

preferences of data users and providers to determine an optimal trade-off. 
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I want you to look yourself in the mirror now, because I have. How much weight do you personally 

put on data accuracy versus privacy protection? In your way of thinking about the world, whose job 

is it to protect the privacy interests of the data contributors? I think most official statisticians would 

say that is our job. Whose job is it to protect the fitness for use of the data products that we release? 

Again, I think most official statisticians would say that is also our job. Those are competing interests, 

and so it must be our job to balance those competing interests. We do not have a complete repertoire 

of tools with which to perform that job. We need to fix that, and that is a critical part of our research 

mission. 

I want you to ask yourself this question. If Facebook said “If you think you have re-identified someone 

in public data that we released for research purposes, you can’t be sure that you are correct because 

we used disclosure limitation techniques for which we cannot give you the details,” what would you 

say?  

I also want you to ask yourself this question. If you were refereeing a scientific paper, and the author 

said “My inferences may not be valid, because the agency that provided data access did not release 

details sufficient to correct for bias and variability due to statistical disclosure limitation,” what would 

you say to the editor?  

I think I can guess the answer to both of those questions. We have to find a way out of this situation. 

Statistical agencies should not behave in a manner that we would find unacceptable for Facebook 

or scientific journals. Official statisticians cannot continue to ask the users of our data to ignore the 

things that we have to do to protect confidentiality. We need to provide data analysis systems that 

are statistically valid – systems where the inferences are correct according the appropriate 

underlying mathematical theory, just as we did for design-based estimation from probability samples. 

We must be able to say that we protected the confidentiality of these data using these algorithms 

with these parameters. Statistical disclosure limitation should not remain a back-room operation 

exempt from the scrutiny of either the providers or the users. Users and providers must assess the 

quality of our confidentiality protections. National statistical agencies should correct, strengthen, or 

otherwise adjust their publication systems based on the reasoned analyses of both data and privacy 

advocates. Speaking only for myself, our research and methodology ought to step up to this 

challenge. 
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Abstract

Representing a collection of relevant units by a graph allows one to incorporate the connections (or
links) among the units in addition to the units themselves. One may be interested in the structure
of the connections, or the links may provide effectively access to those units that are the primary
interest. Either way, graph sampling provides a statistical approach to study real graphs. Just like
sampling from finite populations, it is based on exploring the variation over all possible sample graphs,
which can be taken from the given population graph according to a specified method of probability
sampling, and design-based inference using a suitable graph sampling strategy is valid “whatever the
unknown properties” (Neyman, 1934) of the population graph.

Keywords: graph, probability sampling, observation procedure, motif of interest, sampling strategy

1 Sampling from real graphs

Birnbaum and Sirken (1965) consider ‘indirect sampling’ of patients via an initial sample of medical
centres. Since any in-scope patient may receive treatment at multiple places, not all of which are
among the actual sample of medical centres, additional knowledge of all the out-of-sample treatment
places of each sampled patient needs to be collected in order to calculate the patient’s sample inclu-
sion probability. In addition to the Horvitz-Thompson estimator (HTE, Horvitz and Thompson, 1952),
Birnbaum and Sirken (1965) propose 2 unbiased estimators in this unusual situation.

Zhang (2020b) considers sampling to estimate the prevalence of an epidemic in a given population
U , where one would like to increase the sample yield of cases, i.e. persons with yi = 1 in contrast to
noncases with yi = 0, in order to improve the design efficiency. Let s0 be an initial sample from U , with
inclusion probability πi = Pr(i ∈ s0). Since the virus is transmitted via personal contacts, consider
adaptive network tracing, where all the contacts of each case i in s0 are included, and the procedure
is repeated for them, and so on until no more cases can be added in this way. Let π(i) = Pr(i ∈ s),
where s is the final sample. Since any case i that is in contact with other cases can be included in s
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by adaptive network tracing, even when it is not selected in s0 initially, we achieve π(i) ≥ πi. This is a
special case of adaptive cluster sampling (ACS, Thompson, 1990) with binary yi.

Zhang and Oguz-Alper (2020) develop the theory, which enables one to represent both the situa-
tions above as sampling from a bipartite incidence graph (BIG). Patone and Zhang (2020) develop
generally the incidence weighting estimator (IWE) under BIG sampling (BIGS), which encompasses
all the estimators considered by Birnbaum and Sirken (1965). BIGS and the associated IWE form a
flexible graph sampling strategy, which extends the finite-population (FP) sampling strategy consist-
ing of a probability sampling design and the associated HTE. The BIGS-IWE strategy is applicable to
many unconventional probability sampling techniques, which “are not explicitly stated as graph prob-
lems but which can be given such formulations” (Frank, 1977), including indirect sampling (Birnbaum
and Sirken 1965; Lavalleè, 2007), network sampling (Sirken, 1970; 2005), adaptive cluster sampling
(Thompson, 1990, 1991) and line-intercept sampling (Becker, 1992; Thompson, 2012). See Zhang
and Oguz-Alper (2020) and Patone and Zhang (2020) for the relevant discussions.

As Zhang and Patone (2017) point out, in all the aforementioned situations, one is interested — rather
conventionally — in some finite population total (or mean), where the connections (or links) among
the relevant population elements and sampling units — more or less unconventionally — provide the
access to the target population, which otherwise would have been ineffective or impractical to sample.
Meanwhile, in sampling from arbitrary graphs generally, one is typically interested in the structure of
the links themselves, often expressed in terms of a particular motif, which may simply be defined as
a subgraph of specific characteristics. An early example is snowball sampling by Goodman (1961),
where the motif of interest is ‘pair with mutual relationships’ in a special graph where all the nodes
have out-degree one. In a series of work spanning over several decades (e.g. Frank, 1971, 1977,
1978, 1979, 1980, 1981, 2011), Ove Frank studies from this perspective graph sampling of motifs
defined for nodes, dyads, triads (star, triangle), components, etc. Zhang and Patone (2017) provide
a structure of graph totals of various motifs, to reflect the extended scope of investigation.

Thus taken together, representing a population of relevant units by a graph allows one to incorporate
the connections (or links) among the units in addition to the units themselves. One may be either
interested in the characteristics of the graph, or the links may provide effectively access to those
units that are the primary interest. Either way, graph sampling provides a statistical approach to study
real graphs. Just like sampling from finite populations, it is based on exploring the variation over all
possible sample graphs, which can be taken from the given population graph according to a specified
method of probability sampling, and design-based inference using a suitable graph sampling strategy
is valid “whatever the unknown properties” (Neyman, 1934) of the population graph.

As much as graph sampling is versatile, it can be intricate when it comes to the formulation of graph
sampling strategy in various situations. Below are three key elements in any case.

I. Definition of sample graph. Zhang and Patone (2017) define sample graph, where the specified
sample observation procedure makes use of incident edges. Other observation procedures are
conceivable which, in particular, may involve random jumps or teleporting to non-adjacent nodes.
Tweaks of the definition of sample graph are needed accordingly.

II. Basis of inference. Zhang and Patone (2017) synthesise the existing graph sampling theory,
where inference is based on the sample graph inclusion probabilities of the motif of interest.
The IWE makes more extensive use of the same basis of inference, allowing for many unbiased
estimators in addition to the HTE. More generally, inference can be based on other avaiable
sampling probabilities associated with the given graph sampling method, as e.g. will be discussed
for random walk sampling, which call for principally different strategies.
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III. Eligible sample motifs. A motif that is observed in the sample graph is nevertheless ‘ineligible’ for
estimation, if the required probabilities for inference cannot be calculated. Eligibility of a particular
sample motif depends on the availability of the knowledge of its ancestry (Zhang and Patone,
2017). Essentially, apart form the actual way by which a motif is sampled, one needs to know
how else it could have been sampled under the given sampling method. The concept of ancestry
under graph sampling generalises the concept of multiplicity defined by Birnbaum and Sirken
(1965), where it amounts to the knowledge of the out-of-sample medical centres for each sampled
patient. Identification of eligible sample motifs is the key to any feasible graph sampling strategy.

In the rest of the paper, examples will be given to elaborate the points above. For the details that may
be necessary for a fuller comprehension the reader is kindly referred to the relevant sources.

2 BIGS-IWE generalises FP-sampling and HT-estimation

Denote by B = (F,Ω;H) a population BIG, where the node set is bipartitioned into F and Ω, such
that (directed) edges exist only from F to Ω, denoted by (iκ) ∈ H, iff the selection of i ∈ s0 ⊂ F

leads to that of κ from Ω. As explained and illustrated below, the strategy BIGS-IWE generalises the
familiar strategy of ‘FP-sampling and HT-estimation’.

Denote by U = {1, ..., N} a population of size N . Let yk be a constant associated with each k ∈ U ,
with population total θ =

∑
k∈U yk. Denote by s a sample from U , according to a method of probability

sampling, where the sample inclusion probability Pr(k ∈ s) is either known in advance or can be
calculated for the sample units afterwards. The HTE of θ is θ̂HT =

∑
k∈s yk/Pr(k ∈ s).

For element sampling, let F = Ω = U , where (iκ) ∈ H iff i and κ refer to the same population
element. The correspond BIGS representation is given to the left in Figure 1. For cluster sampling,
illustrated to the right in Figure 1, let F consist of the clusters (of which there are M in total) and
Ω = U the elements that are nested in the clusters, where (iκ) ∈ H iff element κ belongs to cluster i.
Clearly, the strategy BIGS-HTE suffices for these familiar FP-sampling situations.

κ1 κ2 · · · κN

i1 i2 · · · iN

κ1 κ2 · · · κN

i1 · · · iM

Figure 1: BIGS representation of finite-population sampling of elements (left) or clusters (right).

For indirect sampling of Birnbaum and Sirken (1965), let F consist of the medical centres and Ω the
patients of interest, where (iκ) ∈ H iff patient κ receives treatment at centre i. The BIG is illustrated in
Figure 2, where the mapping from F to Ω can be many-many, instead of simply one-one or one-many
as in Figure 1. Let us consider the elements I - III, in order to arrive at the strategy BIGS-IWE.

κ1 κ2 κ3 κ4 κ5 · · ·

i1 i2 i3 i4 i5 · · · iM

Figure 2: BIGS in general

I. Following the definition of Zhang and Patone (2017), the sample graph under BIGS from B is
generally given as follows. Let s0 be an initial sample from F , with sample inclusion probabilities πi,
πij , etc. Apply the incident forward observation procedure, by which all the out-edges from s0 are
included in the sample of edges, denoted by Hs = {(iκ) : (iκ) ∈ H, i ∈ s0}. The sample nodes are
the union of s0 and those incident to the edges in Hs, i.e. s0 ∪ Ωs, where Ωs = α(s0) = ∪i∈s0αi, and
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αi = {κ : (iκ) ∈ H} are the successors of i in B. The sample graph under BIGS is given by

Bs = (s0,Ωs;Hs).

II. The inference is based on the sample inclusion probabilities. The fact that each κ in Ωs can
possibly be accessed via multiple sampling units in F calls for the concept of ancestry under graph
sampling. For instance, suppose i1 ∈ s0 but not i2 or i3. To calculate the inclusion probability of the
patient κ2 ∈ αi1 , one must collect the information that it receives treatment at i2 and i3 as well, i.e.
how else it could have been sampled under BIGS here.

III. The ancestry knowledge of κ ∈ Ωs is secured and it is eligible for estimation of θ =
∑

κ∈Ω yκ,
where yκ is a constant associated with each κ ∈ Ω, provided the observation of βκ \ s0, where
βκ = {i ∈ F : (iκ) ∈ H} are the predecessors of κ in B, although βκ \ s0 are not part of the sample
graph Bs. It follows that all the nodes in Ωs are eligible, provided the observation of β

(
α(s0)

)
\ s0 in

addition to Bs, where β
(
α(s0)

)
= ∪κ∈α(s0)βκ.

Let Wiκ be the incidence weight associated with each edge (iκ) ∈ Hs. The IWE of θ is given by

θ̂ =
∑

(iκ)∈Hs

Wiκ
yκ
πi

(1)

(Patone and Zhang, 2020), where πi = Pr(i ∈ s0) is also the probability that (iκ) is included in
Bs under BIGS. While the HTE is defined for Ωs, the IWE is defined for the sample BIG edge set
H(Bs) = Hs, where each (iκ) in Hs is incident to i in s0 and κ in Ωs. Patone and Zhang (2020)
show that the IWE encompasses all the estimators considered by Birnbaum and Sirken (1965). In
particular, the HTE is a special case, where Wiκ varies according to sκ = s0 ∩ βκ, subjected to the
condition that ensures unbiased estimation of θ over repeated sampling: for any κ ∈ Ω,∑

i∈βκ

E(Wiκ|i ∈ s0) = 1.

This generalises the result of Birnbaum and Sirken (1965) for constant weights, denoted by ωiκ for
distinction, which requires

∑
i∈βκ ωiκ = 1 for any κ ∈ Ω, including ωiκ = 1/mκ and mκ = |βκ|.

3 BIGS-IWE for unconventional sampling: ACS as an example

3.1 ACS with binary outcome variable

Let U be the population of size N and µ = θ/N the prevalence of interest. Adaptive network tracing
requires the population U to be represented by the population graph G = (U,A) where, in addition
to the node set U , the edge set A contains all the relevant contacts. We shall treat the graph as
undirected and simple, where (ij), (ji) ∈ A if persons i and j are in-contact, and there is only one
edge either way regardless of the frequency or intensity of the contact between i and j.

© F F © ◦

© F © ◦

Figure 3: Cases F, noncase edge nodes©, other noncases ◦

Figure 3 illustrates a part of such a population graph G, with stars for cases and circles for noncases.
In particular, all the cases are partitioned into case networks, where those in the same network all
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have yi = 1 and are connected to each other in G; two case networks are shown in Figure 3. Next, a
(network) edge node is a noncase that is adjacent to at least one case network; the four edges nodes
in Figure 3 are shown as bigger circles than the other noncases.

ACS from G employs contact tracing starting from an initial sample s0 from U , which is adaptive
because tracing is only applied to the contacts of F but not © or ◦. The final sample s by ACS can
be divided into three parts: (i) a set of case networks, (ii) the edge nodes, and (iii) the remaining
noncase nodes in the initial sample s0 which do not belong to (i) and (ii). Zhang (2020b) considers
the efficacy of several ACS designs for cross-sectional as well as change estimation of prevalence.
These graph sampling methods allow one to unite tracing for combating the disease and sampling
for estimating the prevalence during an epidemic outbreak.

F F © F © · · · ◦

F F © F © · · · ◦

Figure 4: BIGS representation of ACS from G with binary outcome variable

Following Zhang and Oguz-Alper (2020), one can apply the BIGS-IWE strategy to ACS fromG above,
thereby allow other unbiased estimators in addition to the HTE. Let F = Ω = U in B, and let H
contain the incident observation relationships among the nodes in G under adaptive network tracing.
For instance, let the two leftmost F in Figure 4 be the two in the same network in Figure 3, and let©
next to them in Figure 4 be one of their edge nodes in Figure 3. Under ACS from G, the selection of
either F in s0 leads to all the three of them to be included in the sample s, yielding the corresponding
edges from these two F in B. Meanwhile, selecting any © in s0 does not lead on to any adjacent
case network, such that © has only an edge to itself in B. Similarly, the other two edge nodes in
Figure 3 can be included in B, which are omitted here to avoid cluttering the figure visually.

Thus, the sample graph under BIGS from B is the same as that by ACS from G. The inference basis
is still the relevant sample inclusion probabilities. Since each sample case is observed together with
its network under ACS, the knowledge of its ancestry is secured for the BIGS representation with B
defined above. But ancestry is generally unclear for any edge node © in Figure 4, since we would
not observe any of its F-ancestors in a case network unless that network happens to intersect s0.
However, this does not matter here, since a noncase κ in Ω with yκ ≡ 0 contributes nothing to the
IWE (1) regardless its inclusion probability. Thus, using only the sample case nodes as the eligible
motifs in Ωs, the BIGS-IWE is a feasible strategy for ACS from G with binary outcome variable.

3.2 ACS with continuous outcome variable

Simply ignoring the edge nodes would not be valid for ACS with continuous outcome variable, where
an edge node generally has a non-zero value below the threshold chosen for adaptive sampling.
Thompson (1990) proposes an inferential approach, where one modifies two of the estimators of
Birnbaum and Sirken (1965). Zhang and Oguz-Alper (2020) develop the BIGS-IWE strategy. Let us
illustrate their approach here using the example of Thompson (1990).

The population U consists of N = 5 spatial grids, with associated yU = {1, 0, 2, 10, 1000} for the
amount of species of interest. Each grid has either one or two neighbours which are adjacent in the
undirected graph G = (U,A) below, where we simply denote each grid (or node) by its y-value as
Thompson (1990). This is a valued graph where G is known but the associated yU are unknown.

G : 1 0 2 10 1000

Figure 5: Graph for ACS (Thompson, 1990)
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Given an initial sample s0 of size 2 by simple random sampling (SRS) from U , one would survey all
the adjacent grids (in both directions if possible) of a sample grid i if yi exceeds the threshold value
5 but not otherwise, and so on. A network in G may consist of one or more connected nodes all with
y-values above the threshold such as {10, 1000} here, or it may be a single node with y-value up to
the threshold, some of which are edge nodes such as node 2 here. The interest is to estimate the
mean amount of species per node, denoted by µ = θ/N , where θ =

∑
i∈U yi.

Since the sample inclusion probability of any edge node is generally unknown under ACS from G,
Thompson proposes to modify the HTE, such that an edge node i is used for estimation (i.e. eligible)
only when i ∈ s0 directly, the probability of which is πi = Pr(i ∈ s0) = n/N under SRS of s0. Similar
modification can be applied to the 2nd estimator of Brinbaum and Sirken (1965), which is referred to
as the Hansen-Hurvitz (HH) type estimator by Thompson (1990).

Zhang and Oguz-Alper (2020) denote the strategy of Thompson (1990) by (B, θ̂∗HT ) when the modified
HTE is used as the estimator, where the population B has F = Ω = U and the edge set H contains
all the observational links under ACS from G. They observe that it is as well possible to modify the
sampling when constructing a feasible strategy, say, (ACS∗, HT) or (ACS∗, HH). In particular, they use
BIGS as ACS∗, in which case the IWE would unify and generalise the HTE and HH-type estimator.

For a generally feasible strategy with BIGS one can use instead B∗ = (U,U ;H∗) in Figure 6. The
observational links (10, 2) and (1000, 2) under ACS from G are removed to ensure ancestral observa-
tion in B∗. For instance, given s0 = {0, 2}, the observation procedure of ACS means 10 and 1000 are
not observed, as in B∗ where 2 in Ω(B∗) has only itself as the ancestor in F (B∗). One can now use
the unmodified HTE under BIGS from B∗, as a special case of IWE, denoted by (B∗, θ̂y).

B∗ : 1 0 2 10 1000

1 0 2 10 1000

Figure 6: A feasible BIGS-IWE strategy for ACS

The two strategies (B, θ̂∗HT ) and (B∗, θ̂y) lead to the same estimator, since the eligible sample nodes
in Ωs are the same under both. The difference is that applying the Rao-Blackwell method does not
change θ̂y under BIGS from B∗, whereas it changes θ̂∗HT under BIGS from B.

Another possible strategy using BIGS in this particular setting is to make an edge node ineligible, if
itself is selected in s0 but not its neighbouring above-threshold network, with B† in Figure 7. Denote
this strategy by (B†, θ̂y). It is feasible here because the egde node 2 has only one above-threshold
neighbouring network in G, i.e. {10, 1000}; but it would be infeasible generally provided an edge node
has two or more such networks in G.

B† : 1 0 2 10 1000

1 0 2 10 1000

Figure 7: Another BIGS-IWE strategy for ACS

The BIGS-IWE strategy extends the inferential approach to ACS pioneered by Thompson (1990),
where one can modify either part of a standard strategy (sampling, estimator) when it is otherwise
infeasible in a given situation. For the example discussed above, Table 1 taken from Zhang and Oguz-
Alper (2020) provides the numerical details of the three strategies (B, θ̂∗HT ), (B∗, θ̂y) and (B†, θ̂y).
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Table 1: Strategies using BIGS for ACS from G : 1− 0− 2− 10− 1000.
(B, θ̂∗HT ) (B∗, θ̂y) (B†, θ̂y)

s0 Ωs µ̂∗HT Ωs µ̂y Ωs µ̂y
1,0 1,0 0.500 1,0 0.500 1,0 0.500
1,2 1,2 1.500 1,2 1.500 1 0.500
0,2 0,2 1.000 0,2 1.000 0 0.000
1,10 1,10,2,1000 289.071 1,10,1000 289.071 1,10,2,1000 289.643
1,1000 1,1000,2,10 289.071 1,1000,10 289.071 1,1000,2,10 289.643
0,10 0,10,2,1000 288.571 0,10,1000 288.571 0,10,2,1000 289.143
0,1000 0,1000,2,10 288.571 0,1000,10 288.571 0,1000,2,10 289.143
2,10 2,10,1000 289.571 2,10,1000 289.571 2,10,1000 289.143
2,1000 2,1000,10 289.571 2,1000,10 289.571 2,1000,10 289.143
10,1000 10,1000,2 288.571 10,1000 288.571 10,1000,2 289.143
Variance 17418.4 17418.4 17533.7

4 Graph sampling: On to general theory

Sampling from arbitrary graph G = (U,A) involves a number of conceptual generalisations of BIG
sampling discussed above. Given limited space, we focus our discussion here on the following.

• So far we have only seen examples of motifs defined for the nodes of G. Zhang and Patone
(2017) define generally motifs and their graph total, i.e. instead of population total over U .

• There are many observation procedures in a graph, which make use of the edges incident to an
initial sample of nodes. Zhang and Patone (2017) discuss induced and incident procedures.

• Repeating an incident observation procedure leads to multiwave sampling. T -wave snowball
sampling (T-SBS, Zhang and Patone, 2017) is the probabilistic version of breath-first search in
graphs, and targeted random walk (TRW) is that of depth-first search.

• Zhang and Patone (2017) consider inference based on the graph sample inclusion probabilities.
Depending on the observation procedure, other sampling probabilities may be necessary.

Definitions Let G = (U,A) consist of nodes U and edges A. Let Aij contain the edges from i to
j, and aij = |Aij |. Attaching values to U or A yields a valued graph. One may consider a graph to
be the structure of a valued graph. We do not consider separately sampling from graphs or value
graphs. Generally speaking, a graph sampling method may depend on the values associated with G,
and the values associated with the sample graph Gs are observed together with Gs.

Let M be a subset of U . Let G(M) be the subgraph induced by M , whose edge set is given by
{Aij : (i, j) ∈ M}. A subgraph G(M) with specific characteristics is called a motif, denoted by [M ].
For example, [i : ai+ = 3] is a motif of node with out-degree 3, [i, j : aijaji = 1] of a node pair with
mutual simple relationship, and [i, j : aij + aji = 0] of a non-adjacent node pair.

Let y
(
G(M)

)
, or simply y(M), be a function of G(M). Let Ω contain all the relevant M . Let

θ =
∑
M∈Ω

y(M) (2)

be the graph total over Ω. It is said to be the k-th order, if |M | = k for all M ∈ Ω. Although It is
possible to let Ω in (2) be the set of motifs of interest directly, and let yκ be a function of motif κ,
it can be convenient if the summation is over all the relevant node sets. For instance, the motifs
[i, j : aijaji = 1] can be enumerated over Ω = {(i, j) : i 6= j ∈ U}, with y(i, j) as the corresponding
counter. If Ω is the set of these motifs, then writing θ = |Ω| is more natural than θ =

∑
κ∈Ω 1.
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Zhang and Patone (2017) consider induced or incident observation procedure given an initial sample
of nodes, denoted by s0. Take G : a b → c → d for example. Let s0 = {b, d}. We observe none of
the edges if the observation procedure is induced, or the edge (bc) if it is incident forward, or (cd) if
incident backward, or both (bc) and (cd) if incident reciprocal.

Ove Frank studies sampling of node sets or motifs using such observation procedures, where a sam-
ple of motifs from the population of motifs is conceived in analogy to a sample s from the population
U . Zhang and Patone (2017) define the sample graph Gs = (Us, As) as a subgraph of G.

• Initial sample of nodes s0 ⊂ U , with p(s0), πi, πij , etc.

• Application of the specified observation procedure, starting from s0.

• Specify the reference set sref ⊂ U × U , such that As = A ∩ sref

• Let Us = s0 ∪ Inc(As), where Inc(As) denotes the nodes incident to the edges in As.

Compared to sampling from finite populations, a defining feature of sampling from graphs is that one
uses the edges. The definition of sample graph above includes the situation, where the initial node
sample s0 is given as the nodes that are incident to a sample of edges directly selected from A. Direct
sampling of edges may be useful e.g. if G is known but is too large to be counted. It is then possible
for the observation procedure to specify that no additional edges need to be sampled.

It is convenient to specify the sample edges As via sref, which explicates the parts of the adjacency
matrix [aij ] that are observed given s0 and the observation procedure. Take again G : a b→ c→ d

for example. Let the rows and columns of [aij ] be arranged in the order a, b, c, d. The set sref given
s0 = {b, d} and the various observation procedures are shown in 1/0 below.


0 0 0 0

0 0 1 0
0 0 0 1

0 0 0 0




0 0 0 0

0 0 1 0
0 0 0 1

0 0 0 0




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


Induced Incident forward Incident backward Incident reciprocal

T-SBS To keep focus, let incident OP stand for incident forward observation procedure from now
on. Note that in undirected graphs, incident is the same as incident reciprocal. Given an initial seed
sample s0 from U , let s1 = α(s0) \ s0 be the 1st-wave seed sample. Repeat the incident OP for s1,
which may or may not result in a non-empty 2nd-wave seed sample s2 = α(s1) \ (s0 ∪ s1). Carry on
this way yields the seed samples s3, ..., sT . The seed sample of T-SBS is given by s =

⋃T−1
r=0 sr.

The reference set sref of T-SBS is s × U in directed graphs or s × U ∪ U × s in undirected graphs. A
motif [M ] is observed in the sample graph Gs iff M ×M ∈ sref. Frank and Snijders (1994) consider
1-SBS for node (1st-order) graph totals. Zhang and Patone (2017) develop the HTE for finite-order
graph totals under T-SBS. The basis of inference is the graph sample inclusion probabilities.

· · · a i j c · · ·

· · · b h l · · ·

Figure 8: An example of 4-cycle [h, i, j, l]

However, not all the motifs observed in Gs are eligible for estimation. Consider the 4-cycle motif [M ]

with M = {h, i, j, l} in Figure 8. We need two waves to observe a 4-cycle, starting from any node in
M , so that it is observed under 3-SBS starting from any of a, b, c. If only a is selected in s0, then we
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would observe this 4-cycle under 3-SBS, as well as b as another of its ancestors, but not c, so that its
sample inclusion probability under 3-SBS cannot be calculated and it remains ineligible.

Zhang and Oguz-Alper (2020) develop the theory for eligible sample motifs under T-SBS. One could
carry on SBS further, until one has obtained all the ancestors of the sample motifs observed under
T-SBS. One could use only the eligible sample motifs under T-SBS, in a manner resembling the
modified HTE that excludes the edge notes under ACS. As explained earlier, it is also possible to
modify the sampling to allow for the unmodified HTE. Zhang and Oguz-Alper (2020) develop feasible
BIGS representation for T-SBS with given T . One can then apply the IWE instead of only the HTE
using this BIGS-IWE strategy, tailored to the number of waves when sampling is terminated.

Targeted random walk One can envisage a discrete-time walk in a graph as travelling from one
city to another via the existing roads that connect the cities. In a random walk, one takes randomly
one of the possible roads out of the current city, repeat the same at the next city, and so on. A walk
reaches gradually its equilibrium, if the chance that one visits a given city at a given time depends
less and less on the particular starting point. The stationary probability that a walk takes one to a
given city is the fraction of times the city is visited when the walk is at equilibrium.

Random walk in large and possibly dynamic graphs has been used in many disciplines (Masuda et
al., 2017), including Google PageRank (Brin and Page, 1998), especially if the walk is fast-moving.
For a connected undirected graph, the stationary probabilities of a random walk, denoted by πi for
i ∈ U , are known up to a proportional constant for the nodes visited, but not the ones yet to be visited.
Thompson (2006a) applies the Metropolis-Hastings acceptance mechanism to the proposed moves,
in order to achieve other targeted stationary probabilities, such as πi ∝ degree+1. This requires one
to observe all the neighbours of all the adjacent nodes of the current one, which may be impractical.
Avrachenkov et al. (2010) devise an elegant random walk that requires only the knowledge of the
adjacent nodes at each step time, for which the stationary probabilities at equilibrium is known up to
a proportional constant for undirected graphs. The disconnected components are accommodated by
random jumps via an imaginary node. We refer to it as targeted random walk (TRW).

The random-walk inclusion probability of a node is intractable. Insofar as the stationary probability
πi is the same for a given node i at any time step for a random walk at equilibrium, and πi is only
known up to a proportional constant, approximately unbiased estimation is possible, e.g. for the ratio
between two node totals using the generalised ratio estimator (Thompson, 2006a).

For other finite-order graph totals generally, Zhang (2020a) demonstrates that inference can be based
on the stationary successive sampling probability (S3P) of any subsequence from the TRW states
{X0, X1, ..., XT }. For example, suppose (Xt, Xt+1) = (i, j) where aij = 1. As long as both Xt and
Xt+1 belong to the seed sample s of the TRW, following the same definition of seed sample of T-SBS
above, one can observe e.g. all the triangles (i, j, h) in the graph. The S3P of the actual sampling se-
quence (Xt, Xt+1) = (i, j) is πipij , where pij is the corresponding transition probability. Moreover, all
the possible (Xt, Xt+1) that lead to the observation of the same triangle (i, j, h) are called the equiv-
alent successive sampling sequences (ES3), including (Xt, Xt+1) = (j, i), (h, i), (i, h), (h, j), (j, h) in
addition to (i, j). The ES3 of a motif [M ] constitutes its multiplicity under TRW sampling sequence-
by-sequence. A motif [M ] is eligible for estimation, if its ES3 is observed under the TRW. This yields
a BIGS representation of TRW, with the motifs of interest in Ω and their ES3s in F . By this develop-
ment, BIGS-IWE becomes a feasible strategy for any function of finte-order graph totals under TRW,
as long as the function is invariant towards the unknown proportional constant in πi.
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5 Some topics for future research

Graph sampling is clearly the future of sampling. We have provided a brief introduction to it mainly
by examples. The references contain many details that may be helpful for further reading.

A topic for future research is other possible bases of inference in various graph sampling situations.
For instance, Thompson (2006b) considers adaptive web sampling where, at each wave, a subset of
the already sampled nodes are used as the seeds for random walks from them. The wave-by-wave
conditional sampling probabilities are used for estimation of node totals, together with all the seed
sample selection probabilities. A theory is needed for other finite-order graph totals.

It is intriguing to consider other parameters than graph totals (2) and functions of them. Newman
(2010) is an excellent source of candidates, many of which can be characterised as ‘a local parameter
dependent on the whole graph’. For example, the in-degree of a node i is a local parameter that only
depends on its in-edges, but not the rest of the graph. The betweenness of a node provides an
example of what we have in mind. As can be seen below, the shortest-path (SP) betweenness of F
is 0, which is defined as the fraction of SPs between pairs of nodes in a graph passing through it,
because it is always ‘short-circuited’ by the two© nodes. Whereas F has a high random-walk (RW)
betweenness (Newman, 2005), which is defined as the fraction of RWs between pairs of nodes in a
graph passing through it. How would a sampling strategy look like for such parameters?

... F ...

◦ © © ◦

Figure 9: An example for betweenness

Graph sampling poses not least an enormous opportunity for computation. Efficient sample motif
counting algorithms are obviously critical in applications, and their availability can influence the theory
in return. For instance, Frank (1971) considers ‘telepathy-like’ observation of whether two nodes are
connected, without explicating any path between them. One can envisage the possibility the relevant
algorithm is so fast that it is virtually instant when the graph is known, e.g. depending on the data
structure implemented. However, the graph may be so large or dynamic that sampling is still needed
for ‘graph compression’. The availability of such remote observation procedures could easily lead to
other possibilities of sample graph, basis of inference and graph sampling strategy.
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Country Reports 

ARGENTINA 

Reporting: Verónica Beritich 

INDEC begins the 2020/2021 National Economic Census 

Fifteen years after the last economic census, the National Institute of Statistics and Censuses 

(INDEC) reports that on November 30, 2020 the 2020/2021 National Economic Census begins. This 

statistical operation will allow knowing the updated economic structure of Argentina. Along with the 

population census, the economic census is one of the fundamental pillars of the country's statistical 

infrastructure. 

The CNE 2020/2021 is an exhaustive statistical survey on people and companies that have 

registered activity in the Argentine Republic. It includes financial and non-financial companies, 

freelancers, and institutions without profit. 

INDEC is planning this economic census in two stages. The first stage consists of recording all 

economic units with activity in the national territory in a digital statistical register. Next, the second 

stage will consist of carrying out several economic structural surveys and sectoral surveys to obtain 

information on production and inputs disaggregated by activity and product, distribution channels 

and margins, among other data related to non-financial corporations. 

The first stage will be carried out by means of a digital questionnaire developed at INDEC, called e-

CNE. More than 5,500,000 human and legal persons will complete it through the online application. 

This economic census aims to leave behind the classic paper questionnaires to obtain high-quality 

information in less time, at a lower cost compared to a territorial sweep. 

Legal persons can complete the e-CNE between November 30 and January 31, 2021, according to 

the last number of their Unique Tax Identification Code (CUIT). With the same criteria, human 

persons will be able to complete it between February and June 2021. Those who participate in each 

specific instance will receive the summons to complete the e-CNE at their electronic fiscal address. 

In addition, they will have access to different tutorial videos to learn about how to enter the system 

and upload the information quickly and safely. 

To enter to the e-CNE application, the validation of the identity of the persons will be previously 

required by means of their CUIT number and tax code in the Autenticar platform. Then, the system 

will redirect to a secure INDEC site to complete the electronic questionnaire.  

Depending on the type of person, the questionnaire may have 14, 15 or 17 questions.  

What questions will be answered at the e-CNE? 

1. Name or business name of the company 

2. CUIT 

3. Location 

4. Do you have establishments in more than one province? 

5. Description of the main activity 

6. Goods or services resulting from the main activity 

7. Raw materials, materials or direct expenses for the production of goods or services 

8. Annual turnover (2019) 
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9. Number of workers in a dependency relationship (salaried) on December 31, 2019 

10. Auxiliary support units to carry out the main activity 

11. Do you carry out other activities? 

12. Description of secondary activities (if applicable) 

13. Do you produce any good or service for your own consumption? 

14. Do you produce fixed assets for your own use? (buildings, structures, machinery and 

equipment, computer developments, etc.) 

15. Do you carry out research and development activities? 

These results will allow the analysis and design of productive, sectoral and occupational public 

policies. They will benefit the same companies participating in the census for taking decisions in the 

private sector, whether at a business, academic or professional level. Likewise, they will also locate 

territorially the markets in terms of production and employment. They will also facilitate comparisons 

between the individual company and the total branch of activity or geographical area in which it is 

located. 

With the information obtained from the e-CNE, the statistical register of economic units (REUE) will 

be produced which will be updated periodically with administrative records. It will allow the 

construction of a master sampling frame for the necessary surveys to obtain the short-term economic 

indicators as well as to make the change of the base year for the System of National Accounts and 

to build a new input-output matrix (MIP). 

General information can be found at www.indec.gob.ar. 

For further information, please contact ces@indec.gob.ar. 

AUSTRALIA 

Reporting: Mary-Anne Stewart 

Data visualisation: understanding and conveying information more effectively 

"The greatest value of a picture is when it forces us to notice what we never expected to see." 

John Tukey (1915-2000) 

For his biography, please see https://mathshistory.st-andrews.ac.uk/Biographies/Tukey/. 

Data visualisation techniques like graphs and diagrams have been used to help us understand data 

and information for centuries. Good visualisation reveals stories, patterns, clusters, relationships, 

and anomalies like outliers or missing data, that are not as obvious or are harder to see in table and 

text format. 

In 2020, the COVID-19 pandemic has increased the volume and style of data visualisations that we 

see every day in the media. Further, in recent times statisticians and data scientists are acquiring 

and using increasingly complex and large datasets, including administrative and transactions data. 

These two factors have influenced our data visualisation work program. 

Data visualisation is often separated into exploratory and explanatory visualisation. Explanatory work 

focusses on telling stories with data, conveying information to the audience in clear and appealing 

ways. In contrast, exploratory visualisation is about making sense of new data sources, 

understanding what’s going on in the data and determining how they could potentially be used in 

different ways. This assists analysts to assess the content of a new data source, see what’s 

interesting and plan more directed analysis. In some situations, there is overlap between these two 

types. 

http://www.indec.gob.ar/
mailto:ces@indec.gob.ar
https://mathshistory.st-andrews.ac.uk/Biographies/Tukey/
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Examples of recent data visualisation work in the Australian Bureau of Statistics (ABS) include: 

• exploratory visualisation of a range of new data sources 

• designing new visualisations for Merchandise Trade data processing and some 

specialised reports 

• establishing visualisation guidelines for different types of published materials 

• exploring visual techniques for interpreting results from complex "black box" analysis 

methods and models so they’re easier to understand and explain (such as complicated 

machine learning methods) 

• creating new types of dynamic graphs for social media. Some dynamic line plots were 

released in August-September 2020 showing how single touch payroll jobs have 

changed during the COVID-19 pandemic 

Our upcoming work will include: 

• exploratory visualisation of a range of new data sources and statistical methods - ABS 

is always investigating new sources and methods with the aim of reducing burden on 

survey respondents and providing richer information on the Australian economy and 

society 

• exploring more visual techniques to support effective statistical processing - for 

example allowing quicker identification of anomalies and confirmation of clean data 

ready for release 

• building ABS capability in different types of data visualisation 

For more information, please contact Mary-Anne Stewart at methodology@abs.gov.au. 

CANADA 

Reporting: Kenneth Chu 

Use of Machine Learning Techniques for Crop Yield Prediction 

Statistics Canada recently completed a research project for the Field Crop Reporting Series (FCRS) 

[1] on the use of supervised machine learning techniques for early-season crop yield prediction, for 

the Canadian province of Manitoba, based on local vegetation remote sensing data and weather 

measurements from January to July. 

A number of prediction techniques were examined, including random forests, support vector 

machines, elastic-net regularized generalized linear models, and multilayer perceptrons. Accuracy 

and computation time considerations led us to focus attention on XGBoost [2] with linear base 

learner. 

The main contribution of the research project is the adaptation of rolling window forward validation 

(RWFV) [3] as hyperparameter tuning protocol. RWFV is a special case of forward validation [3], a 

family of validation protocols designed to prevent temporal information leakage for supervised 

learning based on time series data. 

In order to evaluate the performance of this prediction strategy based on XGBoost (Linear) and 

RWFV, we computed the series of prediction errors that would have resulted had the strategy 

actually been deployed for past production cycles. In other words, these prediction errors of virtual 

past production cycles were regarded as estimates of the generalization error within the statistical 

production context of the FCRS. 

The resulting prediction strategy has exhibited smaller prediction errors than the method currently 

deployed in production (variable selection via Lasso, followed by robust linear regression), 

mailto:methodology@abs.gov.au
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consistently over consecutive historical production runs. This strategy has been implemented in a 

production-ready R package. The strategy has entered the final pre-production testing phase, to be 

jointly conducted by subject matter experts and the agricultural programme methodologists. 

The results of this research project were presented in October 2020 during the Machine Learning 

Virtual Sessions, organized by the High-Level Group for the Modernisation of Official Statistics, 

United Nations Economic Commission for Europe [4]. 

For more information, please contact kenneth.chu@canada.ca. 

References and further information 

[1] https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3401 

[2] Chen, Tianqi; Guestrin, Carlos (2016). XGBoost: A Scalable Tree Boosting System. In 
Krishnapuram, Balaji; Shah, Mohak; Smola, Alexander J.; Aggarwal, Charu C.; Shen, Dou; 
Rastogi, Rajeev (eds.). Proceedings of the 22nd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. ACM. 

pp. 785–794. https://arxiv.org/abs/1603.02754. https://dl.acm.org/doi/10.1145/2939672.2939785. 

[3] Schnaubelt, Matthias (2019). A comparison of machine learning model validation schemes for 
non-stationary time series data, FAU Discussion Papers in Economics, No. 11/2019, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Institute for Economics, Nürnberg. 

https://www.econstor.eu/handle/10419/209136 

[4] Bosa, Keven; Chu, Kenneth (2020). Deploying Machine Learning Techniques for Crop Yield 
Prediction. HLG-MOS Machine Learning Project, High-Level Group for the Modernisation of 
Official Statistics, United Nations Economic Commission for Europe. 

https://statswiki.unece.org/display/ML/Other+applications+of+Machine+Learning 

FIJI 

Reporting: M.G.M. Khan 

Recent and Upcoming Surveys at the Fiji Bureau of Statistics 

The Fiji Bureau of Statistics (FBoS) has completed the 2019-2020 Household Income and 

Expenditure Survey (HIES) and a post-survey evaluation is being conducted for the very first time. 

Surveys on 2nd Demand Side Survey of financial products in partnership with Reserve Bank of Fiji 

(central bank) and Multiple Indicator Survey (MICS) with UNICEF will also begin. FBoS is also 

preparing for other two ad-hoc surveys which are “Impact Evaluation of Secured Transaction Reform 

in Fiji” in partnership with Reserve Bank of Fiji and Office on Drugs and Crime (UNODC) regarding 

human trafficking in conjunction with United Nations. 

Apart from 2019-2020 HIES, all the other surveys mentioned above are being carried out for the very 

first time. 

mailto:kenneth.chu@canada.ca
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3401
https://arxiv.org/abs/1603.02754
https://dl.acm.org/doi/10.1145/2939672.2939785
https://www.econstor.eu/handle/10419/209136
https://statswiki.unece.org/display/ML/Other+applications+of+Machine+Learning


 

The Survey Statistician 42 January 2021 

NEW ZEALAND 

Reporting: Mark Turner and James McKay 

COVID-19 Data Portal 

COVID-19 has accelerated the pace of decision-making, triggering a need for more near-real-time 

economic, social and health data in one place. 

Adopting a customer-centric Agile approach, Stats NZ proactively engaged with key government and 

private sector clients to understand and meet their data needs as quickly and as efficiently as 

possible. Stats NZ found that the majority of clients, while appreciating the accuracy and coherence 

of Stats NZ’s traditional data products (e.g., GDP), were prepared to sacrifice these aspects for better 

accessibility to timelier and more frequent data on COVID-19. 

Stats NZ’s COVID-19 Data Portal is a collection of primarily non-official indicators relevant for 

understanding the economic and social recovery from the impacts of COVID-19 through a wellbeing 

perspective. Given the content of the portal it is hosted in the experimental section of the Stats NZ 

website, so as to distinguish the indicators from our official statistics. 

The COVID-19 Data Portal was built to be a generic data hosting framework. It is flexible enough to 

consume any machine-readable dataset and allows us to define custom visualisations of that data. 

This is achieved by making clear application programming interfaces between the data ingestion, a 

consistent data and metadata structure, and the visualisations. 

We are able to automate the ingestion of a range of data formats by having a flexible ingestion layer.  

The framework has a defined place for small custom functions to handle non-standard input data, 

which interface with the consistent data format used through the rest of the program.  This means 

we have been able to quickly bring in new data sets with minimal burden on the data suppliers.  

Because this process is fully automated, with a small amount of up-front effort, there is no on-going 

burden on Stats NZ for maintaining and updating this data in the future.  As a result, this framework 

has enabled us to scale the number of data sets massively, with no significant increase in the time 

required to keep it up to date. 

This new, highly relevant, data product was relatively inexpensive to develop, and to a large extent 

leveraged existing data holdings and/or capabilities. Stats NZ is ready to coordinate the expansion 

of this product as required or terminate indicators as and when they are no longer needed. 

COVID 19 Data Portal: https://www.stats.govt.nz/experimental/covid-19-data-portal 

Open-source code is available: https://github.com/StatisticsNZ/data_portal 

For further information, please contact james.mckay@stats.govt.nz 

https://www.stats.govt.nz/experimental/covid-19-data-portal
https://github.com/StatisticsNZ/data_portal
mailto:james.mckay@stats.govt.nz
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Upcoming Conferences and Workshops 

ICES VI - The International Conference on Establishment Statistics will take place 14-17 June 2021 

in New Orleans, U.S. Website: https://ww2.amstat.org/meetings/ices/2020/conferenceinfo.cfm/ 

SAE2021 - BigSmall - Conference on Small Area Estimation, with the theme “Big Data for Small 

Areas”, will be held 20-25 September in Naples, Italy, as a satellite conference to the World Statistics 

Conference in 2021. Website: https://sae2020.org/ 

11e Colloque International Francophone sur les Sondages - 11th International Francophone 

Conference on Surveys will take place 6-8 October 2021 in Brussels, Belgium. Website: 

http://sondages2020.sciencesconf.org 

Other Conferences on survey statistics and related areas 

American Statistical Association Conference on Statistical Practice is planned to take place 

18-20 February 2021 in Nashville, USA. 

Website: https://ww2.amstat.org/meetings/csp/2020/index.cfm 

Statistics in the Big Data Era will take place 2-4 June 2021 in Berkeley, USA. Website: 

https://simons.berkeley.edu/workshops/statistics-big-data-era 

Symposium on Data Science & Statistics is planned to take place June 2-5, 2021 in Missouri, 

USA. Website: https://ww2.amstat.org/meetings/sdss/2021/ 

ANZSC 2021 – Australian Statistical Society and New Zealand Statistical Association 

Conference will take place 5-9 July 5, Gold Coast, Australia. Website: https://anzsc2021.com.au/ 

Conference and Special Issue of Journal of the Royal Statistical Society Series A in memory 

of Fred Smith and Chris Skinner will be held in Southampton, UK, 8‐10 July 2021. See the August 

2020 IASS Newsletter for full details. 

63rd ISI World Statistics Congress will take place 11-15 July 2021 and will be virtual. Website: 

https://www.isi2021.org/ 

Joint Statistical Meetings 2021 will take place 7-12 August in Seattle, USA. Website: 

https://www.amstat.org/ASA/Meetings/Joint-Statistical-Meetings.aspx 

2021 Women in Statistics and Data Science Conference will take place 7-9 October in Pittsburgh, 

USA. Website: https://ww2.amstat.org/meetings/wsds/2021/ 

The Survey Research Methods Section (SRMS) of the ASA Information on activities of the Survey 

Research Methods Section of the American Statistical Association (ASA) are available at: 

https://community.amstat.org/surveyresearchmethodssection/home 

International Statistical Institute calendar of events is at https://www.isi-web.org/events-and-

awards/calendar 

https://ww2.amstat.org/meetings/ices/2020/conferenceinfo.cfm/
https://sae2020.org/
http://sondages2020.sciencesconf.org/
https://ww2.amstat.org/meetings/csp/2020/index.cfm
https://simons.berkeley.edu/workshops/statistics-big-data-era
https://ww2.amstat.org/meetings/sdss/2021/
https://anzsc2021.com.au/
https://www.isi2021.org/
https://www.amstat.org/ASA/Meetings/Joint-Statistical-Meetings.aspx
https://ww2.amstat.org/meetings/wsds/2021/
https://community.amstat.org/surveyresearchmethodssection/home
https://www.isi-web.org/events-and-awards/calendar
https://www.isi-web.org/events-and-awards/calendar
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In Other Journals 

Journal of Survey Statistics and Methodology 

 

 

Volume 8, Issue 4, September 2020 

https://academic.oup.com/jssam/issue/8/4 

Survey Methodology 

Do Forced-Choice (FC) Questions Trigger Deeper Cognition than Check-All-That-Apply 

(CATA) Questions? 

Cornelia E Neuert 

The Effect of Question Characteristics on Question Reading Behaviors in Telephone 

Surveys 

Kristen Olson, Jolene D Smyth, Antje Kirchner 

So Many Questions, So Little Time: Integrating Adaptive Inventories into Public Opinion 

Research 

Jacob M Montgomery, Erin L Rossiter 

On Examining the Quality of Spanish Translation in Telephone Surveys: A Novel Test-

Retest Approach 

Robert P Agans, Quirina M Vallejos, Thad S Benefield 

Is That Still the Same? Has that Changed? On the Accuracy of Measuring Change with 

Dependent Interviewing 

Annette Jäckle, Stephanie Eckman 

Interventions On-Call: Dynamic Adaptive Design in the 2015 National Survey of College 

Graduates 

Stephanie Coffey, Benjamin Reist, Peter V Miller 

Split-Sample Design with Parallel Protocols to Reduce Cost and Nonresponse Bias in 

Surveys 

Andy Peytchev 

Survey Statistics 

A Permutation Test on Complex Sample Data 

Daniell Toth 

Bayesian Inference of Finite Population Quantiles for Skewed Survey Data Using Skew-

Normal Penalized Spline Regression 

Yutao Liu, Qixuan Chen 

https://academic.oup.com/jssam/issue/8/4
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Volume 8, Issue 5, November 2020 

https://academic.oup.com/jssam/issue/8/5 

Survey Methodology 

Improving Survey Response Rates with Visible Money 

Matthew Debell, Natalya Maisel, Brad Edwards, Michelle Amsbary, Vanessa Meldener 

The Impact of Varying Financial Incentives on Data Quality in Web Panel Surveys 

Thomas Luke Spreen, Lisa A House, Zhifeng Gao 

What They Expect Is What You Get: The Role of Interviewer Expectations in Nonresponse to 

Income and Asset Questions 

Sabine Friedel 

Estimation of Underreporting in Diary Surveys: An Application Using the National 

Household Food Acquisition and Purchase Survey 

Mengyao Hu, John A Kirlin, Brady T West, Wenyi He, Ai Rene Ong, Shiyu Zhang, Xingyou Zhang 

Who Can You Count On? Understanding The Determinants of Reliability 

Roger Tourangeau, Ting Yan, Hanyu Sun 

Survey Statistics 

Measures of the Degree of Departure from Ignorable Sample Selection 

Roderick J A Little, Brady T West, Philip S Boonstra, Jingwei Hu 

Multiple Imputation with Survey Weights: A Multilevel Approach 

M Quartagno, J R Carpenter, H Goldstein 

Applications 

Accuracy in the Application of Statistical Matching Methods for Continuous Variables Using 

Auxiliary Data 

Arnout Van Delden, Bart J Du Chatinier, Sander Scholtus 

Survey Methodology 

 

 

 

 

Survey Methodology, June 2020, Vol. 46, no. 1 

https://www150.statcan.gc.ca/n1/pub/12-001-x/12-001-x2020001-eng.htm 

Are probability surveys bound to disappear for the production of official statistics? 

Jean-François Beaumont 

Local polynomial estimation for a small area mean under informative sampling 

Marius Stefan and Michael A. Hidiroglou 

https://academic.oup.com/jssam/issue/8/5
https://www150.statcan.gc.ca/n1/pub/12-001-x/12-001-x2020001-eng.htm
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Small area estimation methods under cut-off sampling 

María Guadarrama, Isabel Molina and Yves Tillé 

Model-assisted sample design is minimax for model-based prediction 

Robert Graham Clark 

Considering interviewer and design effects when planning sample sizes 

Stefan Zins and Jan Pablo Burgard 

A new double hot-deck imputation method for missing values under boundary conditions 

Yousung Park and Tae Yeon Kwon 

Survey Methodology, December 2020, Vol. 46, no. 2 

https://www150.statcan.gc.ca/n1/pub/12-001-x/12-001-x2020002-eng.htm 

Estimation and inference of domain means subject to qualitative constraints 

Cristian Oliva-Aviles, Mary C. Meyer and Jean D. Opsomer 

Bayesian hierarchical weighting adjustment and survey inference 

Yajuan Si, Rob Trangucci, Jonah Sol Gabry and Andrew Gelman 

Firth’s penalized likelihood for proportional hazards regressions for complex surveys 

Pushpal K. Mukhopadhyay 

Probability-proportional-to-size ranked-set sampling from stratified populations 

Omer Ozturk 

Semi-automated classification for multi-label open-ended questions 

Hyukjun Gweon, Matthias Schonlau and Marika Wenemark 

Journal of Official Statistics 

Volume 36 (2020): Issue 3 (Sep 2020): Special Issue on Nonresponse 

https://content.sciendo.com/view/journals/jos/36/3/jos.36.issue-3.xml 

Preface 

Edith de Leeuw, Annemieke Luiten, and Ineke Stoop 

Survey Nonresponse Trends and Fieldwork Effort in the 21st Century: Results of an 

International Study across Countries and Surveys 

Annemieke Luiten, Joop Hox, and Edith de Leeuw 

Continuing to Explore the Relation between Economic and Political Factors and 

Government Survey Refusal Rates: 1960–2015 

Luke J. Larsen, Joanna Fane Lineback, and Benjamin M. Reist 

Evolution of the Initially Recruited SHARE Panel Sample Over the First Six Waves 

Sabine Friedel and Tim Birkenbach 

The Action Structure of Recruitment Calls and Its Analytic Implications: The Case of 

Disfluencies 

Bo Hee Min, Nora Cate Schaeffer, Dana Garbarski, and Jennifer Dykema 

https://www150.statcan.gc.ca/n1/pub/12-001-x/12-001-x2020002-eng.htm
https://content.sciendo.com/view/journals/jos/36/3/jos.36.issue-3.xml
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Measurement of Interviewer Workload within the Survey and an Exploration of Workload 

Effects on Interviewers’ Field Efforts and Performance 

Celine Wuyts and Geert Loosveldt 

Assessing Interviewer Performance in Approaching Reissued Initial Nonrespondents 

Laurie Peeters, David De Coninck, Celine Wuyts, and Geert Loosveldt 

Implementing Adaptive Survey Design with an Application to the Dutch Health Survey 

Kees van Berkel, Suzanne van der Doef, and Barry Schouten 

The Effects of Nonresponse and Sampling Omissions on Estimates on Various Topics in 

Federal Surveys: Telephone and IVR Surveys of Address-Based Samples 

Floyd J. Fowler, Philip Brenner, Anthony M. Roman, and J. Lee Hargraves 

Working with Response Probabilities 

Jelke Bethlehem 

A Validation of R-Indicators as a Measure of the Risk of Bias using Data from a 

Nonresponse Follow-Up Survey 

Caroline Roberts, Caroline Vandenplas, and Jessica M.E. Herzing 

Proxy Pattern-Mixture Analysis for a Binary Variable Subject to Nonresponse 

Rebecca R. Andridge and Roderick J.A. Little 

Volume 36 (2020): Issue 4 (Dec 2020) 

https://content.sciendo.com/view/journals/jos/36/4/jos.36.issue-4.xml 

Letter to the Editors 

Andreas V Georgiou 

Basic Statistics of Jevons and Carli Indices under the GBM Price Model 

Jacek Białek 

Developing Land and Structure Price Indices for Ottawa Condominium Apartments 

Kate Burnett-Isaacs, Ning Huang, and W. Erwin Diewert 

An Improved Fellegi-Sunter Framework for Probabilistic Record Linkage Between Large 

Data Sets 

Marco Fortini 

Three-Form Split Questionnaire Design for Panel Surveys 

Paul M. Imbriano and Trivellore E. Raghunathan 

Double Barreled Questions: An Analysis of the Similarity of Elements and Effects on 

Measurement Quality 

Natalja Menold 

The Representativeness of Online Time Use Surveys. Effects of Individual Time Use 

Patterns and Survey Design on the Timing of Survey Dropout 

Petrus te Braak, Joeri Minnen, and Ignace Glorieux 

Comparing the Ability of Regression Modeling and Bayesian Additive Regression Trees to 

Predict Costs in a Responsive Survey Design Context 

James Wagner, Brady T. West, Michael R. Elliott, and Stephanie Coffey 

https://content.sciendo.com/view/journals/jos/36/4/jos.36.issue-4.xml
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Book Review: Paul C. Beatty, Debbie Collins, Lyn Kaye, Jose-Luis Padilla, Gordon B. Willis, 

and Amanda Wilmot. Advances in Questionnaire Design, Development, Evaluation and 

Testing. 2019, Wiley, ISBN: 978-1-119-26362-3, 816 pages 

Jennifer Edgar 

Book Review: Yuling Pan, Mandy Sha, and Hyunjoo Park. The Sociolinguistics of Survey 

Translation. 2020, New York: Routledge, ISBN 978-1-138-55087-2, 166 pages 

Patricia Goerman 

Survey Practice 

 

 

Vol. 13, Issue 1, 2020 

https://www.surveypractice.org/issue/1854 

Articles 

Moving Beyond Sex: Measuring Gender Identity in Telephone Surveys 

Dan Cassino 

Minnesota Social Contacts and Mixing Patterns Survey with Implications for Modelling of 

Infectious Disease Transmission and Control 

Audrey M. Dorélien, Alisha Simon, Sarah Hagge, Kathleen Thiede Call, Eva Enns, Shalini 

Kulasingam 

Interviewer Face Coverings and Response to Personal Visit Surveys: A Case Study of the 

2020 U.S. Census 

Nancy Bates, Laura Kail, Amanda Price 

Typographic Cueing Facilitates Survey Completion on Smartphones in Older Adults 

Brian Falcone, Christopher Antoun, Elizabeth Nichols, Erica Olmsted-Hawala, Ivonne Figueroa, 

Alda Rivas, Shelley Feuer, Lin Wang 

Adapting surveys to the modern world: Comparing a research messenger design to a 

regular responsive design for online surveys 

Vera Toepoel, Peter Lugtig, Bella Struminskaya, Anne Elevelt, Marieke Haan 

Scale-sensitive response behavior!? Consequences of offering versus omitting a “don’t 

know” option and/or a middle category 

Daniela Wetzelhütter 

Design Considerations for Live Video Survey Interviews 

Michael F. Schober, Frederick G. Conrad, Andrew L. Hupp, Kallan M. Larsen, Ai Rene Ong, Brady 

T. West 

The Effect of Incentives and Mode of Contact on the Recruitment of Teachers into Survey 

Panels 

Michael Robbins, Jennifer Hawes-Dawson 

https://www.surveypractice.org/issue/1854
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Collecting Online Survey Data: A Comparison of Data Quality among a Commercial Panel & 

MTurk 

Bingbing Zhang, Sherice Gearhart 

Survey Research Methods 

 

 

 

Vol 14 No 3 (2020) 

https://ojs.ub.uni-konstanz.de/srm/issue/view/222 

Designing Better Questions for Complex Concepts with Reflective Indicators 

Willem Saris, Irmtraud Gallhofer 

Automatic Coding of Open-ended Questions into Multiple Classes: Whether and How to Use 

Double Coded Data 

Zhoushanyue He, Matthias Schonlau 

Response Patterns in a Multi-day Diary Survey: Implications for Adaptive Survey Design 

Mengyao Hu, Edmundo Roberto Melipillán, Brady T. West, John A. Kirlin, Ilse Paniagua 

The More Similar, the Better? How (Mis)Match Between Respondents and Interviewers 

Affects Item Nonresponse and Data Quality in Survey Situations 

Felix Bittmann 

Memory Effects in Repeated Survey Questions: Reviving the Empirical Investigation of the 

Independent Measurements Assumption 

Hannah Schwarz, Melanie Revilla, Wiebke Weber 

Vol 14 No 4 (2020): Special Issue: Measurement Equivalence: Testing for It and 

Explaining Why It is Absent 

https://ojs.ub.uni-konstanz.de/srm/issue/view/218 

Measurement Invariance: Testing for It and Explaining Why It is Absent 

Katharina Meitinger, Eldad Davidov, Peter Schmidt, Michael Braun 

The Comparability of Measures in the Ageism Module of the Fourth Round of the European 

Social Survey, 2008-2009 

Daniel Seddig, Dina Maskileyson, Eldad Davidov 

Revisiting the Middleton Alienation Scale: In Search of a Cross-Culturally Valid Instrument 

Ekaterina Lytkina 

Investigating the Relative Impact of Different Sources of Measurement Non-Equivalence in 

Comparative Surveys An Illustration with Scale Format, Data Collection Mode and Cross-

National Variations 

Caroline Roberts, Oriane Sarrasin, Michèle Ernst Stähli 

https://ojs.ub.uni-konstanz.de/srm/issue/view/222
https://ojs.ub.uni-konstanz.de/srm/issue/view/218
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Measurement Equivalence of Subjective Well-Being Scales under the Presence of 

Acquiescent Response Style for the Racially and Ethnically Diverse Older Population in the 

United States 

Sunghee Lee, Elizabeth Vasquez, Lindsay Ryan, Jacqui Smith 

Vol 14 No 5 (2020) 

https://ojs.ub.uni-konstanz.de/srm/issue/view/224 

Valid vs. Invalid Straightlining: The Complex Relationship Between Straightlining and Data 

Quality 

Kevin Reuning, Eric Plutzer 

The Estimation of Voter Transitions in the 2015 British General Election: Combining Online 

Panels and Aggregate Data at the Constituency Level 

Paul W. Thurner, Ingrid Mauerer, Maxim Bort, André Klima, Helmut Küchenhoff 

Collecting biomarkers in Australian primary schools: Insights from the field 

Mandy Truong, Mienah Z Sharif, Rebecca Moorhead, Jeffrey Craig, Pamela Leong, Yuk Jing Loke, 

Kevin Dunn, Naomi Priest 

Helpful Reminders? Health Survey Participation and Doctor’s Visits among Aging Adults 

Jennifer Caputo 

Comparing the participation of Millennials and older age cohorts in the CROss-National 

Online Survey panel and the German Internet Panel 

Melanie Revilla, Jan K. Höhne 

The Benefits of Conversational Interviewing Are Independent of Who Asks the Questions or 

the Types of Questions They Ask 

Frost A Hubbard, Frederick G Conrad, Christopher Antoun 

Other Journals 

• Statistical Journal of the IAOS 

o https://content.iospress.com/journals/statistical-journal-of-the-iaos/ 

• International Statistical Review 

o https://onlinelibrary.wiley.com/journal/17515823 

• Transactions on Data Privacy 

o http://www.tdp.cat/ 

• Journal of the Royal Statistical Society, Series A (Statistics in Society) 

o https://rss.onlinelibrary.wiley.com/journal/1467985x 

• Journal of the American Statistical Association 

o https://amstat.tandfonline.com/toc/uasa20/current 

• Statistics in Transition 

o https://sit.stat.gov.pl 

https://ojs.ub.uni-konstanz.de/srm/issue/view/224
https://content.iospress.com/journals/statistical-journal-of-the-iaos/
https://onlinelibrary.wiley.com/journal/17515823
http://www.tdp.cat/
https://rss.onlinelibrary.wiley.com/journal/1467985x
https://amstat.tandfonline.com/toc/uasa20/current
https://sit.stat.gov.pl/
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Welcome New Members! 

We are very pleased to welcome the following new IASS members! 

Title First name Surname Country 
MR. Calogero Carletto United States 

PROF. Jan Van den Brakel Germany 

MRS. Lucia Spoiala Moldova 

MR. Mathias Mulumba Zungu Uganda 
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IASS Executive Committee Members 

Executive officers (2019 – 2021) 

President: 
Denise Britz do 
Nascimento Silva (Brazil) 

denisebritz@gmail.com 

President-elect: Monica Pratesi (Italy) monica.pratesi@unipi.it 

Vice-Presidents: 

Scientific Secretary: 
James Chipperfield 
(Australia) 

james.chipperfield@abs.gov.au 

VP Finance: Lucia Barroso (Brazil) lpbarroso@gmail.com 

Chair of the Cochran-Hansen 

Prize Committee and IASS 

representative on the ISI 

Awards Committee: 

Isabel Molina (Spain) imolina@est-econ.uc3m.es 

IASS representatives on the 

World Statistics Congress 

Scientific Programme 

Committee: 

Cynthia Clark (USA) 
in 2017-2019 

czfclark@cox.net 

Monica Pratesi (Italy) monica.pratesi@unipi.it 

IASS representative on the 

World Statistics Congress 

short course committee: 

Nadia Lkhoulf (Morocco) n.lkhoulf@hcp.ma 

Ex Officio Member: Ada van Krimpen an.vankrimpen@cbs.nl 

IASS Twitter Account @iass_isi (https://twitter.com/iass_isi) 

mailto:denisebritz@gmail.com
mailto:monica.pratesi@unipi.it
mailto:james.chipperfield@abs.gov.au
mailto:lpbarroso@gmail.com
mailto:imolina@est-econ.uc3m.es
mailto:czfclark@cox.net
mailto:monica.pratesi@unipi.it
mailto:n.lkhoulf@hcp.ma
mailto:an.vankrimpen@cbs.nl
https://twitter.com/iass_isi
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Institutional Members 

International organisations: 

• Eurostat (European Statistical Office) 

• Observatoire économique et statistique d'Afrique subsaharienne (AFRISTAT) 

National statistical offices: 

• Australian Bureau of Statistics, Australia 

• Instituto Brasileiro de Geografia e Estatística (IBGE), Brazil 

• Statistics Canada, Canada 

• Statistics Denmark, Denmark 

• Statistics Finland, Finland 

• Statistisches Bundesamt (Destatis), Germany 

• Israel Central Bureau of Statistics, Israel 

• Istituto nazionale di statistica (Istat), Italy 

• Statistics Korea, Republic of Korea 

• Direcção dos Serviços de Estatística e Censos (DSEC), Macao, SAR China 

• Statistics Mauritius, Mauritius 

• Instituto Nacional de Estadística y Geografía (INEGI), Mexico 

• Statistics New Zealand, New Zealand 

• Statistics Norway, Norway 

• Instituto Nacional de Estatística (INE), Portugal 

• Statistics Sweden, Sweden 

• National Agricultural Statistics Service (NASS), United States 

• National Center of Health Statistics (NCHS), United States 

Private companies: 

• Numérika (Asesoría estadística y estudios cuantitativos), Mexico 

• RTI International, United States 

• Survey Research Center (SRC), United States 

• Westat, United States 
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