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Abstract

Small area estimation typically requires the use of model-based methods. One popular class of
model-based methods uses random area effects. Alternatively, one can use a quantile-type ensemble
model that assigns scores to sample individuals characterising the heterogeneity in the data. These
scores are then used for estimating area/domain effects and hence for small area estimation. The aim
of this article is to present a review of quantile-type methods for small area estimation. In doing so
we consider a range of response data types, including continuous, binary, count and overdispersed
data. We further describe areas of current research interest.

Keywords: Domain estimation; in�uence function; of�cial statistics; outlier robust estimation; quantile
regression; survey statistics.

1 Introduction

Sample surveys are commonly designed to measure characteristics of a population at national and
large sub-national levels. Due to cost constraints the sample size is usually not large enough to allow
for direct estimation of acceptable precision in planned or unplanned domains. Careful use of model-
based methods can then be useful for producing estimates of acceptable precision in domains of
interest. Here we prefer using the term domain, instead of area, to de�ne a broader group structure
comprising geographical and other characteristics. Hence, from now on we will be using the terms
area and domain interchangeably. A plethora of small area methods (SAE) have been proposed in the
small area literature over the years. To start with, the focus of this research was on the use of direct
estimation that utilises only domain-speci�c data for estimation. This was in line with the tradition
in the types of survey estimation methods used for the production of survey and of�cial statistics.
Although direct estimators have appealing features, for example design consistency, small domain-
sample sizes can lead to imprecise small area estimates. Model-assisted methods for example,
regression synthetic estimators have also been extensively studied in the literature. For reviews of
SAE methods see Lehtonen and Veijanen (2009), Pfeffermann (2013), Rao & Molina (2015) and
Tzavidis et al. (2018).
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The present paper focuses on model-based methods that have been at the centre of research deve-
lopments in recent years. The use of model-based methods is advocated on the basis of the potential
improvement in the precision of small area estimation in particular, when working with small sample
sizes. Generally speaking, model-based SAE models are classi�ed into two broad categories, namely
unit-level and area (domain)-level models. The models used in the latter case utilise domain-level
covariates for model �tting and estimation. In contrast, models used in the former case use survey
micro-data for model �tting and estimation. Although area-level models have many advantages,
including the fact that the use of data for �tting the models are easier to gain access to, in this article
we focus on unit-level models which are a more natural approach for quantile-type models.

A common approach to model-based SAE is via a random effects speci�cation, with random effects
characterising the heterogeneity between domains. Random effects models are based on the as-
sumption that units that belong to the same domain are more similar than units that belong to different
domains. There are, however, alternative approaches to SAE that do not require the use of a random
effects model. One such approach utilises an ensemble approach based on �tting quantile-type (in
particular M -quantile) regression models. M -quantiles and M -quantile regression were introduced
by Breckling and Chambers (1988) and are a generalised form of “quantile-like” estimators which
include quantiles and expectiles as special cases. Using ensemble models for SAE offers a different
way of characterising between-domain heterogeneity. A suitable ensemble regression function that
covers the full spectrum of variability for the characteristic of interest is �rst used to index the popu-
lation. Domain heterogeneity is present if the unit-level indices (scores) cluster within domains. SAE
for a particular domain is then based on the regression function within the ensemble that corresponds
to an “average” index (score) for that domain. Under this approach there is no random domain ef-
fect, with consequent distributional assumptions while at the same time estimators are outlier robust.
However, this comes at the cost of estimating the domain-speci�c “average” index by using only the
domain-speci�c unit-level indices for the sampled individuals within the domain.

This paper focuses on describing quantile-type approaches to SAE. The literature generated by these
approaches has led to renewed interest in outlier-robust model-based methods with applications in
survey and of�cial statistics. In doing so, it has utilised and linked relevant literature from statistics
(survey statistics in particular) and econometrics. The paper is organised as follows. In Section 2
we present quantile-type regression models. We start by describing regression models for a location
parameter at the centre of a distribution before showing how these ideas can be extended to mod-
elling location parameters for other parts of a distribution. The contribution of this section is that it
presents a uni�ed framework for understanding how quantile, M -quantile and expectile regression
are connected. In Section 3 we review SAE based on unit-level random effects models. Section 4
then presents small area estimation using quantile-type models. We start by de�ning the concept of
quantile-coef�cients that are fundamental to de�ning measures that are alternative to random effects
and then describe how these coef�cients are used in small area estimation. In this section we also
provide a review of relevant literature that covers methods for continuous, binary, count and overdis-
persed data. Finally, in Section 5 we summarise the key points and describe current research on the
topic.
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2 Quantile-type models

2.1 Regression using in�uence functions

In this section we introduce a framework for estimation using in�uence functions, which forms the
basis for quantile-type SAE estimation. Generally speaking, estimating a location parameter � for the
distribution of a random variable y involves minimisation of a loss function � (�). Indexing by i the units
(for example in the sample data) and by n the sample size, the estimator for this location is, �̂ ,

�̂ = arg min
�

 

n� 1
nX

i =1

� (yi � � )

!

: (1)

For solving (1) it is easier to use a differentiable and convex � (�) function, with corresponding in�uence
function de�ned as  (y; � ) = @

@�� (y; � ). In this case, the estimator is the solution to the following
estimating equation,

n� 1
nX

i =1

 (yi � �̂ ) = 0 : (2)

Common examples include the sample mean which corresponds to setting � (y; � ) = ( y � � )2 and the
sample median which corresponds to setting � (y; � ) = jy � � j. Hence, de�ning � to be the absolute
value loss de�nes the median of the corresponding distribution whereas de�ning � to be the squared
loss de�nes the mean of the corresponding distribution. An alternative, and popular choice for the
in�uence function that leads to the so-called M -type (`maximum likelihood type') estimator of the
location parameter is the Huber in�uence function (Huber, 1981). This in�uence function depends on
a tuning constant k and is de�ned by

 k (u) =

8
>><

>>:

� k; if u � � k

u; if � k < u < k

k; if u � k:

(3)

The framework we present in this section can be extended to the regression case, which is of greater
interest for small area estimation. De�ne by x i a vector of covariates for unit i . In the simplest case
where we assume a linear model, regression estimators are de�ned by solving

n� 1
nX

i =1

 (yi � x T
i � )x i = 0; (4)

where � denotes the regression parameters. Depending on the choice of the loss function and the
corresponding in�uence function we can de�ne different regression models. For example, using the
squared loss function in (1) leads to ordinary least squares estimates for the regression parameters.
Using the absolute value loss in (1) leads to median regression estimates whereas using the Huber
loss function and the corresponding in�uence function (3) in (1) leads to M -type regression estimates.
We return to this point in the next section to further clarify the links between the different regression
types.
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2.2 Quantile regression and its variants

In this section we extend the results in the previous section to quantile-like parameters and clarify
the links between types of quantile-type regression models. The quantiles of a distribution of a
random variable y can be viewed as location parameters of an appropriately weighted transformed
distribution. The weights are determined depending on the loss/in�uence function used. In particular,
quantile estimates are found by minimising the following loss function where Qq denotes the quantile
of order q,

� Qq (y � Qq) =
�
(1 � q)I y� Qq + qIy>Q q

�
jy � Qqj; (5)

where q 2 (0; 1), and I is the indicator function. Using this framework, quantile regression was
proposed by Koenker and Bassett (1978). For the linear regression case where Qq(x i ) = x T

i � q the
quantile regression coef�cients, � q , are estimated by

�̂ q = arg min
� q

 

n� 1
nX

i =1

� Qq (yi � x T
i � q)

!

: (6)

Newey and Powell (1987) proposed the use of a smooth loss function that led to so-called regression

expectiles as an alternative to regression quantiles. Expectiles are de�ned by minimising the following
squared loss function, where Eq denotes the corresponding expectile,

� Eq (y � Eq) =
�
(1 � q)I y� Eq + qIy>E q

�
(y � Eq)2: (7)

For the linear regression case where Eq(x i ) = x T
i � q the expectile regression coef�cients, � q , are

estimated by solving

�̂ q = arg min
� q

 

n� 1
nX

i =1

� Eq (yi � x T
i � q)

!

: (8)

Just as quantiles are a generalisation of the median, expectiles are a generalisation of the mean.

Hence, expectile regression is the L 2 version of quantile regression. Although expectiles do not have
the same intuitive interpretation as quantiles, expectiles are easier to estimate and can be useful for
prediction purposes as is the case in SAE.

Breckling and Chambers (1988) proposed an alternative approach to quantile-type regression, namely
M -quantile regression. M -quantile regression is an extension of M -type regression that was de-
scribed in the previous section. The regression M -quantile of order q for a random variable y is the
value mq(x ) = x 0� q satisfying the estimating equation

n� 1
nX

i =1

 mq (yi � x 0
i �̂ q)x i = 0; (9)

where  mq (u) = 2 [(1 � q)I u� 0 + qIu> 0]  (u). A common choice for  (u) in M -quantile regression is
Huber's in�uence function (3). It is now easy to see that quantile and expectile regression can be
de�ned under a uni�ed framework based on the use of in�uence functions. In particular, using  (u) =
sgn(u), leads to quantile regression. Conversely, using  (u) = u, leads to “expectile” regression and
using  (u) =  k (u) leads to M -quantile regression.

The Huber in�uence function is often preferred as it depends on a tuning constant k which provides
a balance between robustness and ef�ciency. It also provides an intuitive middle ground between
quantile regression (Koenker and Bassett, 1978) and expectile regression (Newey and Powell, 1987).
In particular we obtain the regression expectile by setting k ! 1 and the regression quantile by
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setting k ! 0. With any �nite choice of k, the Huber in�uence function remains bounded, and so
estimation remains outlier robust. Furthermore, the continuity of  k (u) for k > 0 guarantees the
existence of a unique solution to the M -quantile functional equation for every value of q 2 (0; 1). We
therefore focus on this de�nition of  from now on. Throughout the remainder of the article the term
“M -quantile” will imply a Huber M -quantile with k > 0 unless otherwise stated.

3 Small area estimation using random effects models

In this section we review model-based small area estimation using unit-level models before focusing
on the use of quantile-type models. We start by assuming that the variable of interest is continu-
ously distributed for example, income which has been the focus of many recent applications. The
industry standard for unit-level model-based small area estimation is the approach of Battese, Harter
and Fuller (Battese et al., 1988), which assumes a linear mixed effects model also known as the
nested error regression model or the random effects model. In this paper we will use these terms
interchangeably.

Let yij denote the value for the i -th unit in area/domain j and assume that we have D domains in
total, with sample in each domain. The vector x ij denotes the vector of covariates de�ning the �xed
part of the model, uj denotes the domain j random effect, assumed to be independently distributed
between domains, and � ij denotes the unit-level error. Here we consider the simplest version of a
random effects model, namely the random intercepts model. The model is de�ned as follows,

yij = x 0
ij � + uj + � ij ; (10)

where it is common to assume that uj � N (0; � 2
u) and � ij � N (0; � 2

� ) although other distributional
assumptions are also possible. The domain effect uj can be seen to adjust the intercept in the linear
speci�cation to allow the domain conditional mean for yij to deviate from its population average.
As a consequence it makes sense to refer to uj in (10) as a parameter that characterises group
heterogeneity. It is also important to remember that prediction of the random effects uj uses data
from all domains, the estimated �xed effects parameters � and the variance components � 2

u and � 2
� .

We now focus on how the mixed effects model is used for SAE. Assume that we are interested in
estimating a set of population parameters for each domain of interest � = ( � 1; :::; � D ). Most commonly
interest is in estimating the domain-speci�c means of y for example, the average income. In this case
in order to produce small area estimates of the mean we need to have access to survey micro-data
measuring y and x ij and population average data for the same set of covariates, �X j . The survey
micro-data are used for �tting the mixed effects model and estimating the regression coef�cients, the
variance components and the random effects. Using the estimated parameters, we can then compute
the Empirical Best Linear Unbiased Predictor (EBLUP) of the small area means,

�̂ j
EBLUP

= �X 0
j �̂ + ûj : (11)

As a brief aside we note that recent interest has been on estimating non-linear indicators for small
areas. Applications focus for example, on the estimation of the at risk of poverty rate, the Gini
coef�cient and the quintile share ratio. A popular estimation method in this case is the Empirical
Best Predictor (EBP) (Molina and Rao, 2010). In the case where interest is in estimating non-linear
indicators, current methodology requires access to population-level micro-data for the covariates of
interest. This is in contrast to the less onerous requirement for access to aggregate level population
data when interest is in estimating domain-speci�c averages. Access to population-level micro-data
is challenging due to con�dentiality concerns and part of the current research effort is in reducing the
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dependency on such data. We return to this point later in this article. An important aspect of SAE is
estimating the Mean Squared Error (MSE) of the small area estimates. MSE estimation has been an
area of intensive research. Here we refer to the Prasad and Rao (1990) analytic estimator under the
unit-level nested error regression model, which is a popular method for MSE estimation. Alternatively,
when interest is in estimating more complex parameters than the small area averages, one can use
parametric bootstrap methods (see Molina and Rao, 2010).

4 Small area estimation using quantile-type models

Before describing the use of quantile-type models for SAE, we start by de�ning the so-called quantile-
type coef�cients. Quantile-type coef�cients form the basis of this approach in the sense they attempt
to quantify between domain heterogeneity. One of the earliest applications of quantile-type modelling
for predictive purposes can be found in Kokic et al. (1997). The authors used M -quantile regression
to calculate a performance measure for measuring the productivity of Australian dairy farms. The
M -quantile regression model the authors used regressed the farm gross return against covariates
predictive of gross return. The authors then de�ned the performance measure q�

i for farm i as follows,

m̂q�
i ;k (x i ) = yi :

Aragon et al. (2006) applied this idea for computing q�
i used to identify drug overprescription by

doctors in France. The q�
i values are referred to as M -quantile coef�cients or q-scores. These q-

scores can be thought of as ordered indices, between 0 and 1, that carry information about the
position of the corresponding unit (e.g. farms and doctors in the examples above) on the conditional
distribution f (yi jx i ) that is, after controlling for effect of covariates.

The q-scores can be computed under different versions of quantile-type regression. For example,
when the in�uence function used is the sgn(u) (so M -quantile regression is just quantile regression),
this q-score is the order of corresponding quantile of the conditional distribution f (yi jx i ). It immedi-
ately follows that in this case q�

i is uniformly distributed over (0; 1). A q-score derived from the �tted
regression M -quantiles and the use of the Huber in�uence function also de�nes an indexing over
the interval (0; 1) but not necessarily one with a uniform distribution over this interval. Since most
of the developments in the use of quantile-type models for SAE are based on the use of M -quantile
regression and the use of the Huber in�uence function, from now on we assume that the q-scores
are computed by using M -quantile regression.

In practice the q-scores are estimated using the sample data. In particular, a grid G of q values for
example, G = (0 :001; : : : ; 0:999), with a step that de�nes how many points of G are selected is de�ned
and M -quantile regression models are �tted using each q value in this grid using the sample data. In
general, the collection of these �tted regression M -quantile models is referred to as an ensemble M -
quantile regression model. Such an ensemble �t allows calculation of a �tted regression M -quantile
value m̂q;k(x i ) for each value of q on the grid at each x i . The value of q�

i can then be found quite
simply by selecting the grid value of q such that m̂q;k(x i ) is closest to yi . In some instances when
q is close to 0 or 1 the �t of the M -quantile model may not converge, in which case the grid of q
values can be narrowed. In general, the estimation of q�

i will be affected by how re�ned the grid of q
values is.

Chambers and Tzavidis (2006) exploited the fact that q-scores characterise the heterogeneity in
the conditional distribution of y given x in the sample. They argued that if the domain structure
explains this heterogeneity, then the q-scores would tend to be more similar within domains than
between domains. They then proceeded by “averaging” the unit q-scores to obtain what they call
group (“domain-speci�c”) q-scores.
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Assuming a linear M -quantile model for a continuous random variable y and the set of covariates x ,
the M -quantile estimator of the small area means is de�ned as

�̂ MQ
j = �X 0

j �̂ q̂�
j
; (12)

where q̂�
j is the q-score for domain j computed by averaging the unit-level q-scores that belong to

the domain, q̂�
j = n� 1

j
P

i 2 sj
q�

i , and �̂ q̂�
j

is the corresponding estimate of the vector of M -quantile
regression parameters.

The domain q-scores play the same role as the domain random effects in the mixed effects model,
but without the need to pre-specify the grouping structure. The reason for this is that q-scores are
computed at unit level and can be aggregated to any grouping structure of interest without the need
to re�t the quantile-type regression model. However, we should note also the following points that in
our view are important. Firstly, we note that the unit-level q-scores and the regression parameters,
�̂ q̂�

j
, are computed by using all the sample data and not only domain-speci�c data. Secondly, we note

that domain-speci�c predictions are differentiated by the fact that q̂�
j is used for each domain similarly

to the use of a random effect in the mixed effects model. This means that the quantile-based small
area estimator is not synthetic. Finally, although the unit-level q-scores are estimated using the entire
sample, the domain q-scores are computed by using only the domain-speci�c q-scores. This is in
contrast to the approach used for predicting the random effects under the linear mixed model which
is using the entire sample and the shrinkage factor. Hence, we expect that the domain q-scores will
be unstable if the domain sample sizes are very small.

A comprehensive treatment of analytic MSE estimation for the M -quantile estimator was presented in
Chambers et al. (2011) while Marchetti et al. (2012) studied the use of the non-parametric bootstrap.

Quantile-type SAE methods offer a natural approach to outlier robust estimation. The paper by Cham-
bers and Tzavidis (2006) created renewed interest in outlier-robust SAE that extended beyond the
use of quantile-type models with Sinha and Rao (2009) proposing outlier-robust SAE under the unit-
level linear mixed model. Chambers and Tzavidis (2006) noted that the plug-in M -quantile estimator
of the domain mean can be biased. To correct this problem, Tzavidis et al. (2010) proposed a gen-
eral framework for robust small-area estimation based on representing a small-area estimator as a
functional of a predictor of the small-area cumulative distribution function. The authors use a non-
parametric smearing-type estimator of the distribution function, namely the Chambers and Dunstan
(1986) estimator. This approach leads to new estimator of the small area mean that includes a third
term in (12) which depends on the domain-speci�c model residuals. This estimator resembles a
model-based GREG estimator that aims to trade-off bias for variance. The residual correction term
corrects for bias but at the cost of increased the variance depending on the size of the domain-speci�c
sample. Based on this idea, Chambers et al. (2014a) de�ned a general framework for outlier-robust
SAE both under quantile-based models and random effects models. These authors refer to the plug-
in SAE estimator as robust-projective whereas the bias-corrected estimator is referred to as robust-
predictive. The authors discuss analytic MSE estimation and approaches to controlling the impact of
the residual-based correction term by using in�uence functions and selecting an appropriate tuning
constant. Dongmo et al. (2013) proposed a robust predictive SAE estimator under the linear mixed
model that uses a global, instead of a local (domain-speci�c), bias correction term which improves
the stability of the estimator. Finally, the methodology in Tzavidis et al. (2010) naturally leads to in-
tegrated estimation of small-area means, quantiles and non-linear indicators for example, inequality
and income deprivation indicators. However, in this case SAE requires the use of population-level
microdata for the covariates as is the case also with the EBP approach under the linear mixed model.
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4.1 Quantile-type SAE estimation for discrete outcomes

In the previous section we provided a review of quantile-type SAE estimation when the outcome of
interest is continuous. Extending the use of quantile-based SAE methods to discrete outcomes is
challenging because de�ning quantiles, M -quantiles and expectiles in this case is not clear. Cham-
bers et al. (2016) propose the use of M -quantile regression for small area estimation with binary
outcomes, discuss different de�nitions of the M -quantile coef�cients and apply the methodology for
estimating unemployment rates in UK local authority districts. The authors argue that M -quantiles
and the use of a continuous in�uence function such as the Huber one allows for the unique de�nition
of M -quantiles. This is in contrast to quantile regression under which the de�nition of quantiles of a
binary random variable is not unique. The paper by Chambers et al. (2016) further describes the links
between the statistical literature and the econometric literature on binary quantiles (see for example
Manski,1985) and with the asymmetric maximum likelihood estimator (see Efron, 1992), which can
be viewed as a version of expectiles for discrete random variables.

Tzavidis et al. (2016) proposed an M -quantile small area predictor when the response is a count
by extending the ideas in Cantoni and Ronchetti (2001). The proposed small area predictor can
be viewed as an outlier robust alternative to the more commonly used empirical plug-in predictor
that is based on a Poisson generalised linear mixed model with Gaussian random effects. Finally,
Chambers et al. (2014b) proposed the use M -quantile regression for overdispersed count outcomes
with applications to disease mapping.

5 Concluding remarks and brief summary of emerging methods

This present article reviews a body of literature that proposes an alternative approach to small area
estimation that captures cluster (domain/area) heterogeneity via quantile-type models. This approach
is inherently outlier-robust and offers additional �exibility since it does not rely on an a-priori speci-
�cation of the grouping structure. Methods have been proposed both for continuous and discrete
outcomes.

More recently, there has been renewed interest in this literature that aims to extend already existing
methods in several directions. To start with, as part of his PhD thesis Dawber (2017) researched the
use of the M -quantile approach to SAE with multi-category outcomes. This research complements
previous work on binary and count-type outcomes and has important applications for example, in
producing small area of�cial statistics for labour market activity.

Another area of recent research activity attempts to combine quantile regression with random ef-
fects models (Weidenhammer et al., 2018). This research exploits the well-known link between the
Asymmetric Laplace distribution and maximum likelihood estimation for quantile regression to de-
�ne a quantile mixed effects model (see Geraci and Bottai, 2014), which is then used for small area
estimation. One advantage of this approach is that random effects, instead of quantile coef�cients,
are used for measuring the between domain heterogeneity and hence all sample data are involved
in predicting the random effects. Secondly, the approach can be extended to modelling count out-
comes using ideas about jittering from the econometric literature (see Machado and Santos Silva,
2005). Finally, a further advantage is that, in theory, by �tting an ensemble of quantile random effects
models one can obtain an estimate of the entire distribution function of the data, which can then be
used for micro-simulating synthetic populations for deriving small area estimates of any target pa-
rameter of interest. This is similar in spirit to the EBP approach of Molina and Rao (2010), and the
use of the Chambers-Dunstan estimator by Tzavidis et al. (2010). However, whereas in the latter
cases it is guaranteed that we estimate a proper distribution function, in the former case this is not
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strictly true. For example, there is nothing to prevent quantile cross-over occurring when �tting the
ensemble of a quantile random effects model. One approach to tackling this issue is to impose simple
constraints in the �tting process. An alternative, more complex, approach is simultaneous estimation
of multiple quantile-random effects models. This is an area of current research. Another area of re-
search, currently at its infancy, focuses on the use of unconditional quantile regression for predictive
purposes.

Before concluding this paper we must refer to research in M -quantile regression that is peripheral,
albeit important, for small area estimation. Bianchi et al. (2018) studied model speci�cation and
selection for M -quantile regression. Among other developments, the authors propose a pseudoR2
goodness of �t measure along with likelihood ratio and Wald type tests for model speci�cation. In
addition, these authors propose a test for assessing the presence of domain heterogeneity in the
data. This is similar in spirit to testing for the presence of signi�cant area effects, which has been the
focus on research in the small area literature (see among others Datta et al., 2011). As part of his
doctoral research Dawber (2017), studied alternative scale estimators and optimal tuning constants
for M -quantile regression. The use of this research for predictive purposes, for example in small area
estimation, is an open area for research. Last but not least, a number of researchers are working
on developing an R package that implements the various quantile-type approaches to small area
estimation.
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