Making inferences from non-probability samples through data integration

or

Are probability surveys bound to disappear for the production of official statistics?

Jean-François Beaumont, Statistics Canada
IASS Webinar
January 26, 2022

Delivering insight through data, for a better Canada
A quick history of probability surveys

• Up to the beginning of the 20th century, censuses are the preferred tool
 • Costly (in terms of money and time)

• An alternative: draw a sample from the population
 • How? Random or not?
 • Many debates ... until Neyman (1934)
 • Rao (2005); Bethlehem (2009)

• Then, probability surveys gradually became the standard in National Statistical Offices

In Canada: First Labour Force Survey in 1945
Why probability surveys for official statistics?

• Neyman’s theory is attractive:
 • Objective method for drawing samples
 • Design-based inference: validity does not depend on model assumptions (nonparametric approach)

• Some striking examples of nonprobability samples that led to dramatically wrong conclusions (ex.: 1936 U.S. pre-electoral poll)
Are probability surveys a panacea?

• Unreliable estimates when n is small
• Based on the assumption that nonsampling errors are negligible
 • Many resources are used to minimize nonresponse, measurement and coverage errors
• Imperfect but generally known to be a reliable source except perhaps for cases where nonsampling errors become dominant
• Brick (2011)
Wind of change

• Other types of data sources are increasingly considered

• **Four main reasons:**

 • Decline of survey response rates ➞ bias

 • High data collection costs + burden on respondents

 • Desire to have “real time” statistics (Rao, 2021)

 • Proliferation of nonprobability sources (ex.: Web panel surveys, administrative data, social medias, …)

 • Less costly, larger sample size
Are nonprobability surveys a panacea?

• Bias (selection, coverage)
 • Becomes dominant as the sample size n increases (Meng, 2018)
 • Large sample size is not a guarantee of high quality estimates...
 • **Example:** 1936 U.S. pre-electoral poll conducted by the magazine *Literary Digest* with $n > 2,000,000$ and highly nonrepresentative sample of the population of voters

• Measurement errors (ex.: Web panel surveys administered to volunteers)
An illustration of selection/coverage bias

• Crowdsourcing experiments to obtain quickly information about the Canadian population
 • Non-probability sample of volunteers who provide information through an online application
 • Bias accounted for through post-stratification weighting by province, age group and sex

• Computed estimates of proportions in different education categories (Beaumont and Rao, 2021):
 • LFS estimates (probability survey with 88,000 respondents and response rate around 80%)
 • CPSS estimates (probability survey with 4,209 respondents and response rate around 15%)
 • Unadjusted crowdsourcing estimates (31,505 participants)
 • Post-stratified crowdsourcing estimates
Estimates of proportions in different education categories for a Canadian province
A relevant question in the current context

- How can data from a nonprobability source be used to
 - minimize data collection costs and burden on respondents of a probability survey
 - while preserving a valid statistical inference framework and an acceptable quality?

- **Statistical inference framework**: characterized by a reference distribution and a list of assumptions
 - Provides criteria for measuring the quality of estimates and make statistical inferences
In what follows ...

• Review data integration methods
 • Background and notation
 • Design-based approaches
 • Model-based approaches
 • Calibration
 • Statistical matching
 • Inverse probability weighting
 • Small Area Estimation through the Fay-Herriot model
• Some additional thoughts
Notation

• Population parameter: \(\theta = \sum_{k \in U} y_k \)

• Variable of interest: \(y_k \rightarrow Y \)

• Nonprobability sample: \(s_{NP} \)
 • Subset of \(U \)
 • Contains a variable \(y^* \) and possibly other variables
 • Indicator of inclusion in \(s_{NP} \): \(\delta_k \rightarrow \delta \)

• Two scenarios:
 • \(y_k^* = y_k \)
 • \(y_k^* \neq y_k \) : conceptual differences or measurement errors
Notation

• Probability sample: s_P
 • Subset of U randomly drawn with probability $p(s_P|Z)$
 • Indicator of inclusion in s_P: $I_k \rightarrow I$
 • Inclusion probability: $\pi_k = \Pr(I_k = 1|Z) > 0$
 • Contains or not the γ variable

• Ω: Set of all the auxiliary data used to make inferences (including Z)

• Approaches differ in what they treat as fixed and random (I, δ, Y, Ω)
Design-based inference

- Reference distribution: $F(\mathbf{I} | \delta, \mathbf{Y}, \Omega)$
- For the estimation of the total $\theta = \sum_{k \in U} y_k$, estimators with a weighted form are often used:
 $$\hat{\theta} = \sum_{k \in s_p} w_k y_k$$
- If $w_k = \pi_k^{-1}$ then $E\left(\hat{\theta} - \theta \mid \delta, \mathbf{Y}, \Omega\right) = 0$
- **Alternative**: Calibration (Deville & Särndal, 1992): $\sum_{k \in s_p} w_k x_k = \mathbf{T}_x$
- No model assumption is required except for dealing with **nonsampling errors**
 - Assume that nonsampling biases are not too large (Brick, 2011)
Characteristics of design-based approaches

• The variable of interest must be collected in the probability sample and measured without error.

• Role of nonprobability sample:
 • Variance reduction
 • Sample size reduction may be preferred to variance reduction if costs and burden must be reduced.

• Small Area Estimation (SAE) has the same characteristics and is expected to yield larger efficiency gains but requires model assumptions.
Scenario 1: $y^*_k = y_k$

• Context:
 • S_{NP} is a subset of U: **undercoverage**
 • The use of a probability sample allows us to get rid of the coverage bias
 • Generally, the larger the size of S_{NP}, the larger the variance reduction

• Idea:
 • Use data of the combined sample $s = S_P \cup S_{NP}$
 • Each unit $k \in s$ is weighted by $\left[\Pr(k \in s \mid \delta, Y, \Omega) \right]^{-1}$
Scenario 1: \(y_k^* = y_k \)

- Estimator:
 \[
 \hat{\theta} = \sum_{k \in s_{NP}} y_k + \sum_{k \in s_p} \frac{1}{\pi_k} (1 - \delta_k) y_k
 \]

- \(\delta_k \) must be available for \(k \in s_p \)

- \(E\left(\hat{\theta} - \theta \mid \delta, Y, \Omega\right) = 0 \)

- Equivalent to the Bankier (1986) method for multiple frame surveys: Here the two frames are \(U \) and \(s_{NP} \) (see also Kim and Tam, 2020; Lohr, 2021)

- The estimator can be improved by replacing weights \(\pi_k^{-1} \) with calibrated weights

- Efficiency gains are modest unless \(s_{NP} \) is so large that the overlap between both samples is not small
Scenario 2: \(y_k^* \neq y_k \)

- \(y_k^* \) cannot be used as a replacement of \(y_k \); only as auxiliary variable

- Vector of auxiliary variables: \(x_k^* \), \(k \in s_{NP} \)

- Total: \(T_x = \sum_{k \in s_{NP}} x_k^* = \sum_{k \in U} \delta_k x_k^* \)

- **Calibration**: Find weights \(w_k \), \(k \in s_P \) such that

\[
\sum_{k \in s_P} w_k \begin{pmatrix} x_k \\ \delta_k x_k^* \end{pmatrix} = \begin{pmatrix} T_x \\ T_x^* \end{pmatrix}
\]

- \(\delta_k x_k^* \) must be available for \(k \in s_P \) \(\rightarrow \) May need **linkage** or a **few more questions** in the probability survey
Scenario 2: \(y^*_k \neq y_k \)

- Studied in Kim and Tam (2020)
- Efficiency gains are again modest unless the overlap between both samples is not small
- **Possible application:** Unemployment estimation
 - Probability survey collects the employment status: \(y_k \)
 - Administrative files contain employment insurance beneficiaries
 - The probability survey must contain the employment insurance status
Model-based approaches: Cal., SM and IPW

• **Objective:**
 - Reduce burden and costs by eliminating collection of some variables of interest in S_P: y_k is not observed in S_P

• **Assumption:** $y_k^* = y_k$

• **Naïve estimator:** $\hat{\theta}^{NP} = N \sum_{k \in S_{NP}} y_k / n^{NP}$
 - Can be very biased (Bethlehem, 2016)

• **Objective of Calibration, SM and IPW:**
 - Bias reduction through a vector of auxiliary variables x_k observed in both samples
 - Require the validity of model assumptions
Calibration of S_{NP}

- **Idea** (Royall, 1970):
 - Model the relationship between y_k and x_k by using a nonprobability sample
 - Predict y_k for units $k \in U - s_{NP}$

- **Inferences**: conditional on δ and X

- **Noninformative selection/participation assumption**:
 - $F(Y | \delta, X) = F(Y | X)$
 - Key to removing bias
 - The richer the auxiliary information, the more realistic the assumption
Calibration of S_{NP}

- Linear model: $E\left(y_k \mid X\right) = x'_k \beta$

- BLUP of the total θ: $\hat{\theta}^{BLUP} = \sum_{k \in s_{NP}} y_k + \sum_{k \in U - s_{NP}} x'_k \hat{\beta}$

- Can be rewritten as: $\hat{\theta}^{BLUP} = \sum_{k \in s_{NP}} w^C_k y_k$

- The calibration weight satisfies: $\sum_{k \in s_{NP}} w^C_k x_k = T_x$

- Calibration property only for a linear model

- If T_x is unknown, it can be replaced with an unbiased estimator (probability survey): $\hat{T}_x = \sum_{k \in s_p} w_k x_k$
Calibration of S_{NP}

- BLUP is unbiased if noninformative selection/participation assumption holds:

$$E\left(\hat{\theta}^{BLUP} - \theta \bigg| \delta, X\right) = 0$$

- Reduction of selection bias:
 - Consider a large number of auxiliary variables
 - A large probability survey can be useful to obtain estimates of auxiliary totals
 - Variable selection methods (LASSO, ...)

Chen, Valliant and Elliott (2018)
Calibration of S_{NP}

Post-stratification model:

- $E\left(y_k \bigg| X \right) = \mu_h$, $k \in U_h$
- Post-strata can be obtained by crossing many categorical variables
- BLUP of the total θ: $\hat{\theta}^{BLUP} = \sum_{h=1}^{H} N_h \hat{\mu}_h$

Reduction of selection bias:

- Consider a large number of post-strata
- Regression trees can be useful
- Alternative: Multilevel Regression and Post-stratification (MRP)
Calibration of S_{NP}

- Idea behind MRP (Gelman and Little, 1997):
 - Form a very large number of post-strata by crossing many categorical variables
 - $\hat{\mu}_h$ may be unstable (small sample size)
 - Idea is to use a multilevel model to obtain more stable estimators of μ_h (or small area estimation model)
 - MRP estimator: $\hat{\theta}^{MRP} = \sum_{h=1}^{H} N_h \hat{\mu}_h$
 - **Issue:** Population size in each post-stratum must be available
 - Is it more efficient than a simple post-stratification where post-strata are determined using regression trees?
Calibration of S_{NP}

- Linear model is not always appropriate
 - Ex. 1: Categorical variables of interest
 - Ex. 2: Domain estimation ($y_k = 0$ outside the domain)

- **Model Calibration** (Wu and Sitter, 2001):
 - Use a nonlinear model: $E\left(y_k \mid X\right) = \mu_k = h(x_k)$
 - Obtain predicted values $\hat{\mu}_k$
 - Calibrate: $\sum_{k \in S_{NP}} w_k^{MC} \begin{pmatrix} 1 \\ \hat{\mu}_k \end{pmatrix} = \begin{pmatrix} \hat{N} \\ \hat{T}_{\hat{\mu}} \end{pmatrix}$
 - Can be generalized to multiple variables of interest
Statistical matching

• **Idea:**
 - Model the relationship between y_k and x_k using the nonprobability sample
 - Predict (impute) y_k in a probability sample that contains the auxiliary variables

• **Inferences:** conditional on δ and X

• **Noninformative selection/participation assumption**

• **Predictor of the total θ:**
 \[
 \hat{\theta}^{SM} = \sum_{k \in s_p} w_k y_k^{imp}
 \]

• **Unbiased if:**
 \[
 E\left(y_k^{imp} - y_k \mid \delta, X \right) = 0
 \]
Statistical matching

• For a linear model, statistical matching is equivalent in most cases to calibration of S_{NP} on estimated totals \hat{T}_x
 • Ex.: post-stratification model
• Donor imputation is often considered
 • Rivers (2007): Sample matching
 • Nonparametric method
• Yang, Kim and Hwang (2021)
Statistical matching

• **Linear imputation:** \(y_{k}^{imp} = \sum_{l \in s_{NP}} \omega_{kl} y_{l} \)
 - Beaumont and Bissonnette (2011)
 - Special cases: Linear regression, donor, ...

• \(\hat{\theta}^{SM} \) can be rewritten in a weighted form:
 \[
 \hat{\theta}^{SM} = \sum_{k \in s_{p}} w_{k} y_{k}^{imp} = \sum_{k \in s_{NP}} W_{k} y_{k}
 \]

• **To weight or to impute? Statistical matching or calibration?**
 - Which content is of interest? The content of the nonprobability source or the probability survey?
Empirical illustration

- S_P: Canadian Community Health Survey (CCHS)
- S_{NP}: Large web panel of volunteers

- **Variables of interest** are observed in both samples
 - Calibration and sample matching can be compared with CCHS estimates

- **Auxiliary variables**: health region, age, sex, marital status, and education

- **Calibration**: main effects and some interactions

- **Sample matching**: “Nearest” donor imputation

- Chatrchi, Beaumont, Gambino and Haziza (2018)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimates of proportions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCHS (±1.96*s.e.)</td>
<td>Panel</td>
<td>Calibration</td>
<td>Sample</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>19.3% (±0.8%)</td>
<td>14.3%</td>
<td>22.1%</td>
<td>28.6%</td>
</tr>
<tr>
<td>Very strong sense of belonging to the community</td>
<td>19.5% (±0.8%)</td>
<td>8.4%</td>
<td>10.9%</td>
<td>14.8%</td>
</tr>
<tr>
<td>Somewhat weak sense of belonging to the community</td>
<td>22.1% (±1.0%)</td>
<td>36.4%</td>
<td>33.6%</td>
<td>30.2%</td>
</tr>
<tr>
<td>Excellent health</td>
<td>23.3% (±0.9%)</td>
<td>7.8%</td>
<td>8.9%</td>
<td>11.7%</td>
</tr>
<tr>
<td>Very good health</td>
<td>35.9% (±1.0%)</td>
<td>29.4%</td>
<td>33.8%</td>
<td>33.0%</td>
</tr>
<tr>
<td>Excellent mental health</td>
<td>33.5% (±1.1%)</td>
<td>13.7%</td>
<td>17.0%</td>
<td>21.4%</td>
</tr>
<tr>
<td>Fair mental health</td>
<td>6.0% (±0.5%)</td>
<td>17.1%</td>
<td>13.1%</td>
<td>11.4%</td>
</tr>
</tbody>
</table>
Inverse probability weighting

• **Idea:**
 - Model the relationship between δ_k and x_k
 - Estimate the participation probability $p_k = \Pr(\delta_k = 1 | X)$ by \hat{p}_k
 - Estimator: $\hat{\theta}^{IPW} = \sum_{k \in s_{NP}} w_k^{IPW} y_k$, where $w_k^{IPW} = 1 / \hat{p}_k$

• **Main advantage:**
 - Simplify the modelling effort when there are many variables of interest (only one participation indicator to model)
 - w_k^{IPW} can be further calibrated to improve precision:
 $$\sum_{k \in s_{NP}} w_k^{IPW, CAL} \tilde{x}_k = \hat{T}_x$$
Inverse probability weighting

• **Assumptions:**

 • Noninformative participation: \(\Pr(\delta_k = 1|Y, X) = \Pr(\delta_k = 1|X) \)

 • \(p_k = \Pr(\delta_k = 1|X) > 0 \)

• **Inferences:** conditional on \(Y \) and \(X \)

• **Parametric model** (ex.: logistic): \(p_k(\alpha) = [1 + \exp(-x_k'\alpha)]^{-1} \)

• Estimated probability: \(\hat{p}_k = p_k(\hat{\alpha}) \)

• How to estimate \(\alpha \) such that: \(E\left(\hat{\theta}^{IPW} - \theta \middle| Y, X \right) \approx 0 \)
Inverse probability weighting

• **Maximum likelihood (logistic):**

\[\sum_{k \in S_{NP}} x_k - \sum_{k \in U} p_k(\alpha)x_k = 0 \]

• Require knowing \(x_k \) for the entire population

• Similar to weighting for survey nonresponse
Inverse probability weighting

- **Chen, Li and Wu (2020):** Pseudo Maximum Likelihood
 \[
 \sum_{k \in s_{NP}} x_k - \sum_{k \in s_P} w_k p_k(\alpha) x_k = 0
 \]
 - A solution may not exist
 - Requires knowing \(x_k \) for both \(k \in s_{NP} \) and \(k \in s_P \)
 - Does not require knowing \(\delta_k, \ k \in s_P \)
Inverse probability weighting

• A simple alternative: Stack both samples and use weighted logistic regression

\[\sum_{k \in s_{NP}} \phi_k^{NP} [1 - p_k(\alpha)] x_k - \sum_{k \in s_p} w_k p_k(\alpha) x_k = 0 \]

• Lee (2006); Valliant and Dever (2011)

• Implicit assumption: \(n_{NP} / N \) is small

• If assumption is reasonable and \(\phi_k^{NP} = 1 \) then the method is approximately equivalent to Chen, Li and Wu (2020)

• Another option (small \(n_{NP} / N \)): Elliott and Valliant (2017)
Inverse probability weighting

- Wang, Valliant and Li (2021)
 - Extension of Valliant and Dever (2011) to account for a large sampling fraction n_{NP}/N
 - Proposed a different estimating equation than Chen-Li-Wu
 - Participation probability: $p_k(\alpha) = \exp(x'_k \alpha)$ (not bounded)
 - Show significant efficiency gains compared with Chen-Li-Wu
 - Why?
 - If $x_k = 1$ or only one categorical auxiliary variable: Both estimators are identical
Inverse probability weighting

• Creation of homogeneous groups with respect to $\hat{p}_k^{\text{logistic}}$ is common:

 • Robust with respect to a misspecification of the logistic model (Haziza and Lesage, 2016)

 • Avoids very small estimated probabilities

 • w_k^{IPW} for k in group g: $w_k^{\text{IPW}} = \frac{\hat{N}_g}{n_g^{\text{NP}}}$

 • Estimator has the same form as the post-stratified estimator

 • If homogeneous groups are used, both Chen-Li-Wu and Wang-Valliant-Li are expected to be roughly equivalent
Inverse probability weighting

• Choice of auxiliary variables and interactions (or homogeneous groups) is key to reduce bias

• We are currently doing research and experimentations:
 • Variable selection: stepwise procedure that minimizes an AIC
 • CART (trees)

• Standard procedures cannot be used:
 • The pooled sample is not an i.i.d. sample
 • The probability sampling design must be taken into account
Inverse probability weighting

• Develop an AIC, similar to Lumley and Scott (2015), that penalizes the pseudo log likelihood for
 • The number of model parameters
 • The selection of a probability sample
• K-fold cross-validation could be an alternative:
 • Not straightforward: Requires to partition the probability sample carefully (like random groups method for variance estimation) and to repeat weighting adjustments (Wieczorek, 2019)
Inverse probability weighting

• Main conclusions of our experimentations using social data:

 • Main effects (educ., region, age, sex, immig., employ., marital, household size) are more important than first-order interactions to reduce the AIC

 • The variable Education is by far the most important to explain participation in a volunteer online survey (crowdsourcing)

 • AIC: the penalty for the selection of a probability sample is not negligible compared with the penalty for the number of model parameters

 • IPW methods reduce bias but sometimes a significant bias remains (like calibration and sample matching)
Proportion of people having a university degree

Naïve
CLW - Stepwise - HG
CPSS
Proportion of people who worked most of their hours at home during the reference week
Proportion of people who “fear being a target for putting others at risk” because they do not always wear a mask in public
Small area estimation

• When to consider Small Area Estimation (SAE)?
 • The variable of interest is collected in a probability sample
 • The non-probability sample only provides auxiliary data
 • Domain estimates are desired but some domains contain a small probability sample size

 Variance may be large for some domain estimates

• SAE methods
 • Compensate for the lack of observed data in a domain through \textit{model assumptions} that link auxiliary data to survey data
Small area estimation

• Fay-Herriot model
 • m disjoint domains of interest (m not small)
 • Auxiliary variables x_d available at the domain level
 • Ex.: Estimates from a nonprobability source
 • We want to predict the total in domain d : θ_d
 • From s_P : Direct estimator: $\hat{\theta}_d$ (assumed unbiased)
 • Model: $\hat{\theta}_d = x_d' \beta + v_d + e_d$
 • Inferences conditional on X
Small area estimation

- **Empirical Bayes (or EBLUP) of** θ_d:

$$\hat{\theta}_d^{EB} = \hat{\gamma}_d \hat{\theta}_d + (1 - \hat{\gamma}_d) \mathbf{x}' \hat{\beta} , \quad 0 \leq \hat{\gamma}_d \leq 1$$

- If $\hat{\theta}_d$ is precise, $\hat{\gamma}_d$ should be close to 1
- Efficiency gains tend to be larger when $\hat{\gamma}_d$ is close to 0 but risk of bias due to model misspecification is larger
- Risk of bias can be controlled by careful modelling

- **Example**: Estimation of the unemployment rate by area

 - **Direct estimate**: Labour Force Survey
 - **Auxiliary information**: Administrative data
<table>
<thead>
<tr>
<th>Sample size</th>
<th>Average of Abs. Rel. Dif. between direct estimates (LFS) and Census 2016 estimates</th>
<th>Average of Abs. Rel. Dif. between EB estimates and Census 2016 estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 smallest areas</td>
<td>70.4%</td>
<td>17.7%</td>
</tr>
<tr>
<td>28 next smallest areas</td>
<td>38.7%</td>
<td>18.9%</td>
</tr>
<tr>
<td>28 next smallest areas</td>
<td>26.2%</td>
<td>13.8%</td>
</tr>
<tr>
<td>28 next smallest areas</td>
<td>20.9%</td>
<td>12.7%</td>
</tr>
<tr>
<td>28 largest areas</td>
<td>13.2%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Total</td>
<td>33.9%</td>
<td>14.7%</td>
</tr>
</tbody>
</table>
Conclusion

• Presented a few methods that:
 • Use data from nonprobability sources
 • Preserve a “valid” statistical inference framework
 • Variance estimation: Not discussed but methods exist for most estimators presented

• For the model-based approaches:
 • Essential to plan sufficient time and resources for modelling (ex.: analyses of model residuals, ...)
 • Baker et al. (2013)
Conclusion

• Are probability surveys bound to disappear for the production of official statistics?

 • The short and mid-term future is in the integration of data from probability and nonprobability samples

 • The quality of some surveys may be doubtful (and could be eliminated) but it is not the case of most surveys conducted by Statistics Canada

 • Can rather expect a reduction of their use to control burden and costs
Selected References

• Design-based approaches:

• Calibration of the non-probability sample:
Selected References

• **Statistical Matching:**

Selected References

• **Inverse probability weighting:**

Selected References

- **Small Area Estimation:**

- **Review papers:**
Selected References

• Review papers:

Other Cited References

Other Cited References

Other Cited References

Other Cited References

Disclaimer

The content of this presentation represents the authors' opinions and not necessarily those of Statistics Canada.