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Small Area Estimation and Aggregated Level Model

What is a small area estimation problem?

Subpopulation inference is also very important, not only for the total
population

Direct estimates are constructed based only on each domain’s sample data
(Example: An estimation of Poverty rate: p̂Di =

∑
i wijyij , where yij ∈ {0, 1}

for i = 1, . . . ,m and j = 1, . . . , ni .)

Figure: One example of Poverty mapping for Prefectures of Japan using Official
microdata (Hirose and Oka in progress)

Note: The results in the analysis differ from published statistics in Japan.

The small sample size may cause a large variation.

refers to it as a Small area estimation problem
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Small Area Estimation and Aggregated Level Model

Aggregated level model for The Fay–Herriot Bayesian
Model

There are two well-known kinds of explicit small-area models.

Unit level model

Aggregated level model

These models have played a critical role in the theory and practice of small-area
estimation.

The unit-level model often requires unit-level data from confidential microdata.

Implementing an aggregated-level model does not tend to require confidential
microdata compared with the unit-level model.

Aggregate statistics are modeled; the chance of disclosing information about
a given individual is low.

Aggregate statistics are modeled; the relatively easier accessibility of
aggregate statistics
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Empirical Best Linear Unbiased Predictor under aggregated level model

The Fay-Herriot Bayesian Model

Fay and Herriot (1979)

For i = 1, · · · ,m,

Level 1: (Sampling model): g(yi )|θi ∼ N(θi ,Di );

Level 2: (Linking model): θi ∼ N(x ′
iβ,A)

where

m : number of small area;

yi : direct survey estimate;

g(yi ) : transformed direct estimates using a smoothed monotone function g ;

θi : a true mean in transformed scale for area i ;

x i : p-vector of known auxiliary variables;

Di : known sampling variance of the direct estimate;

The p-vector of regression coefficients β and model variance A are unknown.

Note: Hereafter, we focus on g(·) = (·).
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Empirical Best Linear Unbiased Predictor under aggregated level model

The Fay-Herriot Model As a Linear Mixed Model

The Fay-Herriot Bayesian model can be viewed as the following linear mixed
model:

y = Xβ + u + e,

where

X = (x ′1, . . . , x
′
m)

′

u = (u1, · · · , um)′ and e = (e1, · · · , em)′ are independent with u ∼ N(0,AI ),
e ∼ N(0,D)

I : an identity matrix of dimension m;

D = diag(D1, · · · ,Dm)

We are interested in predicting

θ = (θ1, · · · , θm)′ = Xβ + u,

where θi = x ′
iβ + ui , i = 1, · · · ,m.
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Empirical Best Linear Unbiased Predictor under aggregated level model

The Best Linear Unbiased Predictor (BLUP) of θi

When A is known, the following BLUP of θi is obtained by minimizing MSE (θ̂i )
among all linear unbiased predictors of θi , where MSE (θ̂i ) = E [(θ̂i − θi )

2] and E
is the expectation with respect to Fay Herriot model:

θ̂BLUPi = (1− Bi )yi + Bix ′
i β̂,

where

Bi ≡ Bi (A) =
Di

A+Di

β̂ ≡ β̂(A) = (X ′V−1X )−1X ′V−1y where
V ≡ V (A) = diag(A+ D1, · · · ,A+ Dm).
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Empirical Best Linear Unbiased Predictor under aggregated level model

Empirical Best Linear Unbiased Predictor (EBLUP) of θi

Let Â be a consistent estimator of model variance parameter A for large m.

An EBLUP of θi is given by

θ̂EBLUPi = (1− B̂i )yi + B̂ix ′
i β̂.

where

B̂i =
Di

Â+Di

β̂ = β̂(Â)

e.g., Â: PR estimator (Prasad and Rao, 1990), FH estimator (Fay and
Herriot, 1979), ML, REML
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Empirical Best Linear Unbiased Predictor under aggregated level model

Estimation of A: Likelihood-Based Methods

Profile Maximum Likelihood estimator (ML estimator)

ÂML = arg max
0≤A<∞

Lp(A|y),

where

Lp(A, y) = K |V |−1/2 exp{− 1
2y

′Py}, where K is a generic constant free from A;

P ≡ P(A) = V−1 − V−1X (X ′V−1X )−1X ′V−1.

Residual Maximum Likelihood estimator (REML estimator)

ÂRE = arg max
0≤A<∞

LRE (A|y),

where LRE (A|y) = hRE (A)Lp(A|y) with hRE (A) = |X ′V−1(A)X |−1/2.

Remarks: Over-shrinkage problem for an estimation of Bi ; B̂i = 1. In such case,
EBLUP gets over-shrinking to the regression estimator.
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Empirical Best Linear Unbiased Predictor under aggregated level model

Estimation of A: Likelihood-Based Methods

Adjusted Maximum Likelihood Methods for avoiding zero estimates

Li and Lahiri (2010)

The Li-Lahiri adjusted ML estimator (LL.ML):

ÂLL.ML = arg max
0<A<∞

hLL(A)Lp(A|y), where hLL(A) = A.

The Li-Lahiri adjusted REML estimator (LL.RE):

ÂLL.RE = arg max
0<A<∞

hLL(A)LRE (A|y)

.

Remarks:

That is, these methods provide the following property under mild regularity
conditions; 0 < inf i≥1 B̂i (Â) ≤ supi≥1 B̂i (Â) < 1.

The MSE of Â is all equivalent, up to order O(m−1). The bias of ÂLL.ML is
of order O(m−1) that is the same as the order of ÂML. But the bias of
ÂLL.RE is?
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Empirical Best Linear Unbiased Predictor under aggregated level model

Estimation of A: Likelihood-Based Methods

Adjusted Maximum Likelihood Methods for avoiding zero estimates

Yoshimori and Lahiri (2014a, JMVA)

The Yoshimori-Lahiri adjusted ML estimator (YL.ML):

ÂYL.ML = arg max
0<A<∞

hYL(A)Lp(A|y), where hYL(A) = arctan

[
m∑
i

(1− Bi )

]1/m

.

The Yoshimori-Lahiri adjusted REML estimator (YL.RE):

ÂYL.RE = arg max
0<A<∞

hYL(A)LRE (A|y)

Remarks:

That is, these methods provide the following property under mild regularity
conditions; 0 < inf i≥1 B̂i (Â) ≤ supi≥1 B̂i (Â) < 1.

Not only the MSE, but also these estimators of A enjoy the same asymptotic
properties of ML and REML, up to the order of O(m−1), respectively.
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Empirical Best Linear Unbiased Predictor under aggregated level model

Mean Squared Error (MSE) of EBLUP

The MSE of BLUP under the Fay-Herriot model is derived as,

MSEBLUP
i ≡ MSE (θ̂BLUPi ) = g1i (A) + g2i (A),

where g1i (A) =
ADi
A+Di

and g2i (A) =
D2
i

(A+Di )
2 x

′
i (X

′V−1X )−1xi .

The MSE of EBLUP under the Fay-Herriot model is approximated for large m as,

MSEEBLUP
i ≡ MSE [θ̂EBLUPi (Â)] = g1i (A) + g2i (A) + g3i (A) + o(m−1),

where g3i (A) =
2D2

i
(A+Di )

3tr [V−2]
and Â ∈ {ÂML, ÂRE , ÂLL.ML, ÂLL.RE , ÂYL.ML, ÂYL.RE}.

still depends on an unknown parameter...
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Empirical Best Linear Unbiased Predictor under aggregated level model

A second-order unbiased estimator of Mean Squared Error
(MSE) for EBLUP

Definition: A second-order unbiased MSE estimator for true MSE, M̂SE

M̂SE is satisfying that E [M̂SE −MSE ] = o(m−1) for large m.

The naive estimator: plugged Â into MSE of BLUP does not satisfy.

E
[
MSEi (θ̂

BLUP
i (A))

∣∣∣
A=Â

−MSE
]
= O(m−1), (1)

where Â ∈ {ÂML, ÂRE , ÂLL.ML, ÂLL.RE , ÂYL.ML, ÂYL.RE}.
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Empirical Best Linear Unbiased Predictor under aggregated level model

A second-order unbiased estimator of Mean Squared Error
(MSE) for EBLUP

Definition: A second-order unbiased MSE estimator for true MSE, M̂SE

M̂SE is satisfying that E [M̂SE −MSE ] = o(m−1) for large m.

Bias correction terms are required:
1 Taylor linearization (Prasad and Rao, 1990; Datta and Lahiri, 2000; Datta et

al., 2004; Das et al., 2004;Li and Lahiri, 2010; Yoshimori and Lahiri, 2014b)

Using ÂML /ÂLL.ML /ÂLL.RE/ÂYL.ML

M̂SE i ≡ M̂SE i [θ̂i (Â)] = g1i (Â) + g2i (Â) + 2g3i (Â)−b(Â)B̂2
i ,

where b(A) is a bias of Â, up to the order O(m−1).

Using ÂRE/ ÂYL.RE

M̂SE i ≡ M̂SE i [θ̂i (Â)] = g1i (Â) + g2i (Â) + 2g3i (Â).

2 Jackknife method (Jiang, Lahiri and Wan, 2002; Chen and Lahiri, 2008): In
this presentation, we won’t focus on the Jackknife method.
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Empirical Best Linear Unbiased Predictor under aggregated level model

Parametric Bootstrap estimator of Mean Squared Error for
EBLUP

3 Parametric Bootstrap method [Single] (Butar and Lahiri, 2003)

M̂SE
BL

i ≡ M̂SE i [θ̂i (Â)] =2[g1i (Â) + g2i (Â)] −
1

B

B∑
b=1

[g1i (Â
(b)) + g2i (Â

(b))]

+
1

B

B∑
b=1

[θ̂i (y , β̂
(b)

, Â(b)) − θ̂i (y , β̂
(b)

, Â(b))]2.

Remark
They could be negative MSE estimates due to their bias corrections.
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Empirical Best Linear Unbiased Predictor under aggregated level model

Parametric Bootstrap estimator of Mean Squared Error for
θi

4 Parametric Bootstrap method [Double]
(Hall and Maiti, 2006; Chatterjee and Lahiri, 2007).
e.g., one of the estimators of Hall and Maiti (2006) is given by the following;

M̂SE
HM1

i =

{
2û − v̂ (û ≥ v̂)
exp[−(v̂ − û)/v̂ ]û (û < v̂)

where û = 1
B

∑B
b=1

[
θ̂
(b)
i (y (b), β̂(b), Â(b))− θ

(b)
i

]2
,

v̂ = 1
B

∑B
b=1

[
1
C

∑C
c=1

[
θ̂
(bc)
i (y (bc), β̂(bc), Â(bc))− θ

(bc)
i

]2]
.

These MSE estimators are strictly positive, but the double bootstrap method is
more computer-intensive than the single bootstrap method. And not sure about
the second-order unbiasedness (Jiang et al., 2016)
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Empirical Best Linear Unbiased Predictor under aggregated level model

Research Question

What are desired properties?

For θi , We need to focus on estimating the shrinkage factor Bi , rather than
that of A.

We wish to protect EBLUP from over-shrinking to the regression estimator.

There is also a desire to use a simple second-order unbiased MSE estimator
to maintain the MSE estimator’s strict positivity for practical users.
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Empirical Best Linear Unbiased Predictor under aggregated level model

Research Question

What are desired properties?
Desired properties

1 Obtain a second-order unbiased estimator of Bi ;
E (B̂i ) = Bi + o(m−1) in maintaining equivalent identical variance of other
likelihood-based methods, up to the order O(m−1).

2 0 < infm≥1B̂i ≤ supm≥1B̂i < 1 for protecting EBLUP from over-shrinking to
the regression estimator;

3 Obtain a simple second-order unbiased Taylor series MSE estimator of EBLUP

without any bias correction; that is, M̂SE i = g1i (Â) + g2i (Â) + g3i (Â);

4 Produce a strictly positive second-order unbiased single parametric bootstrap
MSE estimator without bias correction.

M̂SE
PB

i = E∗[(θ̂
EBLUP
i (Â∗, y (∗))− θ∗i )

2];
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Empirical Best Linear Unbiased Predictor under aggregated level model

Research Question

Then, can we achieve these four desired properties simultaneously?

To address such an issue, we propose an area-specific estimator of A, say Âi , that
simultaneously satisfies these multiple desirable properties under certain mild
regularity conditions.
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A new variance component estimation for achieving desired properties

A new adjusted maximum likelihood estimator of A

The residual maximum likelihood estimator of A is defined as:

ÂRE = arg max
0≤A<∞

LRE (A|y).

Note that ÂRE does not satisfy any of the four desirable properties.

To find a likelihood-based estimator of A that satisfies all the four desirable
properties, we start by setting up a general adjusted maximum likelihood
estimator of A defined as:

Âi = arg max
0<A<∞

hi (A)LRE (A), (2)

where hi (A) is not specified.
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A new variance component estimation for achieving desired properties

A new adjusted maximum likelihood estimator of A

We first find the adjustment factor hi (A) that satisfies Property 1.
Under the mild regularity conditions, we have, for large m,

E (B̂i ) = Bi +

[
∂Bi

∂A

∂ log hi (A)

∂A
+

1

2

∂2Bi

∂A2

]
2

tr [V−2]
+ o(m−1).

Thus, Property 1 is satisfied if we have

∂Bi

∂A

∂ log hi (A)

∂A
+

1

2

∂2Bi

∂A2
= 0.

Thus, an adequate adjustment factor is given by

hi0(A) = (A+Di).

This adjustment factor is indeed the unique solution, up to the order of O(1) for
large m.
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A new variance component estimation for achieving desired properties

A new adjusted maximum likelihood estimator of A

The resulting estimator is given by,

Âi = arg max
0<A<∞

h̃0(A)LRE (A).

Interestingly, it turns out that such an adjusted maximum likelihood estimator also
satisfies Properties 3 and 4.

“Âi satisfy Property 1, 3, 4 but not Property 2...”

We propose our final estimator of A for m > p + 2 as:

Âi ;MG = arg max
0<A<∞

h̃i (A)LRE (A),

where h̃i (A) = h+(A)hi0(A) with the additional adjustment h+(A) satisfying
several conditions.
The choice of h+(A) is generally not unique. One can use the choice hYL given in
Yoshimori and Lahiri (2014a, JMVA).
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A new variance component estimation for achieving desired properties

A new adjusted maximum likelihood estimator of A

Theorem 1

Under some mild regularity conditions, we have, for large m,

(i)E [B̂i ;MG −Bi ] = o(m−1); Var(B̂i ;MG ) =
2D2

i

(A+Di )4tr[V−2]
+ o(m−1);

(ii) 0 < infm≥1B̂i ;MG ≤ supm≥1B̂i ;MG < 1, for m > p + 2;

(iii)E [M̂SE i ;MG −MSEi (θ̂
EB
i ;MG )] = o(m−1);

(iv) E [M̂SE
PB

i ;MG −MSEi (θ̂
EB
i ;MG ) = o(m−1),

where

B̂i ;MG = Bi (Âi ;MG ); θ̂EBi ;MG = θ̂BLUPi (Âi ;MG );

M̂SE i ;MG = g1i (Âi ;MG ) + g2i (Âi ;MG ) + g3i (Âi ;MG );

M̂SE
PB

i ;MG = E∗[(θ̂i (Â
∗
i ;MG , y

(∗))− θ∗i )
2].

Our approach also ensures the important dual properties of the MSE estimator —
second-order unbiasedness and strict positivity.
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Monte Carlo simulation study

Simulation set-up

We considered the SAIPE program of the U.S. Census Bureau to estimate the
percentages of school-age children in poverty for the fifty states and the District
of Columbia. (http://www.census.gov/did/www/saipe/about/index.html, Bell et
al. 2015)
To compare the performances in using ÂRE with that of Âi ;MG , we use xi and Di

from the same SAIPE data set for the 1992 year, considered by Bell (1999).

The 15 areas correspond to states with the largest sampling variances Di .

A = 15.94 which is the median of Di for the 15 states.

β: The weighted least squared estimate of β from the real data, including all
50 states and DC. (p = 5)
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Monte Carlo simulation study

Result 1: RB and RRMSE of B̂i

RB of B̂i :
E(B̂i − Bi )

Bi
× 100;

RRMSE of B̂i :

√
MSE(B̂i )

Bi
× 100.

Figure: RB and RRMSE of B̂i
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Monte Carlo simulation study

Result 2: MSE of EBLUP

Figure: MSE of EB with RE and HL
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Monte Carlo simulation study

We also report simulated RBs and RRMSE of different MSE estimators of
EBLUPs that use ÂRE and ours.

1 Naive MSE estimator (naive.RE): g1i (ÂRE ) + g2i (ÂRE );

2 Single parametric bootstrap MSE estimator (PB.RE):

E∗[(θ̂i (Â
∗
RE , y

(∗))− θ∗i )
2];

3 DL.RE: g1i (ÂRE ) + g2i (ÂRE ) + 2g3i (ÂRE );

4 Taylor.HL: the proposed Taylor series MSE estimator,

M̂SE i ;MG = g1i (Âi ;MG ) + g2i (Âi ;MG ) + g3i (Âi ;MG );

5 PB.HL: our proposed single parametric bootstrap MSE estimator,

M̂SE
PB

i ;MG = E∗[(θ̂i (Â
∗
i ;MG , y

(∗))− θ∗i )
2];

6 PB.BL:

2{g1i (ÂRE ) + g2i (ÂRE )} − E∗[g1i (Â
∗
RE ) + g2i (Â

∗
RE )]

+ E∗[{θ̂∗i (yi , Â∗
RE , β̂(Â

∗
RE , y))− θ̃∗i (y , ÂRE , β̂(ÂRE , yi ))}2].
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Monte Carlo simulation study

Result 3

Figure: RB and RRMSE of MSE estimators for MSE of EB using REML(above) and
HL(bottom); states are arranged in decreasing order of the sampling variances

IISA webinar (2024) May 29, 2024 28 / 32



SAIPE data analysis

Data Analysis

We consider 1992 and 1993 SAIPE data. In 1992, the REML estimate of A was
zero, while in 1993, it was positive.
For this application, the small areas are 50 states and the District of Columbia of
the United States, so m = 51.

Figure: Estimates of Bi and MSE using all SAIPE data for 1992 (above) and
1993(bottom) year; states are arranged in decreasing order of the sampling variances

IISA webinar (2024) May 29, 2024 29 / 32



Conclusion

Conclusion

Explanation of the basic EBLUP theory

Proposed new variance estimator for achieving multiple goals simultaneously.

Overall, we demonstrated that our proposed method offers reasonable results
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Conclusion
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Conclusion

Thank you for your listening!
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