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Outline of my talk

@ Motivation : estimation of finite population totals with large
auxiliary information data-sets;

@ The calibration estimator in a high-dimensional setting ;

@ Two classes of improved calibration estimators based on
penalization and dimension reduction methods;

@ Simulation studies on real Irish electricity consumption data.

Work done in collaboration with M. Dagdoug, D. Haziza; G. Chauvet; H.
Cardot et M.A. Shehzad
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Surveys in presence of large data-sets

@ Emergence of large data-sets due to digital devices which allow
recording information at a very fine scale : smart meters,
smartphones,. . .

@ National Statistical Offices (NSO) have now access to a variety of
data sources, potentially exhibiting a large number of observations
on a large number of variables.

@ Traditional parametric or non-parametric estimation methods may
prove inefficient.
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Consumption electricity recorded via smart meters

smart meter : smart device installed in households and firms capable to
record and send information (electricity consumption) at a very fine scale
(every minute, second)

Advanced Metering Infrastructure Systems (AMI)

Single Family y

Home

Utility Office

Your
Smart Meter
Communication
= Device on Utilitv Pole
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Example 1 : a sample of 5 electricity curves

Test population : 18902 firms and the electricity consumption is recorded
every 30 min. during one week.

A sample of 5 load curves during the 1st week
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Population, sample

o Llet U ={1,...,k,..., N} be a finite population of size N (which
may be unknown);

@ Let s C U be a sample selected from U according to a sampling
design p(s);

@ The inclusion probabilities are

= Pr(kes)= Zp and 7 = Pr(k,les)= Zp(s);
kes k,l€s

@ Let Y be the study variable and the goal is the estimation of its
finite population total :
b= W

keU
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Horvitz-Thomson estimator and its variance

@ With full response, the total ¢, is estimated by the
Horvitz-Thompson (HT) estimator :

Yk
fyrr =3
kes
@ If m, > 0 for all k € U, then the HT estimator is design-unbiased for
ty -
Ep(tyHT) = ty,
where the expectation E,(-) is taken with respect to the sampling
design p(-);
@ The design-variance of tyr is equal to
yk Ye
() = 3 3 e — mam) 2 2
keU LeU
and if g > 0 for all k,¢ € U, it is estimated unbiasedly by

} :2 : Tke — TETg yk y@
yHT T T,
kes les ke
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Auxiliary information

@ Consider the auxiliary variables X7,..., X,; let X be the auxiliary
information matrix :

T
X =(Xq]... X)) = (x )54
where x| = (z15)i=1, k€ U;
o the electricity consumption recorded at each instant from the
previous week ;

@ In a survey framework, we may know xy, for all k € U (complete
auxiliary information) or only on s with >, _,; X} known;

@ We may improve the Horvitz-Thompson estimator :

o at the sampling stage by selecting individuals with 7 built by
using this auxiliary information such as the stratified or the
proportional to size sampling;

o at the estimation stage by considering an estimator
which incorporates this auxiliary information.
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The calibration approach (Deville & Sarndal, 1992)

@ Build a weighted estimator of ¢, :

by = Zwksyk
kes
with weights wys, k € s being as close as possible to the sampling
weights 1/7, and satisfying the calibration constraints :

E WgsXEp = g Xk

k€Es keU

@ Several distance functions have been considered to measure the
closeness between wy, and 1/7y;

@ Deville & Sarndal (1992) showed that the calibration estimator
obtained for some distance function is asymptotically equivalent
(under regularity assumptions) with the calibration estimator
obtained with the chi-squared distance :

—1\2
Wgs — T
\IJ(W) _ Z ( ks k )

—1
Ty,
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The calibration estimator for the chi-squared distance

@ The calibration weights wys, k € s are given by

Ws = T " — W];IXE(Z T xexy ) HExaT — tx), k€S
kes

@ The calibration estimator is equal to

:
T = T8 (XY 5

Tk
kEs kes kes keU

= txnr — (txnr — tx)TB;

where 8 = (X o T XX ) 71 Y pes T XiUk- It is equal to the
generalized regression estimator (GREG) obtained in the
model-assisted literature.

@ lts variance can not be derived directly by using the classical
variance formulas because of 3; we need " approximations”
techniques.
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Let £4;7; be the generalized difference estimator defined as :

.

{ 2 2 3 3 Yk — Xz B

tairy = txur—(Exnr—tx) Bors = Z X;ﬁOLSJ"Z b~ Tk POLS
keU kEs Tk

where BOLS = (ZkeU XkaT)fl ZkeU Xg Yk -

Assume mild assumptions on ), the sampling rate and my, 7y as
well as on the auxiliary information (||xx||?> < C for all k € U);

The calibration estimator is asymptotically equivalent to the
generalized difference estimator :

\/ﬁNil (tAw - ty) = \/ﬁNil(tAdiff —ty) +0p(1)
VaNT! (ty — t,) VAN taips —ty)

1

The asymptotic variance of £,, is the variance of 47 :

T3 T3
R Yk — X Bors Ye — %X, B
AVy(tw) = D > (mhe — mime) EOLS e
keU (eU Tk e
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Estimation with a large number p of auxiliary variables

We consider now that a large number p of auxiliary variables is available.

Question : do we have to consider all this high-dimensional auxiliary in-
formation 7

In a classical statistical framework, this situation has already arisen in the
early 70's for the estimation of /3 in a linear modeling context.

Several issues have been noticed :

@ for p large, problems of multi-collinearity between the X ;-variables
appear; the information contained in the X-matrix is then
redundant;

@ the OLS estimator B g is certainly unbiased but its variance is
very high in this situation;

@ Borg is in average far from 3.
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In a survey sampling framework

In a survey sampling framework, Bardsley and Chambers (1984) pointed
out that the model-based estimator may be inefficient if a large number
of predictors is considered and Rao and Singh (1992) for the calibration
estimator :

@ the weights wy, used for the model-based or calibration estimators
become very instable, they can be very small (even negative with
the chi-square distance) or too large.

@ Difficulty to respect predetermined lower and upper bounds :

w
L< <y,
Tk
© Silva and Skinner (1997) noticed on simulation studies that
considering a large number of auxiliary variables increases the
variance of the calibration estimators;
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Small application on Irish Electricity Data Set

@ Commission for Energy Regulation (Ireland)
http://www.cer.ie/

@ We consider a period of 14 consecutive days and a population of
size N = 6291 individuals (households and companies) ;

@ The electricity consumption is recorded every 30 min; so, for each

unit k& from the population, we have 2 x 7 x 48 = 672 measurement
instants

@ We aim at estimating the total electricity consumption of Monday
of the second week :
ty = Z yk7

keU
Yk is the consumption of Monday associated to smart meter k;

@ Auxiliary information is the electricity consumption of each instant
from the previous week, namely p = 336 variables :

Xe(t;),j=1...,336, kel.

@ We consider a SRS of size n = 600 and we compute the calibration
w-weights. 15/28
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Asymptotic efficiency : n,p — 00 (Chauvet & Goga, JSPI 2022)

On suppose supplementary assumptions on X; we suppose also that l|xx||? <
pC for all k € U.

Result
Under the assumed regularity conditions, we have :

o Nﬁl(fdiff 7ty) = Op(nil/z), Nt ( <xHT — t ) O (\/p/n) and

-0 ((f2) +0u (22);

° % (tw —ty) = %(fdiff —ty) + Op (i) + 0y (nf/ﬁ) .

If p?/n — 0, then

SE
=%

(tw —ty) ~ ~=(taifr —ty).
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Improving the model-assisted estimator in a
high-dimensional setting

Solutions :

@ choose the most important variables by using selection variables cri-
teria suggested for linear modeling ; however, for p very large, these
methods may be time-consuming;

@ use a generalized inverse in case of non-invertibility of X " X;
© use biased-estimation methods for estimating (3 :

o penalization methods such as ridge (Bardsley and Chambers,
1984 ; Rao and Singh, 1992 ; Beaumont and Bocci, 2008;
Guggemos and Tillé, 2010) or lasso

e dimension reduction methods such as principal component
regression (Cardot et al., 2017).
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The penalized calibration
We look for weights w2 (\) = (whs" (A))kes such that they minimize the
penalized chi-squared distance :
)2

wP(A) = argmlnwz wkq_ﬂk
kEs
1
(T ) (S )
kes keU kes keU

Different interpretation : we relax the calibration constraints which are no
longer exactly verified :

1D weexie = > xil[? < &

kes keU

@ )\ = 0 the constraints are exactly satisfied, we get the usual
calibration estimator ;

@ A\ — 0o no constraint is satisfied, we get the Horvitz-Thompson
estimator ;

@ Dagdoug al. (2021) studied the asymptotic properties when p — oo;
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The Principal Component calibration estimator (Cardot et al,
Stat. Sinica, 2017)

@ We derive the Principal Components Zy,...,Z, of X (linear
combination of X;,7 =1,...,p, non-correlated and of maximum
variance) :

Z]':XVJ', j:].,...,p7

where v; is the eigenvector associated to the largest eigenvalue \;
of N7IXTX;

@ The new calibration variables are Z, ..., Z, associated to the
largest eigenvalues A\; > ... > A\, with r << p:

2y =(21,...,Z,) = (2}, )kev

@ The PC-weights w}s(r), k € s may be obtained by calibrating on
the zero totals of the first + PC, namely :

D wis (M = )z

kes keU
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@ The PC-calibrated estimator is given by :

N a ~ T .
tg;(jr = tyHT - (terT - tz'r‘) PYZ,’I“
= Y whi(r)u
kes

@ We estimate exactly the projection of the totals of the initial
auxiliary variables on the space spanned by vq,..., v, :

@ r =0 : we obtain the Horvitz-Thompson estimator fyHT which
doesn't use the auxiliary information.

@ r = p : we obtain the calibration estimator which uses all
initial p auxiliary variables.

© partial calibration : we estimate exactly the totals of p;
variables and we penalize the other p — p; variables (Bardsley
and Chambers, 1984 ; Guggemos and Tillé, 2010).

@ Cardot et al. (2017) studied the asymptotic properties of the
PC-calibrated estimator when r,p — oo.
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Empirical comparaison on lrish consumption data

@ We consider the Irish consumption electricity data as introduced

before ;

@ The auxiliary variables X7, ..., X336 are highly correlated, the
matrix N~1X T X is ill-conditioned (the conditioning number is
65055.78) ;

@ The first PC variable Z; explains 63% of the total variance of X
and the first 10 PC variables explain more than 80% ;

@ The goal is the estimation of the total consumption electricity of
each day of the second week :

tézzyk€7 €:1a77
keU

@ We select a simple random sampling without replacement of size
n = 600 and compute the PC model-assisted estimators for an
increasing number r of PC variables plus the intercept.
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Coefficient of variation of PC-calibration weights
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Proportion of positive weights
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Relative efficiency of the PC-calibration estimator with
respect to the calibration estimator

Calibration on population PC's Calibration on estimated PC's
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Data-driven rule for choosing the tunning parameter

@ The number r of PC variables is a tuning parameter and the
performance of the PC-calibration estimator depends on it;

o Cardot et al. (2017) suggest selecting the largest dimension # such
that all the PC weights w};(r) remain positive; it is the analogue of
the strategy suggested in Bardsley and Chambers (1984) for
choosing the tuning parameter \ in a ridge regression context ;

@ The mean number of selected principal components with the data
driven selection rule was equal to 17.3 for the population principal
components and 21.3 for the sample principal components.

@ The relative efficiencies with respect to the calibration estimator are
given below :

Days
Estimators mo tu we thu fri sat sun
HT 144 139 11.8 10.8 125 6.4 5.4
fg; 051 049 041 041 052 055 0.50
f;fic 049 048 041 040 050 053 049
Ridge Calibration 0.44 046 040 041 048 048 043
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Conclusion

@ Estimation of finite population totals with high-dimensional auxiliary
data sets;

@ Traditional calibration estimator or the calibration estimator may be
inefficient in this setting; additional variability if p is very large with
respect to n;

@ Two classes of alternatives estimators which may be more efficient
that the calibration estimator with high-dimensional auxiliary data
sets. However, they need to choose tuning parameters.
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