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Outline of my talk

Motivation : estimation of finite population totals with large
auxiliary information data-sets ;

The calibration estimator in a high-dimensional setting ;

Two classes of improved calibration estimators based on
penalization and dimension reduction methods ;

Simulation studies on real Irish electricity consumption data.

Work done in collaboration with M. Dagdoug, D. Haziza ; G. Chauvet ; H.
Cardot et M.A. Shehzad
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Surveys in presence of large data-sets

Emergence of large data-sets due to digital devices which allow
recording information at a very fine scale : smart meters,
smartphones,. . .

National Statistical Offices (NSO) have now access to a variety of
data sources, potentially exhibiting a large number of observations
on a large number of variables.

Traditional parametric or non-parametric estimation methods may
prove inefficient.
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Consumption electricity recorded via smart meters

smart meter : smart device installed in households and firms capable to
record and send information (electricity consumption) at a very fine scale
(every minute, second)
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Example 1 : a sample of 5 electricity curves
Test population : 18902 firms and the electricity consumption is recorded
every 30 min. during one week.
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Population, sample

Let U = {1, . . . , k, . . . , N} be a finite population of size N (which
may be unknown) ;

Let s ⊂ U be a sample selected from U according to a sampling
design p(s) ;

The inclusion probabilities are

πk = Pr(k ∈ s) =
∑
k∈s

p(s) and πkl = Pr(k, l ∈ s) =
∑
k,l∈s

p(s);

Let Y be the study variable and the goal is the estimation of its
finite population total :

ty =
∑
k∈U

yk

7/28

Camelia Goga High-dimensional calibration



Horvitz-Thomson estimator and its variance
With full response, the total ty is estimated by the
Horvitz-Thompson (HT) estimator :

t̂yHT =
∑
k∈s

yk
πk

If πk > 0 for all k ∈ U, then the HT estimator is design-unbiased for
ty :

Ep(t̂yHT ) = ty,

where the expectation Ep(·) is taken with respect to the sampling
design p(·);
The design-variance of t̂HT is equal to

Vp(t̂yHT ) =
∑
k∈U

∑
`∈U

(πk` − πkπ`)
yk
πk

y`
π`

and if πk` > 0 for all k, ` ∈ U, it is estimated unbiasedly by

V̂p(t̂yHT ) =
∑
k∈s

∑
`∈s

πk` − πkπ`
πk`

yk
πk

y`
π`
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Auxiliary information

Consider the auxiliary variables X1, . . . , Xp; let X be the auxiliary
information matrix :

X = (X1| . . . |Xp) = (x>k )pk=1

where x>k = (xkj)
p
j=1, k ∈ U ;

the electricity consumption recorded at each instant from the
previous week ;

In a survey framework, we may know xk for all k ∈ U (complete
auxiliary information) or only on s with

∑
k∈U xk known ;

We may improve the Horvitz-Thompson estimator :

at the sampling stage by selecting individuals with πk built by
using this auxiliary information such as the stratified or the
proportional to size sampling ;
at the estimation stage by considering an estimator
which incorporates this auxiliary information.
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The calibration approach (Deville & Sarndal, 1992)
Build a weighted estimator of ty :

t̂w =
∑
k∈s

wksyk

with weights wks, k ∈ s being as close as possible to the sampling
weights 1/πk and satisfying the calibration constraints :∑

k∈s

wksxk =
∑
k∈U

xk

Several distance functions have been considered to measure the
closeness between wks and 1/πk;

Deville & Sarndal (1992) showed that the calibration estimator
obtained for some distance function is asymptotically equivalent
(under regularity assumptions) with the calibration estimator
obtained with the chi-squared distance :

Ψ(w) =
∑
k∈s

(wks − π−1k )2

π−1k
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The calibration estimator for the chi-squared distance

The calibration weights wks, k ∈ s are given by

wks = π−1k − π
−1
k x>k (

∑
k∈s

π−1k xkx
>
k )−1(t̂xHT − tx), k ∈ s

The calibration estimator is equal to

t̂w =
∑
k∈s

wksyk =
∑
k∈s

yk
πk
−

(∑
k∈s

xk

πk
−
∑
k∈U

xk

)>
β̂

= t̂xHT − (t̂xHT − tx)>β̂,

where β̂ = (
∑

k∈s π
−1
k xkx

>
k )−1

∑
k∈s π

−1
k xkyk. It is equal to the

generalized regression estimator (GREG) obtained in the
model-assisted literature.

Its variance can not be derived directly by using the classical
variance formulas because of β̂ ; we need ”approximations”
techniques.
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Let t̂diff be the generalized difference estimator defined as :

t̂diff = t̂xHT−(t̂xHT−tx)>β̃OLS =
∑
k∈U

x>k β̃OLS+
∑
k∈s

yk − x>k β̃OLS

πk
,

where β̃OLS = (
∑

k∈U xkx
>
k )−1

∑
k∈U xkyk.

Assume mild assumptions on Y, the sampling rate and πk, πkl as
well as on the auxiliary information (||xk||2 ≤ C for all k ∈ U) ;

The calibration estimator is asymptotically equivalent to the
generalized difference estimator :

√
nN−1

(
t̂w − ty

)
=
√
nN−1(t̂diff − ty) + op(1)

√
nN−1

(
t̂w − ty

)
'
√
nN−1(t̂diff − ty)

The asymptotic variance of t̂w is the variance of t̂diff :

AVp(t̂w) =
∑
k∈U

∑
`∈U

(πk` − πkπ`)
yk − x>k β̃OLS

πk

y` − x>` β̃OLS

π`
.
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Estimation with a large number p of auxiliary variables

We consider now that a large number p of auxiliary variables is available.

Question : do we have to consider all this high-dimensional auxiliary in-
formation ?

In a classical statistical framework, this situation has already arisen in the
early 70’s for the estimation of β in a linear modeling context.

Several issues have been noticed :

for p large, problems of multi-collinearity between the Xj-variables
appear ; the information contained in the X-matrix is then
redundant ;

the OLS estimator β̃OLS is certainly unbiased but its variance is
very high in this situation ;

β̃OLS is in average far from β.
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In a survey sampling framework

In a survey sampling framework, Bardsley and Chambers (1984) pointed
out that the model-based estimator may be inefficient if a large number
of predictors is considered and Rao and Singh (1992) for the calibration
estimator :

1 the weights wks used for the model-based or calibration estimators
become very instable, they can be very small (even negative with
the chi-square distance) or too large.

2 Difficulty to respect predetermined lower and upper bounds :

L ≤ wks

π−1k

≤ U ,

3 Silva and Skinner (1997) noticed on simulation studies that
considering a large number of auxiliary variables increases the
variance of the calibration estimators ;
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Small application on Irish Electricity Data Set
Commission for Energy Regulation (Ireland)
http://www.cer.ie/

We consider a period of 14 consecutive days and a population of
size N = 6291 individuals (households and companies) ;

The electricity consumption is recorded every 30 min ; so, for each
unit k from the population, we have 2× 7× 48 = 672 measurement
instants

We aim at estimating the total electricity consumption of Monday
of the second week :

ty =
∑
k∈U

yk,

yk is the consumption of Monday associated to smart meter k;

Auxiliary information is the electricity consumption of each instant
from the previous week, namely p = 336 variables :

Xk(tj), j = 1 . . . , 336, k ∈ U.

We consider a SRS of size n = 600 and we compute the calibration
w-weights. 15/28
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Histogram of weights.greg

Greg weights,n=600
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Asymptotic efficiency : n, p→∞ (Chauvet & Goga, JSPI 2022)

On suppose supplementary assumptions on X; we suppose also that ||xk||2 <
pC̃ for all k ∈ U.

Result
Under the assumed regularity conditions, we have :

N−1(t̂diff − ty) = Op(n−1/2), N−1(t̂xHT − tx) = Op(
√
p/n) and

β̂ − β̃OLS = Op

(√
p

n

)
+Op

(
p
√
p

n

)
;

1

N

(
t̂w − ty

)
=

1

N
(t̂diff − ty) +Op

( p
n

)
+Op

(
p2

n
√
n

)
.

If p2/n→ 0, then

√
n

N

(
t̂w − ty

)
'
√
n

N
(t̂diff − ty).
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Improving the model-assisted estimator in a
high-dimensional setting

Solutions :

1 choose the most important variables by using selection variables cri-
teria suggested for linear modeling ; however, for p very large, these
methods may be time-consuming ;

2 use a generalized inverse in case of non-invertibility of X>X;

3 use biased-estimation methods for estimating β :

penalization methods such as ridge (Bardsley and Chambers,
1984 ; Rao and Singh, 1992 ; Beaumont and Bocci, 2008 ;
Guggemos and Tillé, 2010) or lasso
dimension reduction methods such as principal component
regression (Cardot et al., 2017).
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The penalized calibration
We look for weights wpen

s (λ) = (wpen
ks (λ))k∈s such that they minimize the

penalized chi-squared distance :

wpen
s (λ) = argminw

∑
k∈s

(wks − π−1k )2

π−1k

+
1

λ

(∑
k∈s

wksxk −
∑
k∈U

xk

)>(∑
k∈s

wksxk −
∑
k∈U

xk

)
Different interpretation : we relax the calibration constraints which are no
longer exactly verified :

||
∑
k∈s

wksxk −
∑
k∈U

xk||2 ≤ c2

λ = 0 the constraints are exactly satisfied, we get the usual
calibration estimator ;

λ→∞ no constraint is satisfied, we get the Horvitz-Thompson
estimator ;

Dagdoug al. (2021) studied the asymptotic properties when p→∞;
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The Principal Component calibration estimator (Cardot et al.,

Stat. Sinica, 2017)

We derive the Principal Components Z1, . . . ,Zp of X (linear
combination of Xj , j = 1, . . . , p, non-correlated and of maximum
variance) :

Zj = Xvj , j = 1, . . . , p,

where vj is the eigenvector associated to the largest eigenvalue λj
of N−1X>X;

The new calibration variables are Z1, . . . ,Zr associated to the
largest eigenvalues λ1 ≥ . . . ≥ λr with r << p :

Z(r) = (Z1, . . . ,Zr) = (z>kr)k∈U

The PC-weights wpc
ks(r), k ∈ s may be obtained by calibrating on

the zero totals of the first r PC, namely :∑
k∈s

wpc
ks(r)zkr =

∑
k∈U

zkr
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The PC-calibrated estimator is given by :

t̂pcw,r = t̂yHT −
(
t̂zrHT − tzr

)T
γ̂z,r

=
∑
k∈s

wpc
ks(r)yk

We estimate exactly the projection of the totals of the initial
auxiliary variables on the space spanned by v1, . . . ,vr :

1 r = 0 : we obtain the Horvitz-Thompson estimator t̂yHT which
doesn’t use the auxiliary information.

2 r = p : we obtain the calibration estimator which uses all
initial p auxiliary variables.

3 partial calibration : we estimate exactly the totals of p1
variables and we penalize the other p− p1 variables (Bardsley
and Chambers, 1984 ; Guggemos and Tillé, 2010).

4 Cardot et al. (2017) studied the asymptotic properties of the
PC-calibrated estimator when r, p→∞.
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Empirical comparaison on Irish consumption data

We consider the Irish consumption electricity data as introduced
before ;

The auxiliary variables X1, . . . , X336 are highly correlated, the
matrix N−1X>X is ill-conditioned (the conditioning number is
65055.78) ;

The first PC variable Z1 explains 63% of the total variance of X
and the first 10 PC variables explain more than 80% ;

The goal is the estimation of the total consumption electricity of
each day of the second week :

t` =
∑
k∈U

yk`, ` = 1, . . . , 7

We select a simple random sampling without replacement of size
n = 600 and compute the PC model-assisted estimators for an
increasing number r of PC variables plus the intercept.
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Coefficient of variation of PC-calibration weights
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Proportion of positive weights
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Relative efficiency of the PC-calibration estimator with
respect to the calibration estimator
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Data-driven rule for choosing the tunning parameter
The number r of PC variables is a tuning parameter and the
performance of the PC-calibration estimator depends on it ;

Cardot et al. (2017) suggest selecting the largest dimension r̂ such
that all the PC weights wpc

ks(r) remain positive ; it is the analogue of
the strategy suggested in Bardsley and Chambers (1984) for
choosing the tuning parameter λ in a ridge regression context ;

The mean number of selected principal components with the data
driven selection rule was equal to 17.3 for the population principal
components and 21.3 for the sample principal components.

The relative efficiencies with respect to the calibration estimator are
given below :

Days
Estimators mo tu we thu fri sat sun

HT 14.4 13.9 11.8 10.8 12.5 6.4 5.4

t̂pc`w 0.51 0.49 0.41 0.41 0.52 0.55 0.50
t̂epc`w 0.49 0.48 0.41 0.40 0.50 0.53 0.49

Ridge Calibration 0.44 0.46 0.40 0.41 0.48 0.48 0.43
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Conclusion

Estimation of finite population totals with high-dimensional auxiliary
data sets ;

Traditional calibration estimator or the calibration estimator may be
inefficient in this setting ; additional variability if p is very large with
respect to n;

Two classes of alternatives estimators which may be more efficient
that the calibration estimator with high-dimensional auxiliary data
sets. However, they need to choose tuning parameters.
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