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National Agricultural Statistics Service (NASS)

• One of 13 principal

statistical agencies in the

decentralized US federal

statistical system

• NASS is the survey and
estimation arm of the US
Department of Agriculture

• conducts Census of Ag

every five years

• fields hundreds of

surveys each year

• compiles extensive

administrative data

• covers nearly every

aspect of US agriculture
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Common problem in establishment surveys

• Frame = list of establishments: U = {1, 2, . . . , k , . . . ,N}
• assume complete coverage for purposes of this talk

• Characteristics of interest: C = {1, 2, . . . , J}:

yjk for characteristic j ∈ C on establishment k

Tyj =
∑
k∈U

yjk

• Characteristics have different constraints: C = C0 ∪ C1 ∪ C2

• C0: no specified constraints

• C1: specified precision targets

• C2: specified other constraints

• Frame measures of size (MOS) for j ∈ C1 ∪ C2:

xjk ≥ 0, known for all k ∈ U

• Each MOS is nonnegative, xjk ≥ 0, and often highly skewed
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Common problem in NASS surveys

• Frame = list of farms in US state: U = {1, 2, . . . , k , . . . ,N}
• assume complete coverage for purposes of this talk

• Characteristics of interest: C = {crop1, crop2, . . . , cropJ}:

yjk harvested acres of crop j on farm k

Tyj =
∑
k∈U

yjk = total harvested acres of crop j

• Characteristics have different constraints: C = C0 ∪ C1 ∪ C2

• C0: no specified constraints for sunflowers, . . .

• C1: specified precision targets for corn, soybeans, . . . , oats

• C2: specified other constraints for potatoes, sugar beets

• Frame measures of size (MOS) for j ∈ C1 ∪ C2:

xjk ≥ 0, historic acres of crop j on farm k

• Each MOS is nonnegative, xjk ≥ 0, and often highly skewed
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Frame imperfections

• Populations are dynamic and frames are imperfect

• Farms often have multiple crops yjk > 0, which may not align

with frame acres xjk > 0:

Study variable, yjk

Frame variable, xjk yjk = 0 yjk > 0

xjk = 0 true zero false zero

xjk > 0 false positive true positive

• Perfect frame would have only true zeros and true positives
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Sampling design problem

• Draw a probability sample of farms, s ⊂ U, using {πk}k∈U
• Estimate the population characteristics

• Horvitz-Thompson estimators, T̂yj =
∑

k∈s π
−1
k yjk

• Calibrated estimators, T̃yj =
∑

k∈s ωkyjk , using frame totals

T0j as controls

• Determine first-order inclusion probabilities {πk}k∈U with:

• bounds on inclusion probabilities: 0 < δ ≤ πk ≤ 1

• budgetary constraints:
∑

k∈U πk not too big

• no constraints for crops ∈ C0

• precision constraints on crops ∈ C1

• additional constraints (but not precision) for crops ∈ C2
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Single-MOS model-based optimal design, I

• Suppose that heteroskedastic regression through the origin is

a reasonable superpopulation model for characteristic yjk

with measure of size (MOS) xjk :

yjk = βjxjk + σjx
γj
jk εjk , {εjk} uncorrelated(0, 1)

• Further suppose that we will draw a probability sample with

inclusion probabilities {πjk} and use a generalized regression

estimator (GREG) to calibrate the sample to the frame

control, so that

T̃xj =
∑
k∈s

ωkxjk =
∑
k∈U

xjk = T0j
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Single-MOS model-based optimal design, II

• Under the superpopulation model, anticipated variance

(unconditional, with respect to design and model) is

AVj = E

[
E

[(
T̃yj − Tyj

)2 ∣∣∣∣ s]] ≃ ∑
k∈U

(
1

πjk
− 1

)
σ2j x

2γj
jk

• Cassel et al. (1976), Brewer (1979), Isaki and Fuller (1982)

• Anticipated variance is minimized by any fixed-size design

with probability proportional to size (PPS),

πjk =
njσjx

γj
jk∑

k∈U σjx
γj
jk

=
njx

γj
jk∑

k∈U x
γj
jk

• optimal if all πjk ≤ 1

• standard modification if πjk > 1 is to set πjk = 1, exclude unit

k from frame, and recalculate with (nj − 1)
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Single-MOS model-based optimal design, III

• We are minimizing . . .
• an approximation to the anticipated variance of the GREG

• under an assumed mean model reflected by the GREG

• under an assumed heteroskedasticity structure

• Optimal probabilities do not uniquely determine design
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Single-MOS sample size determination

• Plug the optimal {πjk} into AVj and divide by the squared

model expectation of Tyj to obtain

(anticipated coefficient of variation)2:

CV2
j =

σ2j

β2j
(∑

k∈U xjk
)2
 1

nj

(∑
k∈U

x
γj
jk

)2

−
∑
k∈U

x
2γj
jk


=

σ2j
β2j T

2
0j

{
1

nj
T 2
γj − T2γj

}
• Plug in the target CV and solve for nj (j ∈ C1):

nj ≥
T 2
γj

CV2
j

β2
j T

2
0j

σ2
j

+ T2γj

• Now obtain nj using estimates of βj , σj , γj from past surveys
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What to do with multiple measures of size?

• We have J1 = |C1| precision targets {CVj}j∈C1 , plus

additional constraints from C2

• Single-MOS approach leads to J1 sample sizes {nj}j∈C1 and

J1 sets of optimal inclusion probabilities:

πjk =
njx

γj
jk∑

k∈U x
γj
jk

,

(as usual, requires modification if πjk > 1)

• But we need a single set of inclusion probabilities, not

dependent on j
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Options with multiple measures of size: Univariate

• Convert the multiple MOS problem to a single MOS problem

and use univariate methods

• Option 1: Give up! Choose a single “important” MOS

• Option 2: Compromise. Compute a linear combination of
the size measures

• Hagood and Bernert (1945) propose first principal component

• Univariate methods are clearly suboptimal: not considered

further
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Options with multiple measures of size: Stratification

• Multivariate stratification has a long history and is closely
related

• can approximate PPS problem as piecewise constant within

strata, or otherwise adapt stratification methods

• Option 3: Deep stratification. Sort {xjk}k∈U for each j ,
divide into bins, cross all bins to form multi-way strata

• Tepping, Hurwitz, Deming (1943), Kish and Anderson (1978)

• Option 4: Clustering. Form homogeneous clusters using xk

• Skinner, Holmes and Holt (1994) reference several papers

• Stratification leads to multivariate allocation problem

• Friedrich, Münnich, and Rupp (2018) is an excellent review

with extensions
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Options with multiple measures of size: Multiple frame

• Consider J1 frames, Uj = {k ∈ U : xjk > 0}
• Option 5: Multiple frame sampling. Skinner, Holmes and

Holt (1994) draw independent stratified samples and combine

via multiple frame methods

• In our setting, draw independent PPS samples with each set of

{πjk}k∈U , then combine via multiple frame methods:

T ∗
z =

∑
j∈C1

∑
k∈sj

zk∑
j∈C1

πjk
=
∑
k∈U

zk

∑
j∈C1

Ijk∑
j∈C1

πjk

is unbiased for Tz

• Not identical to Horvitz-Thompson estimator (which requires

deduplication across samples)

• Weights 1/(
∑

j∈C1
πjk) may be less than one
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Options with multiple MOS: Combining one-at-a-time

• One-at-a-time optimal probabilities for each MOS: {πjk}k∈U
• rely on parameters of one-at-a-time models: βj , σj , γj

• Combine in some way to address the multiple MOS problem

• Option 6: Average optimal PPS. Bee, Benedetti, Espa,

and Piersimoni (2010) find reasonable performance with

πAVE,k =
∑
j∈C1

(
1

J1

)
πjk
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Options with multiple MOS: Combining one-at-a-time

• One-at-a-time optimal probabilities for each MOS: {πjk}k∈U
• Combine in some way to address the multiple MOS problem

• Option 7: Optimal linear combination. Benedetti,

Andreano, and Piersimoni (2019) use a custom algorithm to

find 0 ≤ ψj ≤ 1 so that

πBAP,k =
∑
j∈C1

ψjπjk

minimize the maximum one-at-a-time sample size nj needed

to attain precision targets
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Options with multiple MOS: Combining one-at-a-time

• One-at-a-time optimal probabilities for each MOS: {πjk}k∈U
• Combine in some way to address the multiple MOS problem

• Option 8: MPPS. Multivariate Probability Proportional to

Size sampling.

πMPPS,k = max
j∈C1

πjk

• Standard method for NASS surveys: Amrhein, Hicks and Kott

(1996); Kott and Bailey (2000)

• Typically, heteroskedasticity parameter is taken to be γj ≡ 0.75

(following a suggestion by Ken Brewer)
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MPPS at NASS

• Common in NASS multipurpose surveys, like Crops APS

(Acreage, Production, and Stocks)

• Simple and fairly effective approach

• Overshoots target sample sizes for all crops:

jth expected sample count =
∑
k∈U

1(xjk > 0)πMPPS,k

=
∑
k∈U

1(xjk > 0)max
i∈C1

πik

≥
∑
k∈U

1(xjk > 0)πjk

= nj

• Can break the (higher MOS, higher probability) link for

smaller crops since the larger crops will dominate
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Possible broken relationship for small crops

• Highest probabilities (due to large crop acreage) for lowest

level of small crop acreage
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Issues with control of the sampling design

• MPPS cannot address side conditions, C2, except by adjusting

sample sizes

• Further complication is that NASS uses MPPS probabilities in

Poisson sampling

• Controlling design therefore requires

• adjusting preliminary expected sample sizes, nj
• (but sample sizes are random due to Poisson sampling and

targets are overshot by MPPS)

• or setting aside C2 cases for special consideration

• Result is lack of control of design, necessitating iteration in

design and selection
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Two paths to improving control of the sampling design

Improve the probabilities

• Revisit models underlying

the methods, updating if

necessary

• Enumerate all C1 ∪ C2

sample constraints and

build them into the

probabilities, if possible

• Is it possible to find the

Optimal Probabilities,

which minimize the

expected sample size for

the given constraints?

Improve the sample selection

• Applies to either MPPS or

Optimal

• Poisson sampling is “least

controlled” selection

strategy for a given set of

probabilities

• Is it feasible to use
Balanced Sampling as
alternative for selection?

• “Most controlled”

selection strategy for a

given set of probabilities
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Two paths to improving control, continued

• Either path can improve sampling team’s control of the

design, and neither path requires the other

• Optimal probabilities could be used for sample selection. . .

• in current Poisson sampling designs

• or in new Balanced sampling designs

• Balanced sampling could use as its inclusion probabilities. . .

• existing MPPS probabilities

• new Optimal probabilities

• The two research questions can be pursued in parallel, with

any improvements implemented either alone or together
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Is it possible to find the optimal probabilities?

• Our approach: skip the intermediate steps of determining

one-at-a-time {πjk}
• Return to anticipated CV2 constraint, without“optimal” πjk :

σ2j
β2j T

2
0j

(∑
k∈U

x
2γj
jk

πk
−
∑
k∈U

x
2γj
jk

)
≤ CV2

j ,

which implies

∑
k∈U

x
2γj
jk

πk
≤
β2j T

2
0j

σ2j
CV2

j + T2γj , j ∈ C1

• Minimize expected sample size,
∑

k∈U πk , subject to CV

constraints and

0 < δ ≤ πk ≤ 1
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Convex optimization with CV constraints

• Solve this problem via convex optimization:

minimize
∑
k∈U

πk

subject to 0 < δ ≤ πk ≤ 1∑
k∈U

x
2γj
jk

πk
≤
β2j T

2
0j

σ2j
CV2

j + T2γj , j ∈ C1

• Can we solve this (large) problem directly, without custom

software or special computing resources?

• We use the R package CVXR (Fu, Narasimhan, and Boyd 2020)
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Convex optimization with CV constraints: CVXR

• Solve this problem via convex optimization using the R

package CVXR (Fu, Narasimhan, and Boyd 2020)

unknowns {πk}k∈U pik <- Variable(N)

minimize
∑

k∈U πk objective <- Minimize(sum(pik))

subject to constraints <- list(

πk ≥ δ > 0 pik >= delta,

πk ≤ 1 pik <= 1,∑
k∈U x

2γj
jk /πk ≤ Bj sum(x[, j]∧(2 * gamma[j])

* inv pos(pik)) <= B[j])

• Here, the known bounds are

Bj =
β2j T

2
0j

σ2j
CV2

j + T2γj , j ∈ C1
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Notes on computation

• Our (limited) experience with problem size:
• no problems with N = O(103), J = O(10)

• memory troubles with N = O(104)

• Break up the problem into G feasible subproblems:

minimize
G∑

g=1

∑
k∈Ug

πk

subject to 0 < δ ≤ πk ≤ 1

G∑
g=1

∑
k∈Ug

x
2γj
jk

πk

 ≤
G∑

g=1

(
β2j T

2
0j

σ2j T2γj
CV2

j + 1

)
T2γj ,g ,

where

T2γj =
G∑

g=1

∑
k∈Ug

x
2γj
jk

 =
G∑

g=1

T2γj ,g
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Notes on computation, continued

• Now solve each of the G feasible subproblems:

minimize
∑
k∈Ug

πk

subject to 0 < δ ≤ πk ≤ 1∑
k∈Ug

x
2γj
jk

πk

 ≤

(
β2j T

2
0j

σ2j T2γj
CV2

j + 1

)∑
k∈Ug

x
2γj
jk


• Partition potentially constrains the solution space

• but does not impose any additional constraint if T2γj,g ̸= 0 for

exactly one g

• constraints are minimal for a random partition with G small,

hence we get a good approximate solution

• (change G or rerandomize and get a very similar solution)
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Additional constraints: Domain sample size targets

• Domain sample size targets based on observed xjk for j ∈ C2:

expected sample count =
∑
k∈U

1(xjk > 0)πk ≥ mj

• see Falorisi and Righi (2015) for multi-domain problem with

known domain indicators

• Domain sample size targets based on predicted yjk for j ∈ C2:∑
k∈U

E [1(yjk > 0) | xk ]πk =
∑
k∈U

ρj(xk)πk ≥ mj

• requires new propensity models ρj(xk) for domain membership

• Either type of constraint is convex in {πk}k∈U
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Optimization with additional constraints

• Solve this problem via convex optimization using the R

package CVXR (Fu, Narasimhan, and Boyd 2020)

unknowns {πk}k∈U pik <- Variable(N)

minimize
∑

k∈U πk objective <- Minimize(sum(pik))

subject to constraints <- list(

πk ≥ δ > 0 pik >= delta,

πk ≤ 1 pik <= 1,∑
k∈U x

2γj
jk /πk ≤ Bj sum(x[, j]∧(2 * gamma[j])

* inv pos(pik)) <= B[j],∑
k∈U 1(xjk > 0)πk ≥ mj sum((x[, j] > 0) * pik)

>= m[j])
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Additional constraints: Domain area targets

• Want the sample to capture a specified proportion of a

domain’s total area

• Domain area targets based on observed xjk for j ∈ C2:

expected sample area

total area
=

∑
k∈U xjkπk∑
k∈U xjk

≥ pj

• Domain area targets based on predicted yjk for j ∈ C2:∑
k∈U E [yjk | xk ]πk∑
k∈U E [yjk | xk ]

=

∑
k∈U αj(xk)πk∑
k∈U αj(xk)

≥ pj

• requires new models αj(xk) for response acreage

• Either type of constraint is convex in {πk}k∈U
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Example of computing optimal probabilities

• Frame acres for N = 23, 528 farms in one US state (2017

Census of Agriculture):

xk =
[
(xjk)j∈C1

, (xjk)j∈C2

]⊤
• Specific precision targets for J1 = 6 crops:

C1 = {barley, corn, dry beans, oats, soybeans, spring wheat}

• Sample size and acreage coverage targets:

C2 = {potatoes, sugar beets}

• Partition into subproblems for optimization:

U = {any small crop} ∪ (∪g{only corn or soybeans})
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Optimal probabilities versus MPPS probabilities

• Probabilities are highly correlated but far from identical
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Optimal probabilities versus MPPS probabilities

• Satisfying C2 potato sample size constraint
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Optimal probabilities versus MPPS probabilities

• Large farms are less dominant in Optimal than MPPS
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Simulation of a farm population

• Simulate a population starting with frame acres, {xk}k∈U for

N = 23, 528 farms from 2017 Census of Agriculture

• Simulation steps:

• given number of frame crops, simulate number of crops

• given number of crops, simulate crop types

• given crop types, simulate crop acreages

• Iterate over time to simulate population dynamics
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Given frame number of crops, simulate number of crops

• For farm k , use its number of frame crops fk (with nonzero

frame acres) to simulate its number of actual crops, ck

• Use conditional probability distributions, P [ck = j | fk = i ],

estimated from 2019 Crops APS (Acreage, Production, and

Stocks) survey data:

Number of Number of crops, ck

frame crops, fk 0 1 2 3 4

0 0.823 0.150 0.025 0.001 0.001

1 0.221 0.691 0.081 0.006 0.001
...

...
...

...
...

...

5+ 0.046 0.000 0.318 0.590 0.046

37/50



Given the number of crops, simulate crop types

If ck satisfies. . . then . . .

ck = 0 no crop types to simulate

ck > fk = 0 draw from population distribution of crop types

fk ≥ ck > 0 draw from frame crop types for farm k

ck > fk > 0 any crop type is possible, frame crops more likely

• True zeros, false zeros, true positives, and false positives are

all possible

• Simulation parameters are tuned to match the rates seen in

real data
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Given the crop types, simulate survey acres for each crop

• On the frame, we have total cropland acres Ak for farm k

• We have now selected ck random crops, where crop selection
probabilities are

• linearly related to crop-specific frame acres (if non-zero)

• or linearly related to total frame acres (if crop-specific frame

acres are zero)

• Idea: Break Ak at random into ck + 1 pieces

• if ck = 0, then all cropland acres are assigned to “remainder”

= uninteresting non-crop uses

• if ck > 0, assign a small, random fraction of Ak to remainder

and distribute the rest in proportion to crop selection

probabilities
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Features of the simulated population

• Works for any number/types of crops: not specific to the

crops in the selected state

• Realistic variation in crop numbers and crop types

• Realistic rates of true zeros, false zeros, true positives, and

false positives

• Steps can be iterated to simulate population dynamics:

Frame Variables Study Variables

x (0)
k −→ y (0)

k

set y (0)
k = x (1)

k −→ y (1)
k

set y (1)
k = x (2)

k −→ y (2)
k

...
...

40/50



Simulated population for census +2 years

• Realistic heteroskedastic linear relationships with frame acres,

without ever introducing heteroskedastic linear models
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Monte Carlo experiment

• Simulate three years of (frame, population) data

• fit models to year 0 “census” data

• draw repeated samples from (fixed) year 2 population

• Inclusion probabilities: {πMPPS,k}k∈U or {πOPT ,k}k∈U
• real C1 precision constraints

• realistic C2 additional constraints

• Sample selection: Poisson sampling or Balanced sampling

• Estimation method: Uncalibrated or Calibrated

• raking via calibrate function from R survey (Lumley 2004)

• For each combination of experimental factors, draw 1,000
replicate samples from fixed population

• compute estimates for each frame crop and each survey crop

• evaluate bias and variance of each strategy
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Monte Carlo experiment: Balancing details

• Balanced sampling via cube algorithm

• (Deville and Tillé, 2004)

• using samplecube method from sampling package (Tillé and

Matei, 2021)

• Both MPPS and Optimal are balanced on C1 conditions:∑
k∈s

1

πk
xjk ≃

∑
k∈U

xjk

• Optimal could be (but isn’t) balanced on C2 conditions:∑
k∈s

1

πOPT ,k
{1(xjk > 0)πOPT ,k} ≃

∑
k∈U

{1(xjk > 0)πOPT ,k} = mj

∑
k∈s

1

πOPT ,k
(xjkπOPT ,k) ≃

∑
k∈U

(xjkπOPT ,k) = pj
∑
k∈U

xjk
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Monte Carlo experiment: Sample size details

• We used the following C2 conditions:

potatoes:
∑
k∈U

1(xjk > 0)πk ≥ 80

sugar beets:
∑
k∈U

xjkπk ≥ 0.5
∑
k∈U

xjk

• These lead to higher expected sample sizes for Optimal than

MPPS (which cannot incorporate C2)

• To make comparisons easier, we increased MPPS expected

sample size to more closely match Optimal sample size:∑
k∈U

πMPPS,k = 2345 >
∑
k∈U

πOPT ,k = 2333
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Monte Carlo results

• Estimators are unbiased for population targets

• Balancing works to greatly reduce variation of sample size

• Balancing and/or calibrating works as expected for frame

variables x

• Results vary for study variables, depending on quality of

model relating y to x

• Evaluate via Monte Carlo relative efficiency

(relative efficiency) =
Var(MPPS Poisson Raked)

Var(Competitor)
,

with values greater than one favoring the competitor
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Var(MPPS Poisson Raked) / Var(Competitor)

• MPPS (blue) and Optimal (pink), Poisson (dashed line) or

Balanced (solid line), Unraked (◦) or Raked (×)

46/50



Discussion

• Feasible to solve for optimal probabilities

• in a problem with realistic size and constraints

• without custom software

• without specialized computing resources

• Optimal design with balance dominates existing NASS
methodology in limited simulation experiments

• fair comparison is tricky: without C2 conditions, Optimal has

lower expected sample size than MPPS

• Other models can be considered

• Other features (costs, response propensities, etc.) can be

incorporated in constraints

• Thank you for your attention!
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