Model-Based Optimal Designs for a Multipurpose Farm Survey

Jay Breidt

IASS Webinar
April 24, 2024

Joint work with Ben Reist and Ruochen Ma
(NORC), and Lu Chen (NISS/NASS), with thanks to other NORC and NASS colleagues

Ongoing collaboration to improve survey methods

- Abreu, Denise
- Benecha, Habtamu
- Black, Alison
- Boim, Jason (NORC)
- Broz, Terry
- Cheng, Yang
- Dau, Andrew
- Drunasky, Lindsay
- Duan, Franklin
- Emmet, Robert
- Gerling, Michael
- Gibson, Fleming
- Herbek, Greg
- Keller, Tim
- Murphy, Tara
- Olbert, Everett
- Robinson, Tina
- Russell, Charles
- Sarkar, Bayazid
- Sartore, Luca
- Scherrer, Cathryn
- Smith, Holly
- Smith, Leslie
- Vance, Wendy
- Wing, Taylor (NORC)
- Zhang, Ruiyi

National Agricultural Statistics Service (NASS)

- One of 13 principal statistical agencies in the decentralized US federal statistical system
- NASS is the survey and estimation arm of the US Department of Agriculture
- conducts Census of Ag every five years
- fields hundreds of surveys each year
- compiles extensive administrative data
- covers nearly every aspect of US agriculture

Common problem in establishment surveys

- Frame $=$ list of establishments: $U=\{1,2, \ldots, k, \ldots, N\}$
- assume complete coverage for purposes of this talk
- Characteristics of interest: $C=\{1,2, \ldots, J\}$:

$$
\begin{aligned}
& y_{j k} \quad \text { for characteristic } j \in C \text { on establishment } k \\
& T_{y j}=\sum_{k \in U} y_{j k}
\end{aligned}
$$

- Characteristics have different constraints: $C=C_{0} \cup C_{1} \cup C_{2}$
- C_{0} : no specified constraints
- C_{1} : specified precision targets
- C_{2} : specified other constraints
- Frame measures of size (MOS) for $j \in C_{1} \cup C_{2}$:

$$
x_{j k} \geq 0, \quad \text { known for all } k \in U
$$

- Each MOS is nonnegative, $x_{j k} \geq 0$, and often highly skewed

Common problem in NASS surveys

- Frame $=$ list of farms in US state: $U=\{1,2, \ldots, k, \ldots, N\}$
- assume complete coverage for purposes of this talk
- Characteristics of interest: $C=\left\{\mathrm{crop}_{1}, \mathrm{crop}_{2}, \ldots, \mathrm{crop}_{J}\right\}$:

$$
\begin{aligned}
& y_{j k} \quad \text { harvested acres of crop } j \text { on farm } k \\
& T_{y j}=\sum_{k \in U} y_{j k}=\text { total harvested acres of crop } j
\end{aligned}
$$

- Characteristics have different constraints: $C=C_{0} \cup C_{1} \cup C_{2}$
- C_{0} : no specified constraints for sunflowers, ...
- C_{1} : specified precision targets for corn, soybeans, ..., oats
- C_{2} : specified other constraints for potatoes, sugar beets
- Frame measures of size (MOS) for $j \in C_{1} \cup C_{2}$:
$x_{j k} \geq 0, \quad$ historic acres of crop j on farm k
- Each MOS is nonnegative, $x_{j k} \geq 0$, and often highly skewed

Frame imperfections

- Populations are dynamic and frames are imperfect
- Farms often have multiple crops $y_{j k}>0$, which may not align with frame acres $x_{j k}>0$:

	Study variable, $\boldsymbol{y}_{\boldsymbol{j k}}$	
Frame variable, $\boldsymbol{x}_{\boldsymbol{j} k}$	$y_{j k}=0$	$y_{j k}>0$
$x_{j k}=0$	true zero	false zero
$x_{j k}>0$	false positive	true positive

- Perfect frame would have only true zeros and true positives

Sampling design problem

- Draw a probability sample of farms, $s \subset U$, using $\left\{\pi_{k}\right\}_{k \in U}$
- Estimate the population characteristics
- Horvitz-Thompson estimators, $\hat{T}_{y j}=\sum_{k \in s} \pi_{k}^{-1} y_{j k}$
- Calibrated estimators, $\widetilde{T}_{y j}=\sum_{k \in s} \omega_{k} y_{j k}$, using frame totals $T_{0 j}$ as controls
- Determine first-order inclusion probabilities $\left\{\pi_{k}\right\}_{k \in U}$ with:
- bounds on inclusion probabilities: $0<\delta \leq \pi_{k} \leq 1$
- budgetary constraints: $\sum_{k \in U} \pi_{k}$ not too big
- no constraints for crops $\in C_{0}$
- precision constraints on crops $\in C_{1}$
- additional constraints (but not precision) for crops $\in C_{2}$

Single-MOS model-based optimal design, I

- Suppose that heteroskedastic regression through the origin is a reasonable superpopulation model for characteristic $y_{j k}$ with measure of size (MOS) $x_{j k}$:

$$
y_{j k}=\beta_{j} x_{j k}+\sigma_{j} x_{j k}^{\gamma_{j}} \varepsilon_{j k}, \quad\left\{\varepsilon_{j k}\right\} \text { uncorrelated }(0,1)
$$

- Further suppose that we will draw a probability sample with inclusion probabilities $\left\{\pi_{j k}\right\}$ and use a generalized regression estimator (GREG) to calibrate the sample to the frame control, so that

$$
\widetilde{T}_{x j}=\sum_{k \in s} \omega_{k} x_{j k}=\sum_{k \in U} x_{j k}=T_{0 j}
$$

Single-MOS model-based optimal design, II

- Under the superpopulation model, anticipated variance (unconditional, with respect to design and model) is

$$
\mathrm{AV}_{j}=\mathrm{E}\left[\mathrm{E}\left[\left(\widetilde{T}_{y j}-T_{y j}\right)^{2} \mid s\right]\right] \simeq \sum_{k \in U}\left(\frac{1}{\pi_{j k}}-1\right) \sigma_{j}^{2} x_{j k}^{2 \gamma_{j}}
$$

- Cassel et al. (1976), Brewer (1979), Isaki and Fuller (1982)
- Anticipated variance is minimized by any fixed-size design with probability proportional to size (PPS),

$$
\pi_{j k}=\frac{n_{j} \sigma_{j} x_{j k}^{\gamma_{j}}}{\sum_{k \in U} \sigma_{j} x_{j k}^{\gamma_{j}}}=\frac{n_{j} x_{j k}^{\gamma_{j}}}{\sum_{k \in U} x_{j k}^{\gamma_{j}}}
$$

- optimal if all $\pi_{j k} \leq 1$
- standard modification if $\pi_{j k}>1$ is to set $\pi_{j k}=1$, exclude unit k from frame, and recalculate with $\left(n_{j}-1\right)$

Single-MOS model-based optimal design, III

- We are minimizing ...
- an approximation to the anticipated variance of the GREG
- under an assumed mean model reflected by the GREG
- under an assumed heteroskedasticity structure
- Optimal probabilities do not uniquely determine design

Single-MOS sample size determination

- Plug the optimal $\left\{\pi_{j k}\right\}$ into AV_{j} and divide by the squared model expectation of $T_{y j}$ to obtain (anticipated coefficient of variation) ${ }^{2}$:

$$
\begin{aligned}
\mathrm{CV}_{j}^{2} & =\frac{\sigma_{j}^{2}}{\beta_{j}^{2}\left(\sum_{k \in U} x_{j k}\right)^{2}}\left\{\frac{1}{n_{j}}\left(\sum_{k \in U} x_{j k}^{\gamma_{j}}\right)^{2}-\sum_{k \in U} x_{j k}^{2 \gamma_{j}}\right\} \\
& =\frac{\sigma_{j}^{2}}{\beta_{j}^{2} T_{0 j}^{2}}\left\{\frac{1}{n_{j}} T_{\gamma j}^{2}-T_{2 \gamma j}\right\}
\end{aligned}
$$

- Plug in the target CV and solve for $n_{j}\left(j \in C_{1}\right)$:

$$
n_{j} \geq \frac{T_{\gamma j}^{2}}{\mathrm{CV}_{j}^{2} \frac{\beta_{j}^{2} T_{0 j}^{2}}{\sigma_{j}^{2}}+T_{2 \gamma j}}
$$

- Now obtain n_{j} using estimates of $\beta_{j}, \sigma_{j}, \gamma_{j}$ from past surveys

What to do with multiple measures of size?

- We have $J_{1}=\left|C_{1}\right|$ precision targets $\left\{\mathrm{CV}_{j}\right\}_{j \in C_{1}}$, plus additional constraints from C_{2}
- Single-MOS approach leads to J_{1} sample sizes $\left\{n_{j}\right\}_{j \in C_{1}}$ and J_{1} sets of optimal inclusion probabilities:

$$
\pi_{j k}=\frac{n_{j} x_{j k}^{\gamma_{j}}}{\sum_{k \in U} x_{j k}^{\gamma_{j}^{\prime}}},
$$

(as usual, requires modification if $\pi_{j k}>1$)

- But we need a single set of inclusion probabilities, not dependent on j

Options with multiple measures of size: Univariate

- Convert the multiple MOS problem to a single MOS problem and use univariate methods
- Option 1: Give up! Choose a single "important" MOS
- Option 2: Compromise. Compute a linear combination of the size measures
- Hagood and Bernert (1945) propose first principal component
- Univariate methods are clearly suboptimal: not considered further

Options with multiple measures of size: Stratification

- Multivariate stratification has a long history and is closely related
- can approximate PPS problem as piecewise constant within strata, or otherwise adapt stratification methods
- Option 3: Deep stratification. Sort $\left\{x_{j k}\right\}_{k \in U}$ for each j, divide into bins, cross all bins to form multi-way strata
- Tepping, Hurwitz, Deming (1943), Kish and Anderson (1978)
- Option 4: Clustering. Form homogeneous clusters using \boldsymbol{x}_{k}
- Skinner, Holmes and Holt (1994) reference several papers
- Stratification leads to multivariate allocation problem
- Friedrich, Münnich, and Rupp (2018) is an excellent review with extensions

Options with multiple measures of size: Multiple frame

- Consider J_{1} frames, $U_{j}=\left\{k \in U: x_{j k}>0\right\}$
- Option 5: Multiple frame sampling. Skinner, Holmes and Holt (1994) draw independent stratified samples and combine via multiple frame methods
- In our setting, draw independent PPS samples with each set of $\left\{\pi_{j k}\right\}_{k \in U}$, then combine via multiple frame methods:

$$
T_{z}^{*}=\sum_{j \in C_{1}} \sum_{k \in s_{j}} \frac{z_{k}}{\sum_{j \in C_{1}} \pi_{j k}}=\sum_{k \in U} z_{k} \frac{\sum_{j \in C_{1}} l_{j k}}{\sum_{j \in C_{1}} \pi_{j k}}
$$

is unbiased for T_{z}

- Not identical to Horvitz-Thompson estimator (which requires deduplication across samples)
- Weights $1 /\left(\sum_{j \in C_{1}} \pi_{j k}\right)$ may be less than one

Options with multiple MOS: Combining one-at-a-time

- One-at-a-time optimal probabilities for each MOS: $\left\{\pi_{j k}\right\}_{k \in U}$
- rely on parameters of one-at-a-time models: $\beta_{j}, \sigma_{j}, \gamma_{j}$
- Combine in some way to address the multiple MOS problem
- Option 6: Average optimal PPS. Bee, Benedetti, Espa, and Piersimoni (2010) find reasonable performance with

$$
\pi_{A V E, k}=\sum_{j \in C_{1}}\left(\frac{1}{J_{1}}\right) \pi_{j k}
$$

Options with multiple MOS: Combining one-at-a-time

- One-at-a-time optimal probabilities for each MOS: $\left\{\pi_{j k}\right\}_{k \in U}$
- Combine in some way to address the multiple MOS problem
- Option 7: Optimal linear combination. Benedetti, Andreano, and Piersimoni (2019) use a custom algorithm to find $0 \leq \psi_{j} \leq 1$ so that

$$
\pi_{B A P, k}=\sum_{j \in C_{1}} \psi_{j} \pi_{j k}
$$

minimize the maximum one-at-a-time sample size n_{j} needed to attain precision targets

Options with multiple MOS: Combining one-at-a-time

- One-at-a-time optimal probabilities for each MOS: $\left\{\pi_{j k}\right\}_{k \in U}$
- Combine in some way to address the multiple MOS problem
- Option 8: MPPS. Multivariate Probability Proportional to Size sampling.

$$
\pi_{M P P S, k}=\max _{j \in C_{1}} \pi_{j k}
$$

- Standard method for NASS surveys: Amrhein, Hicks and Kott (1996); Kott and Bailey (2000)
- Typically, heteroskedasticity parameter is taken to be $\gamma_{j} \equiv 0.75$ (following a suggestion by Ken Brewer)

MPPS at NASS

- Common in NASS multipurpose surveys, like Crops APS (Acreage, Production, and Stocks)
- Simple and fairly effective approach
- Overshoots target sample sizes for all crops:

$$
\begin{aligned}
j \text { th expected sample count } & =\sum_{k \in U} 1\left(x_{j k}>0\right) \pi_{M P P S}, k \\
& =\sum_{k \in U} 1\left(x_{j k}>0\right) \max _{i \in C_{1}} \pi_{i k} \\
& \geq \sum_{k \in U} 1\left(x_{j k}>0\right) \pi_{j k} \\
& =n_{j}
\end{aligned}
$$

- Can break the (higher MOS, higher probability) link for smaller crops since the larger crops will dominate

Possible broken relationship for small crops

- Highest probabilities (due to large crop acreage) for lowest level of small crop acreage

Large Crop Acreage

Issues with control of the sampling design

- MPPS cannot address side conditions, C_{2}, except by adjusting sample sizes
- Further complication is that NASS uses MPPS probabilities in Poisson sampling
- Controlling design therefore requires
- adjusting preliminary expected sample sizes, n_{j}
- (but sample sizes are random due to Poisson sampling and targets are overshot by MPPS)
- or setting aside C_{2} cases for special consideration
- Result is lack of control of design, necessitating iteration in design and selection

Two paths to improving control of the sampling design

Improve the probabilities

- Revisit models underlying the methods, updating if necessary
- Enumerate all $C_{1} \cup C_{2}$
sample constraints and build them into the probabilities, if possible
- Is it possible to find the Optimal Probabilities, which minimize the expected sample size for the given constraints?

Improve the sample selection

- Applies to either MPPS or Optimal
- Poisson sampling is "least controlled" selection strategy for a given set of probabilities
- Is it feasible to use Balanced Sampling as alternative for selection?
- "Most controlled" selection strategy for a given set of probabilities

Two paths to improving control, continued

- Either path can improve sampling team's control of the design, and neither path requires the other
- Optimal probabilities could be used for sample selection...
- in current Poisson sampling designs
- or in new Balanced sampling designs
- Balanced sampling could use as its inclusion probabilities...
- existing MPPS probabilities
- new Optimal probabilities
- The two research questions can be pursued in parallel, with any improvements implemented either alone or together

Is it possible to find the optimal probabilities?

- Our approach: skip the intermediate steps of determining one-at-a-time $\left\{\pi_{j k}\right\}$
- Return to anticipated CV^{2} constraint, without "optimal" $\pi_{j k}$:

$$
\frac{\sigma_{j}^{2}}{\beta_{j}^{2} T_{0 j}^{2}}\left(\sum_{k \in U} \frac{x_{j k}^{2 \gamma_{j}}}{\pi_{k}}-\sum_{k \in U} x_{j k}^{2 \gamma_{j}}\right) \leq \mathrm{CV}_{j}^{2}
$$

which implies

$$
\sum_{k \in U} \frac{x_{j k}^{2 \gamma_{j}}}{\pi_{k}} \leq \frac{\beta_{j}^{2} T_{0 j}^{2}}{\sigma_{j}^{2}} \mathrm{CV}_{j}^{2}+T_{2 \gamma j}, \quad j \in C_{1}
$$

- Minimize expected sample size, $\sum_{k \in U} \pi_{k}$, subject to CV constraints and

$$
0<\delta \leq \pi_{k} \leq 1
$$

Convex optimization with CV constraints

- Solve this problem via convex optimization:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{k \in U} \pi_{k} \\
\text { subject to } & 0<\delta \leq \pi_{k} \leq 1 \\
& \sum_{k \in U} \frac{x_{j k}^{2 \gamma_{j}}}{\pi_{k}} \leq \frac{\beta_{j}^{2} T_{0 j}^{2}}{\sigma_{j}^{2}} \mathrm{CV}_{j}^{2}+T_{2 \gamma j}, \quad j \in C_{1}
\end{aligned}
$$

- Can we solve this (large) problem directly, without custom software or special computing resources?
- We use the R package CVXR (Fu, Narasimhan, and Boyd 2020)

Convex optimization with CV constraints: CVXR

- Solve this problem via convex optimization using the R package CVXR (Fu, Narasimhan, and Boyd 2020)

unknowns $\left\{\pi_{k}\right\}_{k \in U}$	pik <- Variable (N)
minimize $\sum_{k \in U} \pi_{k}$	objective <- Minimize (sum(pik))
subject to	constraints <- list(
$\pi_{k} \geq \delta>0$	pik $>=$ delta,
$\pi_{k} \leq 1$	pik <=1,
$\sum_{k \in U} x_{j k}^{2 \gamma_{j}} / \pi_{k} \leq B_{j}$	sum (x[, j]^(2 * gamma $[j])$
	$*$ inv_pos (pik)) <= B[j])

- Here, the known bounds are

$$
B_{j}=\frac{\beta_{j}^{2} T_{0 j}^{2}}{\sigma_{j}^{2}} \mathrm{CV}_{j}^{2}+T_{2 \gamma j}, \quad j \in C_{1}
$$

Notes on computation

- Our (limited) experience with problem size:
- no problems with $N=O\left(10^{3}\right), J=O(10)$
- memory troubles with $N=O\left(10^{4}\right)$
- Break up the problem into G feasible subproblems:

$$
\begin{aligned}
\text { minimize } & \sum_{g=1}^{G} \sum_{k \in U_{g}} \pi_{k} \\
\text { subject to } & 0<\delta \leq \pi_{k} \leq 1 \\
\sum_{g=1}^{G}\left(\sum_{k \in U_{g}} \frac{x_{j k}^{2 \gamma_{j}}}{\pi_{k}}\right) \leq & \sum_{g=1}^{G}\left(\frac{\beta_{j}^{2} T_{0 j}^{2}}{\sigma_{j}^{2} T_{2 \gamma j}} C V_{j}^{2}+1\right) T_{2 \gamma j, g},
\end{aligned}
$$

where

$$
T_{2 \gamma j}=\sum_{g=1}^{G}\left(\sum_{k \in U_{g}} x_{j k}^{2 \gamma_{j}}\right)=\sum_{g=1}^{G} T_{2 \gamma j, g}
$$

Notes on computation, continued

- Now solve each of the G feasible subproblems:

$$
\begin{aligned}
\text { minimize } & \sum_{k \in U_{g}} \pi_{k} \\
\text { subject to } & 0<\delta \leq \pi_{k} \leq 1 \\
\left(\sum_{k \in U_{g}} \frac{x_{j k}^{2 \gamma_{j}}}{\pi_{k}}\right) \leq & \left(\frac{\beta_{j}^{2} T_{0 j}^{2}}{\sigma_{j}^{2} T_{2 \gamma j}} \mathrm{CV} V_{j}^{2}+1\right)\left(\sum_{k \in U_{g}} x_{j k}^{2 \gamma_{j}}\right)
\end{aligned}
$$

- Partition potentially constrains the solution space
- but does not impose any additional constraint if $T_{2 \gamma j, g} \neq 0$ for exactly one g
- constraints are minimal for a random partition with G small, hence we get a good approximate solution
- (change G or rerandomize and get a very similar solution)

Additional constraints: Domain sample size targets

- Domain sample size targets based on observed $x_{j k}$ for $j \in C_{2}$:

$$
\text { expected sample count }=\sum_{k \in U} 1\left(x_{j k}>0\right) \pi_{k} \geq m_{j}
$$

- see Falorisi and Righi (2015) for multi-domain problem with known domain indicators
- Domain sample size targets based on predicted $\boldsymbol{y}_{\boldsymbol{j} \boldsymbol{k}}$ for $\boldsymbol{j} \in C_{2}$:

$$
\sum_{k \in U} \mathrm{E}\left[\mathbf{1}\left(y_{j k}>0\right) \mid \boldsymbol{x}_{k}\right] \pi_{k}=\sum_{k \in U} \rho_{j}\left(\boldsymbol{x}_{k}\right) \pi_{k} \geq m_{j}
$$

- requires new propensity models $\rho_{j}\left(\boldsymbol{x}_{k}\right)$ for domain membership
- Either type of constraint is convex in $\left\{\pi_{k}\right\}_{k \in U}$

Optimization with additional constraints

- Solve this problem via convex optimization using the R package CVXR (Fu, Narasimhan, and Boyd 2020)

unknowns $\left\{\pi_{k}\right\}_{k \in U}$	pik <- Variable (N)
minimize $\sum_{k \in U} \pi_{k}$	objective <- Minimize (sum(pik))
subject to	constraints <- list(
$\pi_{k} \geq \delta>0$	pik >= delta,
$\pi_{k} \leq 1$	pik <= 1,
$\sum_{k \in U} x_{j k}^{2 \gamma_{j}} / \pi_{k} \leq B_{j}$	sum $(x[, j] \wedge(2 * \operatorname{gamma}[j])$
$\sum_{k \in U} \mathbf{1}\left(x_{j k}>0\right) \pi_{k} \geq m_{j}$	$* \operatorname{sum}((x[, j]>0) *$ pik)
	$>=m[j])$

Additional constraints: Domain area targets

- Want the sample to capture a specified proportion of a domain's total area
- Domain area targets based on observed $x_{j k}$ for $j \in C_{2}$:

$$
\frac{\text { expected sample area }}{\text { total area }}=\frac{\sum_{k \in U} x_{j k} \pi_{k}}{\sum_{k \in U} x_{j k}} \geq p_{j}
$$

- Domain area targets based on predicted $y_{j k}$ for $j \in C_{2}$:

$$
\frac{\sum_{k \in U} \mathrm{E}\left[y_{j k} \mid \boldsymbol{x}_{k}\right] \pi_{k}}{\sum_{k \in U} \mathrm{E}\left[y_{j k} \mid \boldsymbol{x}_{k}\right]}=\frac{\sum_{k \in U} \alpha_{j}\left(\boldsymbol{x}_{k}\right) \pi_{k}}{\sum_{k \in U} \alpha_{j}\left(\boldsymbol{x}_{k}\right)} \geq p_{j}
$$

- requires new models $\alpha_{j}\left(\boldsymbol{x}_{k}\right)$ for response acreage
- Either type of constraint is convex in $\left\{\pi_{k}\right\}_{k \in U}$

Example of computing optimal probabilities

- Frame acres for $N=23,528$ farms in one US state (2017

Census of Agriculture):

$$
\boldsymbol{x}_{k}=\left[\left(x_{j k}\right)_{j \in C_{1}},\left(x_{j k}\right)_{j \in C_{2}}\right]^{\top}
$$

- Specific precision targets for $J_{1}=6$ crops:
$C_{1}=\{$ barley, corn, dry beans, oats, soybeans, spring wheat $\}$
- Sample size and acreage coverage targets:

$$
C_{2}=\{\text { potatoes, sugar beets }\}
$$

- Partition into subproblems for optimization:

$$
U=\{\text { any small crop }\} \cup\left(\cup_{g}\{\text { only corn or soybeans }\}\right)
$$

Optimal probabilities versus MPPS probabilities

- Probabilities are highly correlated but far from identical

Optimal probabilities versus MPPS probabilities

- Satisfying C_{2} potato sample size constraint

Optimal probabilities versus MPPS probabilities

- Large farms are less dominant in Optimal than MPPS

Simulation of a farm population

- Simulate a population starting with frame acres, $\left\{\boldsymbol{x}_{k}\right\}_{k \in U}$ for $N=23,528$ farms from 2017 Census of Agriculture
- Simulation steps:
- given number of frame crops, simulate number of crops
- given number of crops, simulate crop types
- given crop types, simulate crop acreages
- Iterate over time to simulate population dynamics

Given frame number of crops, simulate number of crops

- For farm k, use its number of frame crops f_{k} (with nonzero frame acres) to simulate its number of actual crops, c_{k}
- Use conditional probability distributions, $\mathrm{P}\left[c_{k}=j \mid f_{k}=i\right]$, estimated from 2019 Crops APS (Acreage, Production, and Stocks) survey data:

Number of	Number of crops, c_{k}				
frame crops, f_{k}	0	1	2	3	4
0	0.823	0.150	0.025	0.001	0.001
1	0.221	0.691	0.081	0.006	0.001
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$5+$	0.046	0.000	0.318	0.590	0.046

Given the number of crops, simulate crop types

If c_{k} satisfies. .	then \ldots
$c_{k}=0$	no crop types to simulate
$c_{k}>f_{k}=0$	draw from population distribution of crop types
$f_{k} \geq c_{k}>0$	draw from frame crop types for farm k
$c_{k}>f_{k}>0$	any crop type is possible, frame crops more likely

- True zeros, false zeros, true positives, and false positives are all possible
- Simulation parameters are tuned to match the rates seen in real data
- On the frame, we have total cropland acres A_{k} for farm k
- We have now selected c_{k} random crops, where crop selection probabilities are
- linearly related to crop-specific frame acres (if non-zero)
- or linearly related to total frame acres (if crop-specific frame acres are zero)
- Idea: Break A_{k} at random into $c_{k}+1$ pieces
- if $c_{k}=0$, then all cropland acres are assigned to "remainder"
$=$ uninteresting non-crop uses
- if $c_{k}>0$, assign a small, random fraction of A_{k} to remainder and distribute the rest in proportion to crop selection probabilities

Features of the simulated population

- Works for any number/types of crops: not specific to the crops in the selected state
- Realistic variation in crop numbers and crop types
- Realistic rates of true zeros, false zeros, true positives, and false positives
- Steps can be iterated to simulate population dynamics:

Frame Variables	
Study Variables	
$\boldsymbol{x}_{k}^{(0)}$	$\longrightarrow \boldsymbol{y}_{k}^{(0)}$
set $\boldsymbol{y}_{k}^{(0)}=\boldsymbol{x}_{k}^{(1)}$	$\longrightarrow \boldsymbol{y}_{k}^{(1)}$
set $\boldsymbol{y}_{k}^{(1)}=\boldsymbol{x}_{k}^{(2)}$	$\longrightarrow \boldsymbol{y}_{k}^{(2)}$

Simulated population for census +2 years

- Realistic heteroskedastic linear relationships with frame acres, without ever introducing heteroskedastic linear models

Simulated Survey response vs. Frame data

Monte Carlo experiment

- Simulate three years of (frame, population) data
- fit models to year 0 "census" data
- draw repeated samples from (fixed) year 2 population
- Inclusion probabilities: $\left\{\pi_{\text {MPPS }, k}\right\}_{k \in U}$ or $\left\{\pi_{\text {OPT }, k}\right\}_{k \in U}$
- real C_{1} precision constraints
- realistic C_{2} additional constraints
- Sample selection: Poisson sampling or Balanced sampling
- Estimation method: Uncalibrated or Calibrated
- raking via calibrate function from R survey (Lumley 2004)
- For each combination of experimental factors, draw 1,000 replicate samples from fixed population
- compute estimates for each frame crop and each survey crop
- evaluate bias and variance of each strategy

Monte Carlo experiment: Balancing details

- Balanced sampling via cube algorithm
- (Deville and Tillé, 2004)
- using samplecube method from sampling package (Tillé and Matei, 2021)
- Both MPPS and Optimal are balanced on C_{1} conditions:

$$
\sum_{k \in s} \frac{1}{\pi_{k}} x_{j k} \simeq \sum_{k \in U} x_{j k}
$$

- Optimal could be (but isn't) balanced on C_{2} conditions:

$$
\begin{aligned}
\sum_{k \in s} \frac{1}{\pi_{O P T, k}}\left\{\mathbf{1}\left(x_{j k}>0\right) \pi_{O P T, k}\right\} & \simeq \sum_{k \in U}\left\{\mathbf{1}\left(x_{j k}>0\right) \pi_{O P T, k}\right\}=m_{j} \\
\sum_{k \in s} \frac{1}{\pi_{O P T, k}}\left(x_{j k} \pi_{O P T, k}\right) & \simeq \sum_{k \in U}\left(x_{j k} \pi_{O P T, k}\right)=p_{j} \sum_{k \in U} x_{j k}
\end{aligned}
$$

Monte Carlo experiment: Sample size details

- We used the following C_{2} conditions:

$$
\begin{aligned}
\text { potatoes: } & \sum_{k \in U} 1\left(x_{j k}>0\right) \pi_{k} \geq 80 \\
\text { sugar beets: } & \sum_{k \in U} x_{j k} \pi_{k} \geq 0.5 \sum_{k \in U} x_{j k}
\end{aligned}
$$

- These lead to higher expected sample sizes for Optimal than MPPS (which cannot incorporate C_{2})
- To make comparisons easier, we increased MPPS expected sample size to more closely match Optimal sample size:

$$
\sum_{k \in U} \pi_{M P P S, k}=2345>\sum_{k \in U} \pi_{O P T, k}=2333
$$

Monte Carlo results

- Estimators are unbiased for population targets
- Balancing works to greatly reduce variation of sample size
- Balancing and/or calibrating works as expected for frame variables \boldsymbol{x}
- Results vary for study variables, depending on quality of model relating \boldsymbol{y} to \boldsymbol{x}
- Evaluate via Monte Carlo relative efficiency

$$
(\text { relative efficiency })=\frac{\operatorname{Var}(\text { MPPS Poisson Raked })}{\operatorname{Var}(\text { Competitor })}
$$

with values greater than one favoring the competitor

Var(MPPS Poisson Raked) / Var(Competitor)

- MPPS (blue) and Optimal (pink), Poisson (dashed line) or Balanced (solid line), Unraked (○) or Raked (\times)

- Feasible to solve for optimal probabilities
- in a problem with realistic size and constraints
- without custom software
- without specialized computing resources
- Optimal design with balance dominates existing NASS methodology in limited simulation experiments
- fair comparison is tricky: without C_{2} conditions, Optimal has lower expected sample size than MPPS
- Other models can be considered
- Other features (costs, response propensities, etc.) can be incorporated in constraints
- Thank you for your attention!

Selected references, I

- Amrhein, J., Hicks, S., \& Kott, P. (1996). Methods to control selection when sampling from multiple list frames. In ASA Proceedings of the Section on Survey Research Methods.
- Bee, M., Benedetti, R., Espa, G., \& Piersimoni, F. (2010). On the use of auxiliary variables in agricultural survey design. Agricultural Survey Methods, 107-132.
- Benedetti, R., Andreano, M. S., \& Piersimoni, F. (2019). Sample selection when a multivariate set of size measures is available. Statistical Methods \& Applications, 28(1), 1-25.
- Brewer, K. (1979). A class of robust sampling designs for large-scale surveys, Journal of the American Statistical Association, 74, 911-915.
- Cassel, C.M., Särndal, C.E. and Wretman, J.H. (1976). Some results on generalized difference estimation and generalized regression estimation for finite populations. Biometrika, 63(3), 615-620.
- Deville, J.C. \& Tillé, Y. (2004). Efficient balanced sampling: the cube method. Biometrika, 91(4), pp.893-912.
- Falorsi, P. D., \& Righi, P. (2015). Generalized framework for defining the optimal inclusion probabilities of one-stage sampling designs for multivariate and multi-domain surveys. Survey Methodology, 41(1), 215-236.

Selected references, II

- Friedrich, U., Münnich, R., \& Rupp, M. (2018). Multivariate optimal allocation with box-constraints. Austrian Journal of Statistics, 47(2), 33-52.
- Fu, A., Narasimhan, B., and Boyd, S. (2020). CVXR: An R Package for Disciplined Convex Optimization. Journal of Statistical Software 94 (14): 1-34.
- Hagood, M. J., \& Bernert, E. H. (1945). Component indexes as a basis for stratification in sampling. Journal of the American Statistical Association, 40(231), 330-341.
- Isaki, C. T., \& Fuller, W. A. (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association, 77(377), 89-96.
- Kish, L., \& Anderson, D. W. (1978). Multivariate and multipurpose stratification. Journal of the American statistical Association, 73(361), 24-34.
- Kott, P.S. \& Bailey J.T. (2000). The theory and practice of maximal Brewer selection with Poisson PRN sampling. In: Proceedings of the Second International Conference on Establishment Surveys, Invited papers, 269-278.
- Lumley, T. (2004) Analysis of complex survey samples. Journal of Statistical Software 9(1): 1-19.

Selected references, III

- Skinner, C. J., Holmes, D. J., \& Holt, D. (1994). Multiple frame sampling for multivariate stratification. International Statistical Review/Revue Internationale de Statistique, 333-347.
- Tepping, B. J., Hurwitz, W. N., \& Deming, W. E. (1943). On the efficiency of deep stratification in block sampling. Journal of the American Statistical Association, 38(221), 93-100.
- Tillé, Y. \& and Matei, A. (2021). sampling: Survey Sampling. R package version 2.9. https://CRAN.R-project.org/package=sampling

